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The human placenta is a critical structure with multiple roles in pregnancy,

including fetal nutrition and support, immunological, mechanical and chemical

barrier as well as an endocrine activity. Besides, a growing body of evidence

highlight the relevance of this organ on the maternofetal wellbeing not only

during gestation, but also from birth onwards. Extracellular vesicles (EVs) are

complex macromolecular structures of different size and content, acting as

carriers of a diverse set of molecules and information from donor to recipient

cells. Since its early development, the production and function of placental-

derived EVs are essential to ensure an adequate progress of pregnancy. In turn,

the fetus receives and produce their own EVs, highlighting the importance of

these components in the maternofetal communication. Moreover, several

studies have shown the clinical relevance of EVs in different obstetric

pathologies such as preeclampsia, infectious diseases or gestational

diabetes, among others, suggesting that they could be used as

pathophysiological biomarkers of these diseases. Overall, the aim of this

article is to present an updated review of the published basic and

translational knowledge focusing on the role of placental-derived EVs in

normal and pathological pregnancies. We suggest as well future lines of

research to take in this novel and promising field.
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1 Introduction

1.1 A global view on human placenta

The human placenta is formed after the implantation process

of the zygote (in form of blastocyst) to the endometrium. Once

the blastocyst is attached, two layers are formed: an inner layer,

responsible for the formation of the embryo and an outer layer

designed as trophectoderm, which ultimately will lead to the

process of placentation (Wang et al., 2017). Simultaneously, the

stromal cells present in the maternal endometrium will start the

process of decidualization, remodeling the uterus and promoting

implantation and placentation success (CY et al., 2010).

The cells present in the trophectoderm are named

trophoblasts and they will form the fetal portion of the

placenta, whereas the decidual layer will be the maternal one.

Trophoblasts will migrate from the trophectoderm to the

endometrium, invading the epithelium and maternal blood

(Staud and Karahoda, 2018). This process is started by the

syncytiotrophoblasts (STBs), which are oligonucleated cells

formed by the fusion of mononucleated trophoblasts. The

other main cellular component of the placenta are the

cytotrophoblasts (CTBs), composed by the remaining

mononucleated trophoblasts (Huppertz, 2008). STBs will

contact the maternal blood at early stages whereas CTBs will

migrate from the fetal to the maternal portion of the placenta,

turning into endovascular extravillous trophoblasts (eEVTs) and

interstitial trophoblasts (iEVTs). iEVTs will be located in the

endometrial decidua, whereas eEVTs will be critical for the

remodeling of spiral arteries in the maternal endometrium

(Huppertz, 2018). The process of placentation is completed

with the development of placental villi. In the first trimester

of pregnancy, a system of villous trees is formed as well as the

intervillous space, in which the maternal blood is shed (Aplin

et al., 2018). An outer layer of STBs together with inner CTBs will

be responsible for the formation of primary villi. Next, extra-

embryonic mesodermal cells will invade the primary villi,

forming a mesenchymal core and transforming them into

secondary villi. These represent a major source of extravillous

trophoblasts (EVTs), either iEVTs and eEVTs (Castellucci et al.,

2000; Huppertz, 2008). Finally, fetal cappilaries appear in the

core of the secondary villi, concluding the process with the

formation of tertiary villi (Turco and Moffett, 2019).

The development and growth of the human placenta is

remarkably rapid. In non-pathological conditions, their weight

increases from 50 g at 10–12 weeks to the 500–600 g that the

placenta typically reaches at delivery (Fadl et al., 2017). In this

period, tertiary villous trees proliferate, and different subtypes

will form: 1) Mesenchymal villous trees, precursor of the other

villous trees, essential for the endocrine activity of the placenta; 2)

Immature intermediate villi, representing a branching of

mesenchymal villous trees; 3) Stem villi, with structural

support function; 4) Mature intermediate villi, highly

vascularized, fulfilling maternofetal exchange and leading to

the formation of the 5) terminal villi, which are the most

mature form of the placental (or chorionic) villi, mediating

the transfer of oxygen/carbon dioxide, electrolytes, and

nutrients between the mother and fetus (Benirschke et al.,

2006; Huppertz, 2008; Wang and Zhao, 2010). One or more

fetal villous trees are grouped in structures known as cotyledons,

which contain a fetal artery and a vein, and are separated by

connective tissue and irrigated by one or more maternal spiral

arteries (Barker et al., 2013). Although differences exist, there are

some critical cellular groups that are located in these structures in

addition to the aforementioned STBs and CTBs. These include

different cell populations derived from mesenchymal cells

(including fibroblasts, myofibroblasts, or smooth muscle cells),

Hofbauer cells, which are local macrophages populations derived

from mesenchymal cells or recruited from maternal blood, fetal

vessels and different extracellular materials collectively known as

fibrinoids, regulating cellular behavior in the placenta (Huppertz,

2008; Aplin et al., 2018). In addition, there is a plethora of

maternal immune populations present in the endometrial

decidua, including decidual natural killer cells (dNKs),

dendritic cells (DCs), T cells and macrophages (Tong and

Abrahams, 2020). Trophoblasts are semi-allogenic cells,

combining both maternal and paternal genetic backgrounds

(JK, 2008). Interestingly, they exert critical

immunomodulatory functions, modulating the maternal

immune response and avoiding the rejection of the embryo

and placenta. In addition, the inflammatory environment

provided by the combined action of the maternal immune

system, decidual cells and trophoblasts is critical for the

development of the placenta during the first trimester

(Aaltonen et al., 2005; Burton and Jauniaux, 2015; Goldstein

et al., 2020). Conversely, the second trimester is mostly an anti-

inflammatory stage whereas the third trimester and specially the

delivery process are pro-inflammatory (Mor et al., 2011).

In summary, the placenta is a complex structure with a

pivotal role during pregnancy, orchestrating multiple

physiological processes critical for pregnancy success. This

organ represents a structural, immunological and chemical

barrier between the fetus and the mother, simultaneously

allowing the exchange of oxygen, nutrients and various

metabolites between the mother and the fetus. In addition, the

placenta performs essential endocrine functions (Gude et al.,
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2004; Lewis et al., 2012; Larqué et al., 2013). The importance of

the placenta is illustrated by its central role in the genesis and

development of various obstetric pathologies. (Audette and

KingdomScreening, 2018; Travaglino et al., 2019; Ortega et al.,

2021). Besides, this organ is a remarkable epigenetic modulator

both for the fetus and the mother, influencing the maternofetal

wellbeing after the delivery (Burton and Fowden, 2015; Burton

et al., 2016).

1.2 Extracellular vesicles

Extracellular vesicles (EVs) are carriers of different biological

molecules, being relevant actors in both physiological and

pathological processes (Yáñez-Mó et al., 2015; Kalra et al.,

2016). For these reasons, there is a growing interest in the

research and potential applications of EVs (Couch et al.,

2021). EVs are produced by all cell types (Akers et al., 2013)

and act in different recipient cells in an autocrine, paracrine or

endocrine manner, modulating several cellular processes

(Zaborowski et al., 2015).

Traditionally, EVs have been divided in three main groups:

exosomes, ectosomes or microvesicles, and apoptotic bodies.

They differ in their size, biogenesis, content, release and

biological functions (Yáñez-Mó et al., 2015). According to

size, exosomes are the smallest EVs (~30–100 nm), followed

by microvesicles (100–1,000 nm) and apoptotic bodies

(ranging from 1 to 5 µm), with some degree of overlapping

between the different categories (Willms et al., 2018).

Regarding the biogenesis, exosomes are produced by the late

endosomes, also known as multivesicular bodies (MVBs). During

the formation of MVBs, there are a set of proteins and cellular

complexes such as ESCRTs (endosomal classification complexes

required for transport) or tetraspanins which incorporates in a

highly selective way different products which are recycled from

the plasma membrane or directly incorporated from the cytosol,

being enclosed in intraluminal vesicles (ILVs) (Zhang et al.,

2019). Then, the late endosomes can either fuse with

lysosomes and be degraded or they can move to the plasma

membrane. After fusion of the MVB with the cell membrane, the

ILVs are released to the extracellular space, being designed as

exosomes (Ortega et al., 2022a). Microvesicles are formed by

direct budding of the plasma membrane, as a result of

coordinated work between membrane phospholipids and the

contractile action of the cellular cytoskeleton (Kalra et al., 2016).

This process is coordinated by different complexes such as ATP-

binding cassette transporter 1 (ABCA1), and other molecules

also involved in the biogenesis of exosomes like the

aforementioned ESCRT, ARF6 and phospholipase D2 (PLD2),

although their mechanisms of action are different (Tricarico

et al., 2017). In the case of apoptotic bodies, their biogenesis

is linked to programmed cell death or apoptosis in a three stage

process: 1) plasma membrane blebbing; 2) formation of thin

apoptotic membrane protrusions and 3) fragmentation into

individual apoptotic bodies (Akers et al., 2013). For a detailed

view of the biogenesis of the different EVs, see (Kang et al., 2021).

EVs content includes a broad spectrum of lipids, proteins and

nucleic acids, including different types of RNA and DNA

(Zaborowski et al., 2015). Apoptotic bodies can also contain

micronuclei, portions of cytoplasm, degraded proteins,

chromatin remnants, DNA fragments, large macromolecular

complexes and even intact cell organelles (Battistelli and

Falcieri, 2020). Exosomes and microvesicles interact and are

recognized by specific cell membrane receptors. This process

triggers the internalization of the exosomes and microvesicles

inside the cell and the release of their content within the cell.

They can also be internalized by phagocytosis, macropinocytosis,

or different types of micropinocytosis, giving rise to early

endosomes. Apoptotic bodies are phagocytosed by different

cells, especially macrophages in the process of spherocytosis

(Kourtzelis et al., 2020). Once the EVs enter in the recipient

cell, they can be recycled back to the plasma membrane and

released, or they can be directed to MVBs, where they will fuse

with lysosomes for degradation or their content will be released

in the cytosol, nucleus, or ER, where they will exert their cellular

functions (Ortega et al., 2022a).

EVs are produced by many cell types, and especially in active

tissues and organs, as it is the case of human placenta (Tersigni

et al., 2022). In recent years, a growing number of studies have

studied the different functions of EVs during pregnancy, at

different gestational stages and emphasizing their role in

pathophysiological processes (Das and Kale, 2020; Nakahara

et al., 2020). The aim of this work is to review the role of

placental-derived EVs (PEVs) in normal and pathological

pregnancies, as well as future directions to take in this novel

and promising field of research.

2 Placental-derived extracellular
vesicles. Relevance and types

PEVs are essential to understand how pregnancy is regulated.

Their effects are both local and systemic, orchestrating multiple

processes. Indeed, there is evidence that PEVs are pivotal

mediators of the maternofetal interplay, affecting different

fetal and maternal tissues and organs (Nakahara et al., 2020).

STBs appears to be a major source of PEVs, although CTBs,

mesenchymal cells, EVTs and other cell groups from the placenta

are also involved in their production (Kupper and Huppertz,

2022). The amount, biogenesis, content and biological functions

of the PEVs differ significantly according to the trimester of

gestation and the physiological status of the feto-placental unit

(Zhang et al., 2020; Condrat et al., 2021). Many studies have

shown that the placenta-specific enzyme placental-type alkaline

phosphatase (PLAP) is a relevant molecular marker of placental

and fetal EVs, being widely used for the characterization and
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classification of PEVs (Mincheva-Nilsson and Baranov, 2014).

Placental EVs include exosomes, microvesicles and apoptotic

bodies (Nakahara et al., 2020). PEVs can be detected in maternal

blood after 6 weeks, when the blood flow into the intervillous

space (~10 weeks gestation), is not yet established. However, the

mechanism supporting the transfer of PEVs into maternal blood

at this early stage is not known (Tannetta et al., 2017). In the first

trimester of pregnancy, the number and concentration of PEVs

appears to increase steadily (Sarker et al., 2014). This trend is

maintained during the whole pregnancy, and several works have

described that the concentrations of PEVs are approximately

20 times greater after 28 weeks of pregnancy compared to non-

pregnant women (Sabapatha et al., 2006). The highest exosomal

concentration in maternal blood is reported at term (Salomon

et al., 2013). It is equally important to remark that there are some

notable challenges to face when working with PEVs. Firstly, for

sample collection it is frequent to use minimally invasive fluid

samples in humans, whereas in vitro or animal models can also be

used to study PEVs (Block et al., 2021). All of them may present

critical advantages and disadvantages. For instance, there are

different types of in vitro models like primary trophoblast

cultures or placental cultures which can allow to define a cell

type-specific secretory profile in response to an experimental

manipulation; permitting to confirm a placental origin of the EVs

(Fitzgerald et al., 2018). However, there are some important

limitations regarding the viability or the gene and protein

expression profiles, which can be compensated with the use of

animal models, allowing the control of experimental factors while

facilitating the access to large cohorts, rigorous sampling, the use

of the animal as their own control or the possibility of driving

transgenerational studies (Block et al., 2021). Nevertheless, the

results obtained in animal studies might not be totally

extrapolated to humans, and there are less studies in

comparison to samples obtained from maternal fluids, which

present larger database and is readily accessible. There are

different isolation techniques currently used, such as size

exclusion chromatography plus immunosorbent procedure

against PLAP, microfluidic chip and ultrasonic waves as well

as different kits; however, sequential centrifugations at low

speeds followed by ultracentrifugation at 100.000 x g (or

above) are the standard protocol for isolating PEVs, with

different modifications based on this approach (Burkova et al.,

2021). These techniques are not exempt from failures, and

sometimes it is difficult to distinguish between different types

of PEVs, due to their overlapping size. Besides, there are also

some studies hesitating about the general use of

ultracentrifugation, as this may result in aggregation of EVs

(Yuana et al., 2015). Thus, there is a need for an standardized

protocol for the study of PEVs. Storage of EVs generally extracted

from plasma or other human fluids can be achieved up to 1 year

following a freezing process, with insignificant changes in the

composition (Yuana et al., 2015). The analysis of the content of

PEVs represents another challenge to face, as if the sample

studied is insufficiently purified or the isolation process has

not been successfully, preparations containing other non-

exosomal vesicles and co-isolated proteins may be analyzed

(Burkova et al., 2021).

Figure 1 summarizes a global overview of PEVs main

characteristics, including main cell sources, levels and

potential implications. We will summarize in this section the

main features and implications of the different PEVs in non-

pathological pregnancies.

2.1 Placental exosomes

Placenta-derived exosomes (pEXO) are released by different

cell types in the human placenta, and carry significant amounts of

growth factors, DNA fragments, miRNAs, and messenger RNAs

(Jin and Menon, 2018). In addition, pEXOs present a differential

profile of phospholipids and proteins in comparison to placenta-

derived microvesicles and apoptotic bodies. Indeed, pEXOs

appears to have greater stability and reduced fusogenic

properties (Ouyang et al., 2016).

The content, biogenesis and release of pEXOs is closely regulated

by the placental microenvironment. For instance, several studies have

reported an increased exosome release by trophoblast cells under

hypoxic conditions or in the presence of high glucose levels (Mitchell

et al., 2015). Different mechanisms describe the effect of pEXOs

interaction with both the fetus and the mother, critically influencing

several developmental events. Most of the studies regarding the effect

of pEXOs in physiological pregnancies focus on their

immunomodulatory aspects. As aforementioned, the induction of

an immune tolerance by the maternal immune cells is critical to

prevent the rejection and ensure an adequate development of the

semi-allogeneic fetus. In this line, previous studies have found that

pEXOs present central immunomodulatory proteins such as human

leukocytic antigen (HLA)-G5, B7-H1 and B7-H3 at early and term

placental explants (Kshirsagar et al., 2012). The former was only

secreted in early explants-derived pellets but not at term stages,

although CTBs could sustain the production of HLA-G5 during

pregnancy. The expression of different types of HLA during

pregnancy is critical for ensuring immune tolerance in pregnancy,

and several obstetric complications are characterized by an abnormal

expression of HLA molecules (Tersigni et al., 2020). Hence, pEXOs

are critical for promoting this immune tolerance, especially at early

and late stages, preventing potential complications. Other results

report that trophoblasts-derived exosomes could enhance

macrophage migration in a dose dependent manner, leading to

an increased production of interleukin (IL)-1β, IL-6, Serpin-E1,
granulocyte colony-stimulating factor, granulocyte/monocyte

colony-stimulating factor, and tumor necrosis factor-α (TNF-α)
(Atay et al., 2011). In pregnant mice, pEXOs appears to interact

specifically with maternal lungs and liver, where interstitial

macrophages uptake these EVs. However, the physiological

consequences of this fact is not fully understood (Gerosa et al.,
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2016). Macrophages are actively involved in trophoblast invasion,

tissue and vascular remodeling during early pregnancy, presenting a

different polarization according to the environment: M1 (Pro-

inflammatory) and M2 (Anti-inflammatory) (Jena et al., 2019).

The ratio between M1 and M2 populations is essential for

pregnancy success, although it can vary across pregnancy, with an

increased M1 polarization during the peri-implantation state, mixed

M1/M2 profiles from the attachment to the development of the

placenta and a shift towards M2 polarization until term labor, where

an increase of M1 is again reported (Yao et al., 2019). In this sense, a

recent study conducted by Bai et al., (2022) described that pEXOs can

regulate circulating monocytes, driving to a M2 polarization. This

effect was attributed to amicroRNA present in these exosomes, miR-

29a-3p, which promoted the expression of programmed cell death

ligand-1 (PDL-1), a well-known surface receptor that suppresses the

adaptive immune system. Thereby, pEXOs can modulate

macrophage behavior and its polarization, although further studies

are warranted to deepen on potential mechanisms involved in these

events. pEXOs modulate NK cells as well, as shown in previous

works. In fact, it has been described that they can be internalized both

in vitro and in vivo, modulating the expression of several markers,

inducing CD56dim NK cells and apoptosis, and promoting the

development of decidual NK cell-like phenotype (Bai et al., 2021).

Interestingly, NK, macrophages and activated T CD8 cells express

high levels of NK group 2 member D (NKG2D) and it has been

demonstrated how pEXOs carries NKGD2 ligands (i.e. UL-16

binding proteins (ULBP)) and MHC class I chain-related (MIC)

proteins A and B that exert an immunosuppressive function in these

cells (Hedlund et al., 2009). Besides, pEXOs equally content miR-

517a-3p, targeting PRKG1 in NK, hence influencing in the function

of these cells (Kambe et al., 2014). Other mechanisms by which

pEXOs modulates several immune populations include the presence

in these PEVs of PDL-1 or PDL-2 and proapoptotic ligands such as

TRAIL and FasL (Mincheva-Nilsson, 2021). Collectively, the

modulatory role of pEXOs in NK cells and other populations

denote the relevance of these EVs during physiological pregnancy.

In addition to its immunomodulatory role, pEXOs fulfill

different functions in physiological pregnancies. For instance,

previous works denoted that pEXOs appears to induce the

mechanisms of defense against different viruses and pathogens

(Delorme-Axford et al., 2013; Bayer et al., 2015). Different

miRNA members of the chromosome 19 miRNA cluster

FIGURE 1
A general overview of PEVs. Biosynthesis and release of PEVs increase as pregnancy progresses along with the development of the placental
structures. Syncytiotrophoblasts, which are in contact withmaternal blood (Intervillous space), are amajor source of PEVs, although cytotrophoblast,
Hofbauer cells, mesenchymal cells, extravillous trophoblasts and others also produce them. PEVs are essential for the interplay between the placenta
and endometrial decidua, modulating both the placentation and decidualization processes. PEVs also modulate the immune system, the
inflammatory response and immune tolerance. PEVs reach systemic circulation or enter through fetal capillaries into the fetal circulation, playing a
key role in the crosstalk between the placenta with maternal and fetal tissues.
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(C19MC) seem to be potentially involved in these processes,

protecting the mother and fetus against infectious diseases.

Likewise, these components are relevant for the placentation

and vasculogenesis processes. Thus, exosomes isolated from

placental mesenchymal stem cells induce endothelial cell

migration and vascular tube formation (Komaki et al., 2017).

Likewise, in non-pathological pregnancies, the effect of pEXOs

on endothelial cell migration is higher in the first trimester with

respect to the second and third trimester (Salomon et al., 2014a).

Under hypoxic conditions cytotrophoblast-derived exosomes

appear to induce EVTs migration (Salomon et al., 2013).

Non-exacerbated hypoxia is crucial in normal pregnancies,

especially during the process of placentation (Soares et al.,

2017). In turn, it seems that pEXOs secreted by EVTs are

critically involved in the uterine spiral artery remodeling at

early stages (Salomon et al., 2014b). Beyond this, previous

works have defined the relevance of pEXOs for fetal

development and health. Miranda et al. (Miranda et al., 2018)

reported that quantification of pEXOs in maternal plasma at

third trimester are great indicators of fetal growth, representing a

potential reflection of placental function. More detailly, they

observe that there was a significant positive correlation

between the ratio of placental derived to total exosomes

(PLAP+ve ratio) and birth weight percentile. In this line, some

authors have argued that PLAP appears to be essential to assist

the transfer of maternal IgG to the fetus at the placenta surface,

aiding to stimulate DNA synthesis and cell proliferation in fetal

fibroblasts, improving its survival (Jin and Menon, 2018). To this

observation, it must be added the different components

previously mentioned, aiding to explain the relevance of

pEXOs in the development and physiological status of the

fetus and the mother.

2.2 Placental microvesicles and apoptotic
bodies

Placental microvesicles have been less studied in

pregnancy. STBs are a major source of these microvesicles,

especially due to the shedding of their microvilli or in

association with syncytial nuclear aggregates (SNAs),

although the mechanisms or regulation of this process are

not fully understood (Chamley et al., 2014; Tong and

Chamley, 2015). PLAP can be used as well to tag

placenta-derived microvesicles (Dragovic et al., 2015).

CTBs exposed to the maternal blood following denudation

of the syncytiotrophoblast or extravillous trophoblasts can

also be involved in microvesicles release (Tong and Chamley,

2015). Similar to pEXOs, placental microvesicles are also

critical modulators of the immune system. It has been

demonstrated that circulating microvesicles in the second

trimester of gestation present high levels of

immunosuppressive TGF-β1 and IL-10, with an enhanced

caspase-3 activity in CD56dim NK cells (Nardi et al., 2016).

Likewise, syncytiotrophoblast-derived microvesicles

(STBMs) isolated in the third trimester of pregnancy bind

to B cells and monocytes, modulating the expression of

several cytokines involved in type 2 immunity and

increasing the expression of IL-6 and TNF-α with respect

to non-pregnant women (Southcombe et al., 2011). Likewise,

IL-1β is more abundant in placental microvesicles during the

first trimester of pregnancy, as well as in certain placental

diseases. This interleukine is relevant for the immune cell

activation and responsiveness to bacterial

lipopolysaccharide (LPS) (Holder et al., 2012).

Interestingly, the antiviral activity of placental

microvesicles is less relevant with respect to exosomes

although they have a modulatory role in the angiogenesis

process (Tannetta et al., 2013).

Apoptosis is essential for normal placental development,

as trophoblast apoptosis increases with placental growth and

pregnancy progresses (Athapathu et al., 2003). It has been

hypothesized that this process involves the clustering of

apoptotic nuclei and liberation of this material into the

maternal circulation (Sharp et al., 2010). As previously

mentioned, placental microvesicles and apoptotic bodies

differ from pEXOs in phospholipid and a protein profiles,

although the miRNAs cargo is similar (Ouyang et al., 2016).

Tong et al., (2016) demonstrated in an ex vivo culture of first

trimester placenta that microvesicles carried more proteins

compared to exosomes and apoptotic bodies. Likewise, the

majority of proteins are shared by all EVs, although there are

also unique proteins for apoptotic bodies, microvesicles and

pEXOs, suggesting that the different EVs are involved in

specific mechanisms. SNAs have been associated with the

apoptosis process, as there is a hypothesis of STBs turnover

that suggest effete nuclei are collected into knots, undergo

apoptosis and shed into maternal bloodstream (Mayhew et al.,

1999; Huppertz et al., 2002; Huppertz et al., 2003). However,

other findings report that, despite nuclear condensation and

signs associated to degeneration, it is unlikely that SNAs are

related with apoptosis in non-pathological pregnancies

(Coleman et al., 2013). SNAs have been observed after

6 weeks of pregnancy, suggesting a potential role in

immune tolerance (Pantham and Chamley, 2018). SNAs

have been divided in three categories: syncytial sprouts,

knots, and bridges. Syncytial sprouts are pedunculated

collections of euchromatic nuclei arising at the start of new

villi and found during the first trimester. Knots appear at term,

protruding slightly from the villous surface. Latelly, bridges

are highly nucleated regions connecting two villi (Coleman

et al., 2013). The function of SNAs remains to be revealed, but

they appear to be engulfed by lung macrophages, and it is

likely that they may lead to immunological silencing of these

cells as shown for apoptotic bodies (Kupper and Huppertz,

2022).

Frontiers in Cell and Developmental Biology frontiersin.org06

Ortega et al. 10.3389/fcell.2022.1060850

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.1060850


3 Placental-derived extracellular
vesicles in obstetric complications

In this section, a summary of the current knowledge of the

role of PEVs in some of the most relevant obstetric diseases

including preeclampsia (PE), gestational diabetes mellitus

(GDM), fetal growth restriction (FGR), chorioamnionitis and

preterm birth (PTB) is shown.

3.1 Preeclampsia

3.1.1 Introduction
PE affects about 3% of all pregnancies and belongs to a group

of diseases generically known as hypertensive disorders of

pregnancy, together with chronic hypertension, gestational

hypertension and chronic hypertension with superimposed PE

(JA et al., 2011). High blood pressure is the main symptom of PE,

but other symptons are frequent in this disease, such as

proteinuria, edema, multiorgan failure, FGR and HELLP

(Hemolysis, elevated liver enzymes, and low platelet count)

syndrome and eclampsia. It has a fact that PE predisposes

both the mother and the fetus to suffer cardiovascular diseases

and other complications after birth (Jurewicz, 2018; Wallace

et al., 2018). Clinically, the diagnosis of PE is established from a

systolic and diastolic blood pressure ≥140 mm Hg and ≥90 mm

Hg, respectively, measured at least two times 4 h apart; higher

values (≥160 mm Hg and ≥110 mm Hg, respectively) are

frequent (Karrar and Hong, 2022). PE has been classified into

mild or severe PE, although it is widely accepted that PE

symptons can get worse very rapidly, posing a severe health

problem for both the fetus and the mother (Tranquilli, 2013).

However, it is common to distinguish between early onset PE

(EO-PE) and late onset PE (LO-PE) depending on whether the

appearance of the first symptoms takes place before or after the

34th week of gestation (Redman, 2017). The etiopathogenesis of

EO-PE is unknown, although the most widely accepted

hypothesis considers it consequence of a failure in the

placentation process associated with defective spiral artery

remodeling and trophoblast invasion. This leads to a

persistent hypoxia/ischemia state in the placental tissue and to

an imbalance in the angiogenic process which eventually leads to

abnormal trophoblast behavior, oxidative stress, vascular

inflammation and endocrine alterations. Eventually, systemic

endothelial injury may lead to multiorgan failure and systemic

complications (Ortega et al., 2022b). LO-PE is more likely bound

to maternal extrinsic factors and, although placental damage also

exists, the pathophysiological signatures, the impact of PE for

both the fetus and mother, clinical features and serum markers

are significantly different (Raymond and Peterson, 2011).

The only definite cure for PE is delivery, although low-dose

aspirin (LDA) can be used as a prophylactic measure for patients

at high risk (Bujold et al., 2010; Rolnik et al., 2017; Ives et al.,

2020). Main risk factors associated to PE includes genetic

background (family history) or previous events of PE;

preexisting medical conditions, like hypertension,

antiphospholipid syndrome, or insulin-dependent diabetes;

obesity; age (≥40 years old), assisted reproductive techniques;

nulliparity and multiparity (Lisonkova and Joseph, 2013; Paré

et al., 2014). In this context and, in the absence of effective

therapies, early prediction of PE is critical for preventive therapy

and to guarantee adequate patient surveillance (Wagner, 2004;

Sibai, 2005; Sunjaya et al., 2019). Likewise, a detailed

understanding of the pathophysiology of PE will help to find

novel biomarkers with translational applications.

3.1.2 Role of placental extracellular vesicles in
preeclampsia

PEVs are potential mediators of PE pathogenesis and offer

promising therapeutic applications from bench to bedside.

According to different research works, the number of EVs

and PEVs are higher in preeclamptic women compared to

unaffected women, suggesting a putative pathophysiological

role of these components (Knight et al., 1998; Salomon et al.,

2017). Likewise, PEVs are larger in PE women (Tong et al., 2017).

Additionally, different studies have shown that there are

differences between EO-PE and LO-PE, as the number of

placental microvesicles and pEXOs is higher in EO-PE

compared to LO-PE. However, some studies have described

that there are not changes in the levels of PLAP + EV

between normotensive and LO-PE women, confirming the

etiopathogenic differences between EO-PE and LO-PE

(Goswamia et al., 2006; Orozco et al., 2009; Chen et al., 2012;

Pillay et al., 2016). Regarding their content, lipidomic analysis

have revealed that STBMs from PE women display enhanced

levels of total phosphatidylserine whereas phosphatidylinositol,

phosphatidic acid, and ganglioside mannoside 3 were

significantly downregulated in comparison with normal

pregnancies (Baig et al., 2013).

The changes in the EV profile can critically affect to different

pathophysiological mechanisms of PE. For instance, it has been

demonstrated that administration of PEVs in a mice model of PE

induced proteinuria and hypertension in non-pregnant mice,

disrupting endothelial activity and promoting vasoconstriction

(Han et al., 2020). Interestingly, the clearance of these

pathological PEVs prevented the induction of the

preeclampsia-like phenotype, suggesting a causal role of these

components in PE. Gill et al., (2019) reported a remarkable

increase of neprilysin (NEP) in PEVs obtained from PE women,

playing pathological roles in hypertension, heart failure, and

amyloid deposition, involved in the development of PE. Focusing

on the vascular alterations and damage observed in the course of

this obstetric disease Tannetta et al. (Tannetta et al., 2013)

defined that there are differences in physical and antigenic

features of PEV between normal and preeclamptic

preparations. For instance, they showed that pEXOs and
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placental microvesicles presented lower PLAP levels in their

surface and larger quantities of biologically active endoglin

(Eng) and Fms Related Receptor Tyrosine Kinase 1 (Flt-1).

Both Flt-1 and Eng as well as their soluble forms (sEng/sfl1-1)

are major contributors to the pathophysiology of PE by reducing

the bioavailability of the proangiogenic markers vascular

endothelial growth factor (VEGF) and placental derived

growth factor (PlGF) (Gilbert et al., 2008). SNAs appears to

be a major source of sFlt-1 in PE, being associated with increased

syncytial knots formation and shedding of these EV into

maternal circulation and lungs and contributing to the

systemic vascular injury observed (Rajakumar et al., 2012;

Buurma et al., 2013). Besides, it has been described that

macrovesicles from preeclamptic but not from normal

placenta induced endothelial activation, suggesting a potential

pathophysiological role EV in the endothelial injury systemically

(Shen et al., 2014). Microparticles released by STBs seems to

contain lower amounts of Tissue Factor Pathway Inhibitor

(TFPI) enhancing the bioavailability of Tissue Factor (TF) and

its procoagulant activity observed in women with gestational

vascular complications (Aharon et al., 2009). Simultaneously,

STBMs from PE women show higher levels of TF, consistently

with the altered hemostasis reported in these patients (Gardiner

et al., 2011). Also, PEVs from patients with PE contains higher

levels of mucin-1, a glycoprotein which impairs EVT invasion via

β1-integrin signaling (Shyu et al., 2011; Tannetta et al., 2017).

Proteomic studies have evidenced decreased integrins in STBMs

from PE women, related to reduced trophoblast invasion and

defective placental vascularization (Baig et al., 2014). pEXOs can

also present syncytin-1 and -2 in their membrane, two proteins

involved in STB formation and critically downregulated in

women with PE (Vargas et al., 2011). However, syncytin 2 is

reduced in pEXOs from preeclamptic placenta when compared

with normal women and there is a decreased internalization of

exosomes released by trophoblast cells deficient in syncytin-1 and

-2 (Vargas et al., 2014).

As above mentioned, an exacerbated inflammatory response

and ischemia/hypoxia are important pathophysiological

mechanisms in PE. Exosomes from EVT cultured in vitro

under low oxygen tension increase TNFα expression in

human umbilical vein endothelial cells (HUVECs), inhibiting

their migration (Truong et al., 2017). Likewise, low oxygen

tension was also associated with a differential miRNA

signature in exosomal derived from EVT, all of them

associated with cell migration and cytokine production

(Truong et al., 2017). Shen et al., (2018) found that placenta-

associated serum exosomal miR-155, which was upregulated in

patients with PE, decreased nitric oxide (NO) production and

endothelial nitric oxide synthase (eNOS) expression in primary

HUVECs. Similarly, it has been reported (Ospina-Prieto et al.,

2016) that increased levels of exosomal miR-141 derived from

placental trophoblast in patients with PE could induce T cell

proliferation. Kovacs et al. (Kovács et al., 2018) found that EV

from PE women induce an aberrant response in macrophages,

affecting chemotaxis, cell adhesion and migration in vitro. These

authors described increased CD47 levels (“do not eat me” signal)

and decreased external phosphatidylserine levels (“eat me”

signal) along with a decreased uptake of these EVs. A possible

explanation is partially described in other article (Wang et al.,

2019), where the authors showed that miR-548c-5p expression

was lower in serum exosomes and placental mononuclear cells in

PE patients compared to non-pathological pregnancies. This

down-regulation is associated with an increased secretion of

inflammatory cytokines (IL-12 and TNF-α) and nuclear

translocation of NF-κB, leading to an aberrant macrophage

response. In addition to macrophages, neutrophils are also

tightly modulated by PEVs. Indeed, in vitro studies have

shown that PEVs can dramatically increase the production of

superoxides by donor neutrophils and stimulate the production

of neutrophil extracellular traps (NETs), reducing maternal

blood flow in preeclamptic placentas (Tong and Chamley,

2015). Reduced levels of gelsolin reported in women with PE

can be associated with an aberrant shedding of EVs while treating

placental explants with preeclamptic sera enhanced expression of

the proinflammatory marker High Mobility Group Box 1

(HMGB1) detected in SNAs, according to previous works

(Zhang et al., 2020). Moreover, microvesicles derived from

preeclamptic placenta exacerbated in vitro the response of

PBMCs to LPS, supporting a proinflammatory action of these

EVs in PE (Holder et al., 2012). Additional works have reported a

reduced presence of the Placental Protein 13 (PP13) in PEV of PE

women, suggesting that this dysregulation can be involved in the

immunopathological mechanisms observed (Sammar et al.,

2018).

The diagnostic value of PEVs has also been tested. For

example, Salomon et al. (Salomon et al., 2017) found that in

asymptomatic women who lately developed PE, the concentration

of total exosomes and pEXOs was higher than in controls.

Similarly, hsa-miR-486-1-5p, and hsa-miR-486-2-5p miRNAs

contained in the exosomes are elevated in PE compared with

normal pregnancies, suggesting their potential application for the

early PE biomarkers. Other authors (Biró et al., 2017) observed

circulating exosomal total-miRNA and hsa-miR-210 levels were

significantly elevated in PE women in comparison with

normotensive women and patients diagnosed with other

hypertensive disorders of pregnancy (chronic and gestational

hypertension), suggesting a promising role for differential

diagnosis. Some studies have described that apoptotic

microparticles derived from trophoblast in PE women revealed

a significant increase of circular DNA in comparison to normal

pregnancies, which can be used for both early genetic diagnosis

and monitoring of pathological pregnancies (Orozco et al., 2008).

As summarized in Figure 2, the amount and content of PEVs is

involved in the pathogenesis of PE, modulating several processes,

such as the immune response, the angiogenic balance and other

mechanisms related with this disease.
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3.2 Gestational diabetes mellitus

3.2.1 Introduction
GDM represents the most common medical complication of

pregnancy The incidence and prevalence of this condition is

increasing due to improved clinical diagnosis and screening

programs (Alfadhli, 2015). The main risk factors for GDM are

obesity, sedentary lifestyle, multiparity, family history of type

2 diabetes mellitus (T2DM), past history of GDM or delivery of a

macrosomic baby, advanced maternal age, ethnicity and

polycystic ovarian syndrome (Lin et al., 2016; Yaping et al.,

2022). The main symptom associated with GDM is the

appearance of chronic hyperglycemia during pregnancy

without a previous diagnosis of diabetes (Diabetes Care,

2018). From a pathophysiological perspective, GDM is the

result of pancreatic β-cell dysfunction on a background of

chronic insulin resistance during pregnancy. In a healthy

pregnancy, peripheral insulin sensitivity increases in early

pregnancy, promoting the glucose uptake by adipose tissues

for late pregnancy. Throughout the pregnancy, the pancreas

undergoes a compensatory response with hyperplasia and

hypertrophy to meet the energetic demands of this period.

This leads to a decreased peripheral insulin sensitivity and

increased blood glucose levels to be exchanged through the

placenta and used by the fetus. After delivery, β-cell function,
glucose levels and insulin sensitivity are restored (Catalano et al.,

1991; Di Cianni et al., 2003). However, in GDM there is an

ineffective compensatory response of the pancreas, that

combined with reduced insulin sensitivity results in a marked

hyperglycemia. It has been hypothesized that GDM women may

have slightly impaired the peripheral insulin sensitivity before

pregnancy and after delivery, insulin sensitivity, β-cell function
and glucose levels can be either restored or might remain

impaired on a pathway toward GDM in future pregnancy or

T2DM (Plows et al., 2018). During the course of this complex

disorder, there are several organs directly involved such as the

brain, gut, liver, muscles and adipose tissue. In addition to the

pancreas, the placenta is the most important organ involved in

the pathogenesis of GDM.More specifically, the release of several

hormones produced by the placenta (mainly lactogen, but also

growth hormone, prolactin, corticotropin-releasing hormone

and progesterone) promote insulin resistance and

hyperglycemia (Rodriguez and Mahdy, 2022).

GDM is associated to multiple complications during

pregnancy, increasing the incidence of hypertensive disorders

of pregnancy like preeclampsia, polyhydramnios, excessive fetal

growth, maternal and neonatal morbidities, including cesarean,

neonatal hypoglycemia, hypocalcemia and respiratory stress

syndrome, amongst others (Metzger et al., 2008). Long-term

complications include increased risk of diabetes and

cardiovascular disease in the mothers and obesity and diabetes

for the children (Ashwal and HodGestational, 2015). According

to the International Association Diabetes Pregnancy Study

Groups (IADPSG) (Metzger et al., 2010), detection and

diagnosis of GDM is usually performed by an oral glucose

tolerance test (OGTT), considering the following criteria: 1)

FIGURE 2
The role of PEVs in PE. PEVs are increased in women affected with this condition, with multiple changes in their surface and cargo. These
changes are different in early versus late-onset PE. A possible modulator of PEVs is the low oxygen tension and hypoxic environment. PEVs released
by the placenta participates in the PE-associated vascular dysfunction, impairing placentation and trophoblast behavior, dysregulating the immune
system and leading to different PE manifestations. This can arise potential translational opportunities for exploring.
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Measure of fasting plasma glucose (FPG), glycosylated

hemoglobin (HbA1c), or random plasma glucose on all or

only high-risk women; 2) If results not diagnostic of overt

diabetes, GDM is clinically diagnosed when (FPG)≥92 mg/dl

and <126 mg/d; 3) if FPG is < 92 mg/dl, a 2-h 75-g OGTT should

be performed at 24–28 weeks’ gestation after overnight fast, being

diagnosed as GDM if FPG ≥92 mg/dl or 1 h plasma

glucose ≥180 or 2-h plasma glucose ≥153. Changes in diet

and physical activity are the primary treatments for GDM, but

pharmacotherapy, usually insulin, is required when

normoglycemia is not achieved. Oral hypoglycemic agents,

principally metformin and glibenclamide (glyburide), can also

be used (McIntyre et al., 2019).

3.2.2 Role of placental extracellular vesicles in
gestational diabetes

PEVs have been studied as well in the context of GDM

pathogenesis. As mentioned before, glucose can stimulate the

production and release of PEVs independently from oxygen

tension (Rice et al., 2015). It has been reported GDM patients

with 2.2-fold, 1.5-fold and 1.8-fold increased levels of PEVs with

respect to normoglycemic pregnant women during the first,

second and third trimester, respectively (Salomon et al., 2016).

The possible role of differences in proteins in PEVs isolated from

GDM has been analyzed. Proteomic analysis of PEVs isolated at

the time of GDM diagnosis showed differential expression of

Calcium/calmodulin-dependent Protein Kinase II beta

(CAMK2β) and Pappalysin-1 (PAPP-A), which are capable of

influencing insulin signaling and glucose metabolic pathways

(Jayabalan et al., 2019a). It has been reported that Dipeptidyl

peptidase-4 (DPPIV) in GDM patients serum compared with

normoglycemic pregnant women show greater DPPIV activity

and a 8-fold increase of DDPIV-bound PEV (Kandzija et al.,

2019). Importantly, DDPIV is characterized by breaking down

glucagon-like peptide-1 (GLP-1), a critical regulatory molecule

on glucose-dependent insulin secretion.

PEV-associated miRNAs have been studied as well in the

context of GDM. Nair et al. (Nair et al., 2021a) described

significative changes between normoglycemic and GDM

women in 101 EV-associated miRNAs, suggesting an

adaptative response to this pathological condition. Likewise, it

has been described a significant increase in early pregnancy

(6–15 weeks) in the expression of several EV-miRNAs and

PEV-miRNAs such as miR‒122-5p, miR‒132-3p; miR‒1323;

miR‒136-5p; miR‒182-3p; miR‒210-3p; miR‒29a-3p; miR‒

29b-3p; miR‒342-3p, and miR-520h (Gillet et al., 2019).

Similarly, PEVs seems to carry a set of miRNAs which

modulates skeletal muscle insulin sensitivity. Consequently,

PEVs isolated from women with GDM reduced insulin-

mediated migration and glucose uptake in primary skeletal

muscle cells from healthy individuals. Conversely, PEVs from

normoglycemic women increased insulin-mediated migration

and glucose uptake in primary muscle cells obtained from

GDM patients (Nair et al., 2018). In vivo models also showed

that PEV isolated from GDM women could induce impaired

glucose tolerance and changes in the miRNA profile and insulin

signaling in skeletal muscle tissues, specially through the

phosphorylation of IRS-1 and Akt (James-Allan et al., 2020).

Besides, when compared to normoglycemic PEVs, glucose

stimulated insulin secretion from pancreatic islets were reduced.

There is a strong association of increased body mass index (BMI)

values in early pregnancy (BMI>25) with GDM development (Zhang

et al., 2022). Previous studies have described a positive correlation

between BMI and total number of blood EV during pregnancy.

However, the higher BMI is, the less is the number of PEVs to the

total amount of EVs (Elfeky et al., 2017). Likewise, EVs from women

with a BMI >25 display a proinflammatory profile, with an increased

release of IL-6, IL-8 and TNF-α from endothelial cells (Salomon et al.,

2016; Elfeky et al., 2017). Previous studies have found that PEVs can

stimulate the release of different proinflammatory cytokines by

endothelial cells (Rice et al., 2015). In turn, EVs derived from the

endothelium can promote significant pathophysiological changes

related to GDM in the placenta (Sáez et al., 2018a; Sáez et al.,

2018b) demonstrating the interaction that exist between PEVs and

the endothelium. On the other hand, EVs produced by adipose tissue

promote placental changes during GDM. In this sense, these EVs

appears to be directly correlated with birthweight Z score, modulating

different products and events like Sirtuin, oxidative phosphorylation,

and mammalian target of rapamycin (mTOR) signaling pathway

(Jayabalan et al., 2019b). Figure 3 summarizes the influence of

PEVs in GDM. However, the effect of PEVs and EVs released by

other tissues in GDM pathophysiology is far from being fully

elucidated. The use of these PEVs as prognostic, predictive or

diagnostic biomarkers as well as potential therapeutic targets is a

promising field of study, with potential effects in the clinical

management of these patients (Nair et al., 2021b).

3.3 Other pregnancy complications

In this section, we will review relevant findings in less

prevalent obstetric complications in which PEVs have been

implicated.

3.3.1 Fetal growth restriction
Complications in maternal-fetal communication can lead to

one of the most worrying pathologies in pregnancy, which is

FGR. Traditionally, FGR describes a condition in which fetus is

smaller (below the 10th percentile) than expected based on

gestational age (SGA). However, as not every fetus has the

same growth potential, so the definition has been expanded,

and now it refers to those SGA fetuses due to a pathologic cause

and consequently are at risk of adverse events (Easter et al., 2017).

Current consensus requests weight <third percentile or three out
of the following criteria: birth weight <10th percentile, head

circumference <10th percentile, length <10th percentile, prenatal
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diagnosis of FGR, and the presence of any pregnancy

complication (Beune et al., 2018). To diagnose FGR

accurately, umbilical artery Doppler assessment must be

abnormal and percentile limits are 10, 5 or 3 compared to a

population of reference. Then subjacent causes must be detected.

In developed countries, the frequency of FGR increases with the

age of the mother and often is the consequence of preexisting

preeclampsia but in developing countries malnutrition and

infectious diseases are relevant factors (Easter et al., 2017).

Other factors involved are maternal hypertension, diabetes

mellitus, autoimmune diseases, smoking, or drug and alcohol

abuse. Among the factors linked to the fetus chromosomal

abnormalities (trisomy 13, 18, and 21), mutations at insulin-

like growth factor or multiple gestation are the most relevant

(Condrat et al., 2021). Inadequate placentation is also important.

In all these cases, pathological extracellular vesicle trafficking at

the feto-maternal crosstalk has been suggested by several authors.

In those cases of FGR underlying preeclampsia, the surface

area available for feto-maternal traffic is decreased due to

deficient remodeling of uterine spiral arteries and villous

damage, reducing the exchange of oxygen and nutrients. Some

prognostic biomarkers used in preeclampsia have been employed

in FGR as well. Low levels of angiogenic molecules like PIGF or

altered serum levels of PAPP-A in the first trimester are

considered in clinical practice for prenatal screening. Low

circulating levels of anabolic hormones IGF-1 and its binding

proteins explain nutrient privation and reduced growth potential.

Finally, circulating EGF Like Domain Multiple 7 (EGFL7) has

been used to classify isolated FGR and preeclampsia at different

gestational stages (Ortega et al., 2022b).

Predictive biomarkers for clinic practice are not available at

the moment. Future studies will focus on the characterization of

placenta and fetal-derived EVs and their cargoes to find

predictive biomarkers (Buca et al., 2020). Prospective cohort

studies studying placenta-derived exosomes in maternal and fetal

circulation for fetuses with FGR or SGA have been published. In a

study, the authors reported reduced [PLAP+ve:total exosomes]

ratios in FGR compared to controls and SGA cases (Miranda

et al., 2018). Likewise, EVs derived from umbilical cord as well as

the expression levels of miR-150 either in tissue or in EV were

decreased in a pig model of FGR. Upregulation of this miRNA

promoted proliferation, cell migration and tube formation by

HUVEC cells, promoting a pro-angiogenic effect (Luo et al.,

2018). These results support the existence of a pathogenic feto-

maternal communication and uteroplacental vascular

insufficiency. Hromadnikova et al., (2019) in a retrospective

case control study, selected C19MC miRNAs exosomes from

early gestation stages, observing a down-regulation of miR-520a-

5p in first trimester of women suffering preeclampsia and

gestational hypertension who later developed FGR. These

FIGURE 3
The relevance of PEVs in the context of GDM. Different factors associated with this condition such as hyperglycemia and high body mass index
can induce significant changes in PEV profile. EVs from other tissues affected by GDM such as adipose tissue can induce changes in the placenta.
PEVs can in turn reduce insulin secretion from the pancreas, altering insulin signaling pathways and insulin sensitivity in different tissues such as the
muscle or endothelium, driving to its activation and pro-inflammatory switch. Translational knowledge will help to improve the clinical
management of GDM patients.
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authors described this miRNA as a novel biomarker for the onset

of FGR due to its abundance in placenta and reduced expression

levels in other tissues. Similarly, Rodosthenous et al., (2017)

noticed that the level of various EV-associated miRNAs in the

second trimester of pregnancy were correlated with fetal growth,

describing sex-specific associations. However, future studies are

needed to unravel the role of EVs and PEVs in FGR.

3.3.2 Infections
Chorioamnionitis (infection of the membranes and chorion

of the placenta) represents a common complication of pregnancy

associated with significant perinatal, maternal and long-term

adverse consequences (Tita and Andrews, 2010).

Chorioamnionitis can be acute, subacute or chronic, showing

different clinical characteristics and complications (Fowler and

SimonChorioamnionitis, 2022). Chorioamnionitis is classified in

two main categories: Histologic (based on microscopic evidence

of inflammation of the membranes) and clinical (based on

medical manifestations of local and systemic inflammation

such as fever, abdominal pain or leukocytosis (>15,000 cells/

mm3) (Menon et al., 2010). There are plenty etiological agents

that may cause chorioamnionitis. The most frequent cause of

chorioamnionitis are ascending bacteria from the vagina and

cervix, appearing as a polymicrobial infection secondary

complication of prolonged rupture of the membranes (Czikk

et al., 2011). Other less common agents include viruses, fungi and

even parasites like Plasmodium falciparum (Czikk et al., 2011;

Singoei et al., 2021). Previous works have noticed an important

role of PEVs in chorioamnionitis. As above mentioned, PEVs

seem to have an impact in resistance pathways of viral infection.

For instance, PEVs are able to inhibit viral replication, or they

may content some antiviral agents like interferon (IFNλ1),
although they can also favor viral spread, acting as a secure

vehicle for them and promoting immune evasion (Condrat et al.,

2021). Otherwise, PEVs also play a pivotal role in bacterial

infections. Kaletka et al. (Zeldovich et al., 2013) studied

trophoblastic EVs afer being infected by Listeria

monocytogenes. Interestingly they found that these PEVs were

immunostimulatory, activating macrophages to a

proinflammatory state, but also making them more vulnerable

to being infected by this bacteria. Thus, both effects are likely

observed in PEVs regarding infections: Inducing an immune

response but also, promoting the spread of the pathogens.

Similarly, Bergamelli et al., (2021) demonstrated that infection

with human cytomegalovirus (CMV) affected in vitro the

expression level of several surface markers in PEVs, defining

an altered profile of these components due to this infection.

Although these changes can be useful for defending against the

infection, a very recent article has demonstrated that PEVs from

infected CMV potentiate infection in in naive recipient cells of

FIGURE 4
A graphical abstract of some of the current notions of PEVs in different obstetric pathologies. As represented, the role of PEVs remains to be
further explored in the field of fetal growth restriction, infections and preterm birth. However, some initial results are starting to arise in these
conditions, aiding to improve our knowledge of these obstetric complications. Due to the relevance of PEVs in many physiological and pathological
processes, we encourage for future studies in these areas.

Frontiers in Cell and Developmental Biology frontiersin.org12

Ortega et al. 10.3389/fcell.2022.1060850

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.1060850


TABLE 1 A summary of the main molecular findings and their potential implications in PEVs.

Molecular cargo Type of PEV Physiological
functions/Pathological role

References

(HLA)-G5, B7-H1 and B7-H3 Placental exosomes Immune tolerance. Dysregulation of HLA components are
related to different obstetric complications

Kshirsagar et al. (2012)

miR-29a-3p Placental exosomes Enhanced expression of PDL-1 and M2 polarization in
normal pregnancies

Bai et al. (2022)

NKGD2 ligands (i.e. ULBP and
MIC-A and B

Placental exosomes Immunosupressive role on NK cells Hedlund et al. (2009)

miR-517a-3p Placental exosomes Targeting of PRKG1 in NK cells Kambe et al. (2014)

PDL-1, PDL-2, TRAIL and FasL Placental exosomes Immunomodulatory effects in different populations Mincheva-Nilsson, (2021)

TGF-β1 and IL-10 Placental microvesicles Modulation of caspase 3 activity in CD56dim NK cells Nardi et al. (2016)

IL-1β Placental microvesicles More abundant in placental microvesicles during the first
trimester or under pathological conditions

Holder et al. (2012)

miRNA members of the
chromosome 19 miRNA cluster

Placental exosomes Attenuate viral replication in recipient cells by the induction
of autophagy

Delorme-Axford et al. (2013); Bayer et al.
(2015))

PLAP Placental exosomes
and MVs

Marker of PEVs; Transfer of maternal IgG to the fetus at the
placenta surface and stimulate DNA synthesis and cell
proliferation in fetal fibroblasts. There is a direct correlation
between (PLAP + ve ratio) and birth weight percentile.
Reduced PLAP + ve ratio is associated with different
obstetric complications. A single case report found a
dramatic increase of PLAP associated with preterm birth

Dragovic et al. (2015); Jin and Menon,
(2018); Miranda et al. (2018)

Goswamia et al. (2006); Orozco et al.
(2009); Chen et al. (2012); Pillay et al.
(2016)

Gilbert et al. (2008)

Miranda et al. (2018)

Ferianec and Linhartova, (2011)

Eng and Flt-1 Placental exosomes
and MVs

Reduced bioavailability of VEGF abnd PlGF in
preeclampsia

Tannetta et al. (2013)

sFlt-1 Syncytial nuclear
aggregates

increased syncytial knots and systemic vascular injury in
preeclampsia

Rajakumar et al. (2012); Buurma et al.
(2013)

TFPI Microvesicles Enhanced bioavailability of TF and procoagulant activity in
women with preeclampsia

Aharon et al. (2009)

TF Syncytiotrophoblast
microvesicles

Altered hemostasis in preeclamptic women Gardiner et al. (2011)

mucin-1 Not specified Impairs EVT invasion and integrin signaling in
preeclampsia

Shyu et al. (2011); Tannetta et al. (2017)

Integrins Syncytiotrophoblast
microvesicles

Decreased in preeclampsia Baig et al. (2014)

syncytin- 1 and -2 Placental exosomes Syncytin 2 is decreased in placental exosomes of women
with preeclampsia, affecting to their internalization

Vargas et al. (2011); Vargas et al. (2014)

miR-155 Placental exosomes Decrease NO production and eNOS in primary HUVECs Shen et al. (2018)

miR-141 Placental exosomes Augmented in preeclampsia; Induction of T cell
proliferation

Ospina-Prieto et al. (2016)

miR-548c-5p Placental exosomes Downregulation of expression of this miRNA alters
macrophage behavior and promote the expression of the
proinflammatory cytokines IL-12, TNF-α and nuclear
translocation of NF-κB

Wang et al. (2019)

HMGB1 Syncytial nuclear
aggregates

Increased in preeclampsia Proinflammatory actions in
preeclamptic women

Zhang et al. (2020)

PP13 Not specified Reductions of this protein is associated with aberrant
immunopathological mechanisms

Sammar et al. (2018)

hsa-miR-210, hsa-miR-486-1-5p
and hsa-miR-486-2-5p,
circular DNA

Placental exosomes Elevated in preeclampsia, being evaluated as potential
diagnostic markers

Gillet et al. (2019)

CAMK2β, PAPP-A Not specified Insulin signaling and glucose metabolic routes Jayabalan et al. (2019a)

DDPIV Greater levels and activity in placental extracellular vesicles
in women with gestational diabetes, modulating glucose-
dependent insulin secretion

Kandzija et al. (2019)

miR-520a-5p Not specified Downregulated in women suffering preeclampsia and
gestational hypertension and who later developed FGR

Hromadnikova et al. (2019)
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fetal origin, including human neural stem cells (Bergamelli et al.,

2022). Besides, the authors proposed PEVs as central players of

viral dissemination to the fetal brain due to congenital CMV

infection and this statement is supported by Gall et al., (2022)

who recognized the critical role of PEVs in different

neuroinflammatory processes and the development of

perinatal brain injury in the setting of chorioamnionitis by

propagating and sustaining the inflammatory cascade. On the

other hand, Moro et al., (2016) studied placental MVs and their

miRNA content in pregnant women with Human

Immunodeficiency virus (HIV) and Plasmodium falciparum

infection. Interestingly, they show that HIV-infected mothers

exhibited higher concentrations of total and trophoblast

microparticles, which induced a higher expression of MHCII

and lower production of MCP1. On the other hand, placental

malaria was characterized by an upregulated miR-517c, which

might have a pathogenic role on the adverse outcomes during

pregnancy and malaria infection. Overall, the role of PEVs in

chorioamnionitis and infections show promising but still

reduced results, and due to the relevance of placenta in these

conditions, further efforts would be of great aid in this field.

3.3.3 Preterm birth
PTB (characterized by labor prior to 37 completed weeks of

pregnancy) affects approximately 15 million infants yearly,

representing an important cause of neonatal morbidity and

mortality (Blencowe et al., 2013). The etiopathogenesis of this

condition remains to be fully described, but different risk factors

such as high blood pressure, diabetes, obesity, underweight,

psychological stress, history of previous preterm labor,

exacerbated inflammation during pregnancy and tobacco

smoking are implicated in the development of premature

birth (Stewart and Graham, 2010; Condrat et al., 2021). PTB

has been associated with higher number of EVs (Menon and

Shahin, 2021) and in vivomodels have shown that these EV could

induce preterm labor due to the presence of increased

inflammatory mediators (Sheller-Miller et al., 2019).

Proteomic studies have identified 72 proteins that might play

a crucial role in preterm labor, being associated with critical

inflammatory and metabolic signals (Menon et al., 2019a).

Similarly, Cantonwine et al., (2016) described that from a

total of 62 proteins contained in circulating EVs qualified for

diagnosis alpha-2-macroglobulin (α2M), human endogenous

medium-reiteration-frequency-family-34 ORF (HEMO), and

mannose binding lectin 2 (MBL2), displayed a specificity of

83% with median area under the curve (AUC) of 0.89, which

could be use as predictive biomarkers of spontaneous PTB if

validated in future studies. Simultaneously, Menon et al., (2019b)

described up to 173 miRNAs importantly altered in serum

exosomes of women with PTB. However, they could not

describe the precise origin of these exosomes. Likewise, a

possible role of bacterial exosomes derived from Ureaplasma

and Veillonellaceae are more abundant in the urine of women

with PTB (Yoo et al., 2016) suggesting the complex background

of EVs in PTB.

Although less studied PEVs have also been identified as

critical mechanisms involved in the onset and progression of

labor, having been suggested as potential biomarkers for preterm

delivery (Salomon et al., 2018). The amount of PEVs in PTB has

not been explored; however, there is a clinical case in which a

dramatic increase of PLAP (10.5-fold), which can be present in

PEVs, was associated with PTB (Ferianec and Linhartova, 2011).

Fallen et al. (Fallen et al., 2018) identified a set of circulating and

EV-associated miRNAs with potential pathophysiological effects

in the placenta associated to PTB. Due to the multiple roles of the

placenta during pregnancy and labor, we encourage for specific

studies that focus on PEV in PTB, as this might be used as

promising biomarkers in this research area. In Figure 4, the main

implications of PEVs described until date is summarized.

4 Conclusion

The placenta is an active organ fulfilling multiple functions in

pregnancy, both at physiological and pathological conditions. EVs

has received growing attention in the last decade, acting as vehicles of

a wide variety of molecules and signals involved in cell-to-cell

communication. PEVs (pEXOs, placental microvesicles and

apoptotic bodies) are a subgroup of EV which has been

increasingly explored in the placentation process and throughout

normal pregnancy, interacting with the maternal and fetal tissues.

Likewise, the alteration of PEVs in different obstetric complications

have become a potential field of study in recent years. Hence, changes

in the concentration and cargo of PEVs have been implicated in the

development of different pathologies like PE, GDM, FGR and so on.

In Table 1, some of the most relevant findings regarding the

molecular content of PEVs and their physiological/pathological

role are summarized. However, further studies are needed to

unravel the implications of these PEVs, developing more accurate

methods to isolate and handle with these vesicles, disentangling the

specific content in their surface and inward, as well as the

translational applications derived from the basic knowledge.
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