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Secreted extracellular vesicles (EVs) are lipid bilayer particles without functional
nucleus naturally released from cells which constitute an intercellular
communication system. There is a broad spectrum of vesicles shed by cells
based on their physical properties such as size (small EVs and large EVs),
biogenesis, cargo and functions, which provide an increasingly heterogenous
landscape. In addition, they are involved in multiple physiological and
pathological processes. In cancer, EV release is opted by tumor cells as a
beneficial process for tumor progression. Cutaneous melanoma is a cancer that
originates from the melanocyte lineage and shows a favorable prognosis at early
stages. However, when melanoma cells acquire invasive capacity, it constitutes the
most aggressive and deadly skin cancer. In this context, extracellular vesicles have
been shown their relevance in facilitating melanoma progression through the
modulation of the microenvironment and metastatic spreading. In agreement
with the melanosome secretory capacity of melanocytes, melanoma cells display
an enhanced EV shedding activity that has contributed to the utility of melanoma
models for unravelling EV cargo and functions within a cancer scenario. In this
review, we provide an in-depth overview of the characteristics of melanoma-derived
EVs and their role in melanoma progression highlighting key advances and remaining
open questions in the field.
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Brief introduction on EVs and melanoma

Extracellular vesicles (EVs) are produced by almost all cell types and organisms studied.
Although first evidences of vesicle release were established around 1950 (Yates et al., 2022), the
detailed studies identifying secreted products from reticulocytes around 1980 (Sullivan et al.,
1976; Pan and Johnstone, 1983) triggered a thriving and exciting research field with multiple
diversifications in the following decades. The International Society of Extracellular Vesicles
(ISEV) defines EVs as lipid bilayer particles without functional nucleus and naturally released
from cells (Théry et al., 2018). These vesicles resemble their cell of origin in terms of their
protein, lipid, and nucleic acid content (van Niel et al., 2018). EV physiological functions
include antigen presentation, regulation of programmed cell death, angiogenesis, inflammation,
coagulation, and fetus-mother communication during pregnancy (Yáñez-Mó et al., 2015; Yates
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et al., 2022). Nucleic acids carried by EVs including DNA, mRNA,
microRNA (miRNA) and other RNA species are currently under
extensive characterization due to their implication in pathogenesis and
their potential as disease biomarkers (O’Brien et al., 2020). There are
compelling evidences pointing to alterations in the recipient cells due
to protein and RNA transfer, but many aspects of extracellular vesicle
biology remain to be elucidated, including their actual DNA or RNA
packaging (O’Brien et al., 2020). EVs capacity to exchange
components between cells and to act as signaling vehicles in
cellular and tissue homeostasis, but also in pathological scenarios,
has drivenmost of EV-research efforts. Intercellular communication is
a key feature of cancer progression (Minciacchi et al., 2015a) and
metastasis (Wortzel et al., 2019). Furthermore, EVs role in the tumor
microenvironment is crucial (Hou and Chen, 2021). In this review, we
focus on melanoma, a type of skin cancer that develops from
melanocytes following the accumulation of driven mutations
(Schadendorf et al., 2018). According to the American Cancer
Society, melanoma accounts for only about 1% of skin cancers but
causes a large majority of skin cancer-related deaths. A large number
of studies indicate that malignant melanoma risk correlates with
individual characteristics and exposure to ultraviolet light (Shain
and Bastian, 2016). Metastatic disease accounts for 90% of cancer-
related deaths in those patients, although this percentage is expected to
drop due to the implementation of immune checkpoint inhibitors-
based treatments. Considering the role of EVs in the formation of pre-
metastatic niches (PMNs) (Peinado et al., 2017) and in metastatic
disease (Becker et al., 2016), we require a deeper understanding of the
melanoma-EVs interplay in these processes. In 1988, Taylor et al.
described how melanoma cells release intact portions of their plasma
membranes in the form of vesicles, and how highly metastatic cells
released vesicles more efficiently compared with poorly metastatic
cells (Taylor et al., 1988). Subsequently, the role of melanoma-derived
vesicles was described as crucial for melanoma invasion in vitro
(Schnaeker et al., 2004). Moreover, a seminal study in the field
demonstrated that exosomes were key determinants for the PMN
cascade of events in vivo (Peinado et al., 2012). In addition, melanoma-
derived EVs significantly and extensively influence a broad range of
immune cells. In the following sections, we will extensively cover the
heterogeneity, cargo and role of melanoma-derived vesicles in normal
cell homeostasis and in cancer providing an in-depth analysis of the
crucial aspects participated by EVs in melanoma progression.

Melanoma-derived EV heterogeneity

Vesicle release occurs in all studied cells. However, the
heterogeneity in size, composition and subcellular origin of those
vesicles hampers a systematic understanding in the field. The ISEV
leads an effort to homogenize and standardize EV nomenclature, in
order to clarify different terminologies applied during the past decades
in EVs studies. In 2018, Minimal Information for Studies of
Extracellular Vesicles (MISEV) guidelines established a consensus
position in the EV field, now followed by most of the community
and editorial boards (Théry et al., 2018). This consensus position
defined EV as particles without a functional nucleus naturally released
from cells, delimited by a lipid bilayer and unable to replicate.
MISEV2018 suggested categorizing EVs based on their physical
condition (e.g., small EVs versus middle/large EVs), their
biochemical composition (e.g., CD63+/CD81+ EVs), their

physiological condition (e.g., hypoxic EVs) or their cell of origin.
However, terms like exosomes, oncosomes or microvesicles still retain
certain utility, as they tried, in their uniqueness, to reflect the rich
heterogeneity included in the term extracellular vesicles.

Small extracellular vesicles

Small EVs (sEVs) size range is 30–200 nm, including the vesicles
named and characterized typically as “exosomes”. Exosomes are
intraluminal vesicles formed by the inward budding of endosomal
membrane during the maturation of multivesicular bodies (MVBs)
and secreted upon fusion of MVBs with the plasma membrane. Their
biogenesis, characteristics and release have been extensively described
(Colombo et al., 2014; Lo Cicero et al., 2015a; Yáñez-Mó et al., 2015).
Most of the research aroundmelanoma and EVs is focused on this sEV
type. It has been largely reviewed since 2001, when Amigorena
discussed the usage of human dendritic cell (DC)-derived exosomes
for cancer immunotherapy (Amigorena, 2001). Apart from their
promising contribution to new immunotherapy strategies, small
EVs/exosomes and melanoma have been studied in multiple
contexts: disease biomarkers (Alegre et al., 2015), metastasis
(Weidle et al., 2017), obesity-cancer link (Clement et al., 2017),
drug resistance (Namee and O’Driscoll, 2018), cancer-associated
fibroblasts (Shelton et al., 2021) and many others.

Large extracellular vesicles

Large extracellular vesicles (lEVs) define lipidic layer particles with
a size range above 200 nm, including vesicles traditionally labeled as
microvesicles, ectosomes, microparticles, oncosomes, migrasomes,
and other denominations. In a seminal article, Peter Wolf
described lEVs as subcellular material originating from platelets
and named them as “platelet dust” (Wolf, 1967). In the following
years, ectocytosis, a process allowing the release of plasma membrane
vesicles, in immune cells was described (Stein and Luzio, 1991). lEVs
are generated by the outward budding and fission of the plasma
membrane and the subsequent release into the extracellular milieu
(van Niel et al., 2018). lEVs have a role in cell–cell communication and
when this exchange happens in the cancer context, they have been
generally denominated oncosomes. In the seminal study by Al-Nedawi
and colleagues, oncosomes were identified as the vehicle for oncogenic
epidermal growth factor receptor vIII (EGFRvIII) transfer between
glioma cells, spreading the transformed phenotype (Al-Nedawi et al.,
2008). In melanoma, Fas ligand (FasL)-bearing microvesicles trigger
Fas-dependent apoptosis of lymphoid cells (Andreola et al., 2002).
Tumor necrosis factor superfamily member 14 (TNFSF14)/LIGHT+

lEVs regulate T-cell responses to tumor cells (Mortarini et al., 2005)
and exhibit a role in immune suppression (Valenti et al., 2007).

There are at least three subtypes of large extracellular vesicles that
demand attention in the cancer setting:

Migrasomes, with a diameter range between 500 and 3000 nm,
display an oval shape, contain smaller vesicles and have a role in tumor
cell migration. In 2015, Ma et al. found that B16 mouse melanoma
migrating cells left behind a ring-like organelle derived from retraction
fibers (Di Daniele et al., 2022). Upon exposure to mild mitochondrial
stresses, damaged mitochondria are transported into migrasomes and
subsequently discarded from migrating cells in a polarized way. This
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newly described mechanism, mytocytosis, plays an important role in
maintaining mitochondrial performance and links mitochondrial
homeostasis with cell migration (Jiao et al., 2021).

Apoptotic Bodies (1–5 μm) are released by cells after a triggered
collapse that results in nuclear fragmentation, increased membrane
permeability and externalization of phosphatidylserine (PS).
Apoptosis plays a key role in development and homeostasis (Li
et al., 2022a). During this highly orchestrated process of cell
disintegration, proteins, lipids and nucleic acids fragments are
distributed in vesicles (Crescitelli et al., 2013).

Large oncosomes present a large size (1–10 μm) and carry
abundant oncogenic cargo. They clearly differ in protein content
from smaller EVs and show enrichment of enzymes involved in
glucose, glutamine and amino acid metabolism (Minciacchi et al.,
2015b). These lEVs alter the tumor microenvironment, promote
disease progression (Di Vizio et al., 2009) and contribute to the
spreading of oncogenic information, including the transfer of signal
transduction complexes between tissues (Bertolini et al., 2019).

The others

The concept “extracellular particles” (EPs) was proposed by ISEV
“if confirmation of EV identity cannot be achieved according to the
minimal requirements” (Théry et al., 2018). There are certain
biological entities released by cells that do not comply certain
aspects of EVs biology. Among these EPs, exomeres have been
described and studied in melanoma (Zhang et al., 2018). Exomeres
are non-membranous nanoparticles of up to 50 nm in size. They differ
in protein, RNA, DNA and lipid content compared to small and large
EVs (Anand et al., 2021). Exomere proteomic profiling revealed an
enrichment in metabolic enzymes and hypoxia, microtubule and
coagulation-related proteins as well as specific pathways, such as
glycolysis and mTOR signaling. They can transfer functional cargo,
although their origin has not been explored yet (Zhang et al., 2019).

Recently, another particle type below 50 nm in size has been defined,
the supermere (Zhang et al., 2019; Zhang et al., 2021). The
identification of these novel nanovesicles proves how far we are
from fully assessing the complexity and heterogeneity of the
extracellular released content.

Melanoma EV cargo

Extracellular vesicles (EVs) secreted by normal and tumor cells
contain a variety of bioactive molecules, such as RNA (messenger
RNAs, miRNAs, long non-coding RNAs), DNA (single-stranded,
double-stranded and mitochondrial), proteins, lipids and
metabolites (Figure 1; Table 1). EVs containing such molecular
information can be delivered over long distances to recipient cells
or tissues within the body (Pegtel and Gould, 2019; Kalluri and LeBleu,
2020). Furthermore, the transfer of whole organelles in EVs, such as
mitochondria, has also been reported (Hayakawa et al., 2016). The
function of recipient cells is modulated by the transferred cargo, and
the effects are dependent on the type and molecular composition of
EV content, which in turn is determined by the cell of origin (Raposo
and Stoorvogel, 2013). In cancer, tumor-derived EVs influence several
key processes for tumor progression, such as the establishment of
PMNs, angiogenesis, cell migration and invasion, and suppression of
immune responses (Kanada et al., 2016; Hoshino et al., 2015; Sheehan
and D’Souza-Schorey, 2019).

The diversity of EV molecular content is also determined by their
biogenesis. In sEVs such as exosomes, Endosomal Sorting Complex
Required for Transport (ESCRT) proteins, ESCRT-associated proteins
(such as ALIX) and RNA-binding proteins are involved in the specific
incorporation of proteins and RNAs (Henne et al., 2011; Bissig and
Gruenberg, 2014; Villarroya-Beltri et al., 2014). Tetraspanins such as
CD9, CD63, CD81 and CD82 are enriched in exosomes, and also
participate in specific protein loading (Théry et al., 2002). In
microvesicles (MVs), GTPases seem to have an important role both

FIGURE 1
Melanoma-secreted EV cargo. The components of the heterogeneous cargo of melanoma EVs comprise membrane proteins such as tetraspanins,
integrins, melanoma antigens, CD133, Fas ligand (FasL), immune checkpoint proteins such as PD-L1 and antigen-presenting complexes such as MHC-I. In
addition, EVs can contain other proteins including metaloproteinases (MMPs), oncogenes, RAB proteins, heat shock proteins (HSPs) and annexins. Several
types of nucleic acid species such as DNA, messenger RNA (mRNA), microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) together with lipids, and
metabolites are also shuttled in melanoma EVs. Most of the information about the EV cargo has been obtained from the analysis of sEVs.
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TABLE 1 Cargo of melanoma-derived EVs. EVs released by melanoma cells display a heterogeneous cargo composed by proteins, mRNA, miRNA, non-coding RNAs,
DNA, lipids and metabolites. Some of these molecules are commonly found in vesicles from multiple origins but others are so far specific of melanoma cell types.

Cargo Findings

mRNAs

TOP1 Enriched in EVs derived from humanmelanoma cells (A375 and SK-MEL-28) compared
to primary melanocytes Xiao et al. (2012)

ABCB5, TYRP1 Reduced in EVs derived from human melanoma cells (A375 and SK-MEL-28) compared
to primary melanocytes Xiao et al. (2012)

CXCL1, CXCL2, CXCL8 Enriched in EVs from human melanoma cells (A-375, SKMEL-28, and C-32) compared
to primary melanocytes Bardi et al. (2019)

PD-L1 Reduced in plasma EVs in patients responding to anti-PD-1 treatment, and increased
levels in subjects with disease progression Del Re et al. (2018)

Proteins

p120 catenin, Nedd5, PGRL, ezrin, radixin Identified in exosomes derived from human melanoma cell lines (SK-MEL-28 and
MeWo) Mears et al. (2004)

Annexin A1, annexin A2, syntenin-1, HAPLN1 Enriched in EVs from the human metastatic melanoma cells A375 compared to primary
melanocytes Xiao et al. (2012)

CD44, MAPK4K, GTP-binding proteins, ADAM10 Enriched in the human metastatic melanoma cell line FEMX-I Rappa et al. (2013)

FAK1, SRC, Rac1, RhoA, Cdc42, EGFR, EPHB2 Enriched in exosomes derived from human metastatic melanoma cells (A375M and
1205Lu) compared to non-tumorigenic (MNT-1, G-1 and 501mel) and tumorigenic but
non-metastatic cells (Daju and SKMel-28) Lazar et al. (2015)

TYRP2, VLA-4, HSP70 Enriched in exosomes from plasma of melanoma patients with advanced disease
compared to healthy subjects Peinado et al. (2012)

MIA, S100B Enriched in exosomes isolated from the sera of stage IV melanoma patients compared to
healthy controls Alegre et al. (2016)

CD14, PON1, PON3, APOA5 Different content in EVs from plasma of melanoma patients at different stages (0-IV)
Paolino et al. (2021)

PD-L1 Its level on EVs correlates with therapeutic response to immune checkpoint inhibitors in
melanoma Cordonnier et al. (2020)

PD-1 Its enrichment on melanoma EVs was suggested as a possible resistance mechanism
Chen et al. (2018); Poggio et al. (2019); Serratì et al. (2022)

MCSP, MCAM, LNGFR, ErbB3 EV level changes after targeted therapies in melanoma patients Wang et al. (2020a)

miRNAs

let-7c, miR-138, miR-125b, miR130a, miR-34a, miR- 196a, miR-199b-3p, miR- 25, miR-
27a, miR-200b, miR-23b, miR-146a, miR- 613, miR-205, miR-149, and others

Enriched in human melanoma cells (A375) compared to melanocytes Xiao et al. (2012)

miR-214-3p, miR-199a-3p, miR-155-5p Enriched in exosomes of human melanoma cell lines (A375, MML-1 and SKMEL-28)
Lunavat et al. (2015)

miR-100-5p, miR-99b-5p, miR-221-3p, miR-24-3p, miR-125b-5p, and others Enriched in human melanoma cells (WM9, WM35 and WM902B) compared to
melanocytes Gerloff et al. (2020)

miR-222 Delivery of miR-222 by EVs frommetastatic melanoma cells increases the tumorigenicity
of less aggressive melanoma cells Felicetti et al. (2016)

miR-106b-5p The transfer of this miRNA by exosomes to melanocytes promotes in vitro cell migration,
invasion, and in vivo lung metastasis Luan et al. (2021)

miR-21 Exosomal miR-21 from murine B16 melanoma cells delivered to stromal fibroblasts
increases MMP expression, favoring melanoma progression Wang et al. (2020b)

miR-92b-3p, miR-182-5p, miR-183-5p Enriched in melanoma versus melanocyte derived EVs and in the plasma of melanoma
patients compared to healthy donors Gerloff et al. (2020)

miR-17, miR-19a, miR-21, miR-126, miR-149 Enriched in plasma EVs of patients with metastatic sporadic melanoma compared with
unaffected control subjects Pfeffer et al. (2015)

miR-125b Reduced levels in exosomes obtained from serum of patients with advanced melanoma
Tengda et al. (2018)

miR-532-5p, miR-106 Enriched in exosomes from serum of melanoma patients compared to healthy
individuals Léveillé and Baglio, (2019)

miR-191, let-7a Enriched in EVs from stage-I melanoma patients compared to healthy individuals Xiao
et al. (2016)

lncRNAs

Gm26809 The transfer of this exosomal lncRNA from melanoma cells to fibroblasts reprograms
fibroblasts into cancer-associated fibroblasts Hu and Hu, (2019)

DNA

BRAFV600E Exosomal mutant BRAF as a promising biomarker for monitoring BRAFi therapy Zocco
et al. (2020); Detection in lymphatic drainage derived EVs from stage III melanoma
patients correlates with risk of relapse García-Silva et al. (2019)

Lipids More saturated and shorter fatty acid chains in EVs from low metastatic cells (LCP)
compared to high metastatic (SKMel28) melanoma cells Lobasso et al. (2021)

(Continued on following page)
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in its formation and cargo recruitment (Tricarico et al., 2017). MVs are
shed from plasma membrane regions enriched in integrins, Human
Leucocyte antigen (HLA) molecules and proteolytic enzymes. These
molecules are among common MV cargo (Vittorelli, 2003;
Muralidharan-Chari et al., 2009). MVs also contain unique glycan
proteins, as fucosylated glycoproteins and complex N-glycans with
bisecting GlcNAc (Surman et al., 2018). The content of apoptotic
bodies includes condensed nuclear chromatin and cytoplasmic
components (Kerr et al., 1972). In tumors, it was observed that
apoptotic bodies can transfer DNA to neighboring cells
(Bergsmedh et al., 2001; Yan et al., 2006).

mRNA cargo of melanoma-derived EVs

By analyzing the mRNA content in exosomes from melanocytes
and melanoma cell lines, Xiao and colleagues found melanoma-
expressed mRNA transcripts in melanoma-derived EVs (Xiao et al.,
2012). Thousands of exosomal mRNAs, such as DNA topoisomerase I
(TOP1), ATP-binding cassette, sub-family B, member 5 (ABCB5) and
tyrosinase-related protein 1 (TYRP1), were identified as differentially
enriched in sEVs from melanoma cells compared to melanocytes and
correspond to genes associated with melanoma progression and
metastasis (Ryan et al., 2010; Journe et al., 2011; Soengas and
Hernando, 2017). Increased levels of inflammation-related mRNAs,
such as C-X-C motif chemokine ligand 1, 2 and 8 (CXCL1,
CXCL2 and CXCL8) mRNAs, were also identified in melanoma-
derived EVs compared to those derived from primary melanocytes,
which may be related to a pro-inflammatory role (Bardi et al., 2019).

Using clinical samples, decreased levels of PD-L1 mRNA were
found in plasma-derived EVs in patients responding to immune
checkpoint inhibitors (ICI) treatment, whereas increased levels
were observed in subjects with disease progression (Del Re et al.,
2018). Additionally, for a comprehensive assessment of EV-RNAs, Shi
and colleagues performed a transcriptome analysis of plasma-
circulating EVs in melanoma patients after ICI treatment.
Transcripts enriched in EVs were related to ICI resistance,
melanoma progression, and response to ICI therapy (Shi et al.,
2020). These studies point to the use of EVs-associated mRNAs as
predictive markers of ICI responsiveness.

Melanoma-secreted EV proteins

The protein content of melanoma-derived EVs, essentially
exosomes, has been profiled from several cell lines and plasma
samples (Surman et al., 2019a). Interestingly, the available data on
melanoma-derived EVs have revealed the presence of several

oncogenic proteins (Mears et al., 2004; Xiao et al., 2012; Lazar
et al., 2015). Although proteins carried on melanoma-derived EVs
have emerged as promising melanoma biomarkers, the amount of
clinical data demonstrating their utility is still very limited.

The study from Mears and colleagues was the first to demonstrate
the presence of proteins in melanoma-derived EVs (Mears et al.,
2004). The protein analysis was performed in exosomes isolated from
cell supernatants and cell lysates of two melanoma cell lines (MeWo
and SK-MEL-28). These results not only confirmed the existence of
MHC-I and the tumor-associated antigens MART-1 and MUC-18 in
melanoma-derived EVs, but they revealed the presence of several
proteins, such as p120 catenin, Nedd5, prostaglandin regulatory-like
protein (PGRL), ezrin and radixin. Around 50% of proteins were
found both in cell lysates and in the corresponding exosome fraction.
They also observed a general reduction of lysosomal and
mitochondrial proteins in exosomes compared to cell lysates.

In 2012, Xiao and collaborators identified 11 proteins differentially
enriched in exosomes from the metastatic melanoma cell line
A375 compared to normal melanocytes HEMa-LP (Xiao et al.,
2012). Annexin A1, annexin A2, syntenin-1 and hyaluronan and
proteoglycan link protein 1 (HAPLN1) were among these proteins,
all involved in processes related to melanoma progression, such as
angiogenesis, cell invasion, migration and metastasis. Another study
also identified annexin A2 in prominin-1/CD133-enriched sEVs.
Other proteins found in these sEVs include the pro-metastatic
proteins CD44, MAPK4K, GTP-binding proteins, and ADAM10
(Rappa et al., 2013).

Interestingly, EV protein content depends on the melanoma type
and progression stage since only 25% of the sEV-associated proteins
were shared between 7 cell lines with different tumorigenic and
metastatic potential (Lazar et al., 2015). Gene ontology analysis
showed that proteins found in EVs from metastatic melanoma cells
were enriched in biological functions related to tumor aggressiveness,
such as cell migration, regulation of apoptosis and angiogenesis. In
addition, exosomes derived from metastatic cell lines were able to
increase the migration of less aggressive cell lines. They also found
several immunosuppressive proteins, such as galectins (LGALS1 and
LGALS3) and 5′-nucleotidase (NT5E) in melanoma-derived
exosomes, indicating their possible role in tumor escape from
immune surveillance. In the same direction, the whole proteome
analysis of exosomes derived from the B16 melanoma mouse
model revealed proteins related to molecular processes including
cellular movement, proliferation, and cell morphology (Gyukity-
Sebestyén et al., 2019). More recently, Guerreiro and colleagues
described that sEVs from different types of human cancer (oral
squamous cell carcinoma, pancreatic ductal adenocarcinoma, and
melanoma brain metastasis) share 25% of protein content, mostly
linked to tumor processes (Guerreiro et al., 2020).

TABLE 1 (Continued) Cargo of melanoma-derived EVs. EVs released by melanoma cells display a heterogeneous cargo composed by proteins, mRNA, miRNA, non-
coding RNAs, DNA, lipids andmetabolites. Some of thesemolecules are commonly found in vesicles frommultiple origins but others are so far specific ofmelanoma cell
types.

Cargo Findings

Metabolites Decreased levels of palmitoyl carnitine, sphingosine 1- phosphate, elaidic carnitine,
phosphatidylcholines, phosphatidylethanolamines, and glycosphingolipid ganglioside
GM3 in exosomes from serum of melanoma patients compared to that of healthy
individuals Palacios-Ferrer et al. (2021)
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A variety of integrins and other adhesion molecules are also
present in melanoma-secreted sEVs, similarly to other tumor-
derived EVs (Hoshino et al., 2015; Paolillo and Schinelli, 2017;
García-Silva et al., 2021). They appear to be important for the
targeting of recipient tissues and cells.

Small and large melanoma-derived EVs carry tissue factor (TF)
and other clotting associated proteins that are absent in non-
transformed melanocytes (Lima et al., 2011; García-Silva et al.,
2019), suggesting that promoting coagulation is a differential
feature of melanoma-derived vesicles.

As exemplified above, in most studies, the main source of EVs was
conditioned culture media from melanoma cell lines. Studies evaluating
exosomes isolated from the blood of melanoma patients are still limited.
In 2012, Peinado and collaborators compared exosomes isolated from
plasma of melanoma patients with those from healthy donors and
showed that the total amount of protein per particle in plasma-
circulating sEVs significantly increases through melanoma
progression (Peinado et al., 2012). Furthermore, a significant
enrichment of TYRP2, VLA-4, and HSP70 was found in advanced
stages of the disease compared to healthy subjects. In another study, the
levels of Melanoma inhibitory activity protein (MIA), S100B and
tyrosinase-related protein 2 (TYRP2), known melanoma biomarkers,
were evaluated in exosomes isolated from the sera of stage IVmelanoma
patients and healthy controls. The enrichment of MIA and S100B in
exosomes of melanoma patients indicated their potential value as
diagnostic and prognostic markers (Alegre et al., 2016). Different
content of some proteins, such as CD14, PON1, PON3 and APOA5,
was revealed in small EVs from plasma of melanoma patients at distinct
stages (0-IV), suggesting their potential use as biomarkers to monitor
the disease (Paolino et al., 2021).

Regarding protein cargo, few information is available in uveal
melanoma-derived EVs. Similar to cutaneous melanoma-derived EVs,
proteins associated to cell proliferation, apoptosis, invasion and cancer
cell metabolisms such as annexins, galectins, dehydrogenases,
chaperones and integrins have been identified in uveal melanoma-
secreted ectosomes (Surman et al., 2019b).

The presence of PDL-1 and FasL has been reported in tumor-
derived EVs as a mechanism to inhibit the immune response against
the tumor (Andreola et al., 2002; Chen et al., 2018). In melanoma, the
level of EV-associated PD-L1 does not correlate with clinical
pathological characteristics (Cordonnier et al., 2020). However, it
was correlated with therapeutic response to immune checkpoint
inhibitors and EVs enriched with PD1 were suggested as a possible
resistance mechanism (Chen et al., 2018; Poggio et al., 2019; Serratì
et al., 2022). Another study also showed changes in specific proteins,
such as melanoma chondroitin sulphate proteoglycan (MCSP),
melanoma cell adhesion molecule (MCAM), low-affinity nerve
growth factor receptor (LNGFR) and receptor tyrosine-protein
kinase (ErbB3), as relevant EV cargo during and after targeted
therapies (Wang et al., 2020a).

MiRNAs in melanoma EVs

Since Valadi and collaborators showed that miRNAs carried
by EVs could be transferred to target cells resulting in gene
expression alterations, its role in cell communication gained
more attention (Valadi et al., 2007). In melanoma, most
available data regarding miRNA as EV cargo came from cell

lines and few studies have addressed miRNA cargo in
circulating EVs in melanoma patients.

Comparing A375 cell line and HEMa-LP melanocytes, Xiao and
colleagues identified 130 miRNAs enriched and 98 miRNAs decreased
in melanoma-derived EVs, being a significant fraction associated with
cancer (Xiao et al., 2012). Interestingly, miRNAs enriched in
melanoma EVs such as let-7c, miR-138, miR-125b, miR130a, miR-
34a, miR-196a, miR-199b-3p, miR-25, miR-27a, miR-200b, miR-23b,
miR-146a, miR-613, miR-205, miR-149, have already been associated
with melanoma metastasis. A comparative analysis of the RNA cargo
between different EV subtypes using A375, MML-1 and SK-MEL-28-
derived EVs, revealed the enrichment of certain miRNAs in exosomes,
including miR-214-3p, miR-199a-3p and miR-155-5p, all associated
with melanoma progression and highly expressed in melanoma
tumors compared to benign nevi (Lunavat et al., 2015). In another
study comparing exosome content from human melanoma cell lines
(WM9,WM35 andWM902B) andmelanocytes (NHEM), 34 miRNAs
were found differentially enriched, such as miR-100-5p, miR-99b-5p,
miR-221-3p, miR-24-3p, and miR-125b-5p (Gerloff et al., 2020).
Although few reports share miRNA findings in melanoma EVs
(Pfeffer et al., 2015; Wozniak et al., 2017; Zhou et al., 2018a; Li
et al., 2019), several studies support the role of EV-loaded miRNAs in
melanoma cell invasion, migration, proliferation and tumor
progression (Müller and Bosserhoff, 2008; Nyholm et al., 2014;
Felicetti et al., 2016; Xiao et al., 2016; Li et al., 2019). Moreover,
melanoma-derived EVs were shown to modify the behavior of
recipient cells by the transfer of miRNAs. Delivery of miR-222 by
EVs from metastatic melanoma cells to less aggressive melanoma cells
increase their tumorigenicity (Felicetti et al., 2016). miR-106b-5p,
enriched in exosomes from serum of melanoma patients, is transferred
to melanocytes, inducing epithelial-to-mesenchymal transition,
promoting in vitro cell migration, invasion, and in vivo lung
metastasis (Luan et al., 2021). Using the murine B16 melanoma
cell line, Wang and colleagues showed that the transfer of
exosomal miR-21 to stromal fibroblasts led to TIMP3 inhibition,
resulting in increased expression of matrix metalloproteases
(MMPs) which favored tumor progression (Wang et al., 2020b).

Remarkably, miRNAs such as miR-92b-3p, miR-182-5p and miR-
183-5p were found differentially loaded in melanoma versus
melanocyte-derived sEVs and were also enriched in the plasma of
melanoma patients compared to healthy donors (Gerloff et al., 2020).

In a study comparing the miRNA content in plasma-derived
exosomes from patients with metastatic melanoma, familial
melanoma or healthy subjects, Pfeffer and collaborators reported a
number of differentially enriched miRNAs, including miR-17, miR-
19a, miR-21, miR-126, and miR-149 (Pfeffer et al., 2015). Lower levels
of miR-125b in exosomes obtained from serum of patients were shown
to be associated with advanced melanoma disease (Alegre et al., 2014).
Higher levels of miR-532-5p and miR-106 were found in exosomes
from serum of melanoma patients compared to healthy individuals.
The combination of these two miRNAs showed a higher efficiency to
diagnose melanoma patients than the known biomarkers Lactate
dehydrogenase (LDH), MIA, or S100B alone or in combination
(Tengda et al., 2018). Among other miRNAs found up-regulated in
serum sEVs from melanoma patients are miR-191 and let-7a, which
were shown to distinguish stage-I melanoma patients from healthy
individuals (Xiao et al., 2016).

Other non coding RNAs, such as long non-coding RNAs
(lncRNAs), can also be loaded into EVs and may play a role in
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reprogramming the tumormicroenvironment (Qu et al., 2016; Léveillé
and Baglio, 2019). For example, the lncRNA Gm26809 shuttled in
melanoma exosomes was involved in the reprogramming of
fibroblasts into cancer-associated fibroblasts (CAFs) (Hu and Hu,
2019).

Melanoma EV-associated DNA

Many studies have analyzed circulating tumor DNA (ctDNA) in
plasma of melanoma patients, but not in EV-associated DNAs. By
determining the BRAF gene status on EVs from plasma samples of
metastatic melanoma patients at the beginning and during therapy
with BRAF inhibitors, Zocco and collaborators showed that EV-
associated DNA can be a better alternative to ctDNA for detection
of mutant BRAF in these patients (Zocco et al., 2020). Wild type BRAF
and BRAF V600E mutation have also been detected in lymphatic
drainage-derived EVs (García-Silva et al., 2019). On the other hand,
mitochondrial DNA (mtDNA) content in melanoma-derived vesicles
have not been addressed in detail although it is expected to be
represented (Cheng et al., 2020).

Lipids in melanoma EVs

The analysis of lipid content in EVs derived from melanoma cell
lines with low and high metastatic potential (LCP and SK-MEL28,
respectively) showed more saturated and shorter fatty acid chains in
low metastatic cells compared to high metastatic cells (Lobasso et al.,
2021). Of note, the lipid composition of cell and exosome membranes
is altered by the microenvironmental pH (Parolini et al., 2009).

Metabolites in melanoma EVs

The metabolomic profile of exosomes from serum of melanoma
patients compared to that of healthy individuals demonstrated
decreased levels in several metabolites including palmitoylcarnitine,
sphingosine 1-phosphate, elaidic carnitine, phosphatidylcholines,
phosphatidylethanolamines and glycosphingolipid ganglioside GM3
(Palacios-Ferrer et al., 2021).

EVs in normal homeostasis

There is plenty of evidence for the importance of extracellular
vesicles in pathological states. From cancer interaction with the
immune system (Pelissier Vatter et al., 2021) to cancer resistance
to therapy (Palazzolo et al., 2022), from cardiovascular disease (de
Abreu et al., 2020) to anaphylaxis (Fernández-Bravo et al., 2022), the
EV role in pathogenesis and its potential use as biomarker have been
well characterized, albeit there are still many questions to answer.
However, EVs role in normal physiology or cellular and tissue
homeostasis presents multiple pending questions. The first
descriptions of EVs physiological roles rose around their
contribution to immune system function and mostly were focused
on antigen presentation (Raposo et al., 1996). In dendritic cells (DCs),
protein cargo of sEVs derived from intestinal epithelial cells or other
DCs are processed in the endocytic compartment similarly to antigens

and then used in antigen presentation, thereby contributing to
immune response regulation (Morelli et al., 2004; Mallegol et al.,
2007).

Another interesting physiological process in which EVs seem to
play a determinant role is embryogenesis. Small EVs participate in the
secretion and processing of Wnt proteins, a family of morphogens
with fundamental roles in homeostasis and cancer (Zhang andWrana,
2014). Furthermore, lEVs generated and released by embryonic stem
cells induce invasion of maternal tissue by the trophoblast, promoting
embryo implantation (Desrochers et al., 2016), consolidating the
relevance of EVs in development. Neural crest cells, unique to
vertebrates, arise from the embryonic ectoderm germ layer, and in
turn give rise to diverse cell lineages—including melanocytes,
craniofacial cartilage and bone, smooth muscle, peripheral and
enteric neurons and glial cells (Shakhova and Sommer, 2008).
Recently, it has been described how migratory neural crest cells
release and deposit CD63+ 30–100 nm particles and migrasomes
into the extracellular environment and how inhibition of RAB27A
docking in the membrane alters their migratory phenotype (Gustafson
et al., 2022). These results indicate that sEVs release by neural crest
cells is critical for neural embryonic migration.

A role for EVs in normal melanocyte/skin
physiology?

Melanocytes are located in the dermis and basal epidermis and
display a clearly polarized and dendritic architecture. Melanocytes
protect keratinocytes from UV radiation in the skin through the
generation of a brown-black pigment, eu-melanin that is
transferred from the melanocytes to the keratinocytes. Eu-melanin
locates around the sun-exposed side of the nuclei in a cap-like fashion
to shield the keratinocyte DNA from ultraviolet light (UV)-induced
damage. The transfer of eu-melanin to keratinocytes occurs through
melanosomes originated from endosomal membranes (Yardman-
Frank and Fisher, 2021). Melanosomes are exclusive of animal
cells, display a bilipidic membrane and their size is approximately
500 nm. They participate in the synthesis, storage, and transport of
melanin (Wasmeier et al., 2008). Melanosome biogenesis occurs in
four stages. Stage I consists of the formation of intraluminal vesicles
and fibrils. In stage II, fibrils arrange in sheet-like structures and the
vesicles adopt an ellipsoidal shape. During Stage III, melanin-
synthesizing enzymes such as tyrosinase, TYRP1 and DCT/
TYRP2 are transferred to the pre-melanosomes and melanin
synthesis starts. During stage IV, the structure is covered by
melanin, generating the mature melanosome (Delevoye et al.,
2019). It is possible that melanosomes release could be polarized
accordingly to the polarized cell organization of the melanocytes.
Interestingly, it has been recently shown that Claudins, important
proteins participating in polarity and secretory mechanisms, are
involved in the transfer of melanosomes in a gold fish model (Liu
et al., 2022). However, melanosome transfer in vivo is far from been
understood in detail (Tadokoro and Takahashi, 2017; Li et al., 2020).

Remarkably, proteins traditionally associated with the
biosynthesis, transport and release of EVs like RAB proteins
(Fukuda, 2021), CD63, SNARE, and BLOC complexes (Ohbayashi
and Fukuda, 1000) are involved in melanosome biogenesis but also in
the biogenesis of other EVs. Remarkably, the RAB family of small
GTPases promotes the progression of melanoma and other cancers (Li
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et al., 2018a). RAB1A, RAB5B, RAB7 and RAB27A, are highly
expressed in melanoma cells. RAB27A depletion impairs exosome
production, preventing bone marrow progenitors’ contribution to the
formation of the PMN, and reducing tumor growth and metastasis as
well (Peinado et al., 2012). RAB27A, together with melanophilin/
SLAC2a, mediates the connection of melanosomes to actin filaments.
Loss of RAB27A expression in melanoma cell lines inhibited their
invasive phenotype (Guo et al., 2019).

Keratinocytes are the predominant cell type in the epidermis of the
skin, the largest and most superficial organ of the body. It has been
reported that keratinocytes release extracellular vesicles, mostly
referred as exosomes, to the extracellular environment and use
them to communicate with other skin cells and the immune
compartment (Chavez-Muñoz et al., 2008; Kotzerke et al., 2013;
Than et al., 2019). Recently, it has been appreciated how EVs
secreted into interstitial spaces mediate the interchange between
keratinocytes and melanocytes. Keratinocytes communicate with
melanocytes via sEVs carrying miRNAs such as miR-203 and miR-
3196 with the capacity tomodulate pigmentation in addition to known
molecules such as the α-melanocyte stimulating hormone (α-MSH)
and the adrenocorticotropic hormone (ACTH) (Hushcha et al., 2021).
These keratinocytes-derived vesicles increase tyrosinase activity,
pigmentation genes and melanin content in recipient melanocytes
to stimulate more melanosome production (Lo Cicero et al., 2015b). In
another study, miRNA transference from keratinocytes to
melanocytes was proposed as a mechanism for melanogenesis
inhibition through MITF-H regulation (Kim et al., 2014).

An important function of melanocytes-keratinocytes EV
communication is related to the skin response to UV radiation,

which causes skin pigmentation and, if not properly addressed,
skin cancer. There are two basic types of ultraviolet rays that reach
the earth’s surface—Ultraviolet A (UVA) and Ultraviolet B (UVB)
rays. UVA light induces plasma membrane damage, which is repaired
by lysosomal exocytosis followed by instant shedding of EVs from the
plasma membrane (Wäster et al., 2020). The released EVs are
incorporated by neighboring cells, leading to the activation of
proliferation and anti-apoptotic signaling via miR-21. UVB
radiation found in sunlight is essential for vitamin D production in
humans. However, prolonged exposure can lead to a variety of
pathologic effects including erythema, photoaging, inflammatory
responses, and skin cancer (Narayanan et al., 2010). Keratinocytes
receiving UVB release large EVs due to Platelet-Activating Factor
(PAF) Signaling (Bihl et al., 2016). The interplay between
keratinocytes and melanocytes mediated by extracellular vesicles
under the influence of UV is not fully understood yet, but there
are evidences suggesting a constitutive role for this exchange in
cutaneous pigmentation regulation (Takano et al., 2020) (Figure 2).

In early melanoma, Dror el at showed that melanosome cargo can
be transferred to fibroblasts to stimulate tumor niche formation (Dror
et al., 2016). Melanosomes were selectively enriched for a particular
set of miRNAs when the mature and pre-mature vesicles were
compared to malignant melanocytes during melanoma initiation,
depicting a potential function in paracrine signaling. An additional
role for melanosomes in melanoma cell homeostasis has been
proposed in response to cytotoxic drug treatment (Chen et al.,
2006). Melanosomes capture cisplatin, increasing the drug export,
and contributing to the therapy resistance of cancer cells. These
studies provide evidence for a link between their normal function in

FIGURE 2
Melanocyte and keratinocytes communicate through EVs. Exposure to UV light induces among other responses the release of EVs from keratinocytes
that are taken up by surroundingmelanocytes. This EV release is induced by platelet-activating factor (PAF). Keratinocyte-derived cargo containsmiRNAs such
as miR-203 and miR-3196 that promote the upregulation of the melanogenesis master regulator MITF and other genes involved in the process such as
Tyrosinase (TYR). Melanin is subsequently secreted in melanosomes to the epidermis and taken up by near-by keratinocytes. In addition, melanosome
contains other cargo that induce anti-apoptotic signals in recipient cells through the upregulation of miR-21.
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the dermis/epidermis and their role in skin cancer, postulating the
possibility for malignant cells to profit from physiological cell to cell
communication mechanisms.

EVs as players in the melanoma-
microenvironment interplay

The tumor microenvironment (TME) is the environment around
cancer cells. It includes surrounding blood vessels, immune cells,
fibroblasts, mesenchymal stromal cells, signaling molecules and the
extracellular matrix (ECM). The interactions among these cell types,
the structural scaffold and cancer cells are crucial for disease
progression and tissue response to the pathological scenario. EVs
together with soluble factors play a relevant role in this
communication (Figure 3).

The delivery of immunosuppressive or tolerogenic signals to the
infiltrating immune cells appears to be a main outcome of EVs in the
tumor microenvironment (Whiteside, 2016). For example, TIM-3
shuttled in sEVs impairs CD4+ T-cell function and promotes
M2 polarization in macrophages (Li et al., 2022b). Melanoma-
derived exosomes, enriched for a subset of coding and non-coding
RNAs alter the transcriptome of cytotoxic T-cells that impact in
mitochondrial respiration (Bland et al., 2018). In addition,
exosomes can directly activate the mitochondrial apoptotic pathway
of CD4+ T-cells through their miRNA cargo (Zhou et al., 2018a), thus
affecting two crucial lymphocytes populations. The lack of tumor
infiltration by CD8+ T-cells is associated with poor patient response to
anti-PD-1 therapy. Phosphorylation of hepatocyte growth factor-
regulated tyrosine kinase substrate (HRS), a pivotal component of
the ESCRT-0 complex, restricts tumor infiltration of cytolytic CD8+

T-cells, regulating anti-tumor immunity by inducing PD-L1+

immunosuppressive exosomes (Guan et al., 2022). Using mass
cytometry, the systemic immune landscape in response to tumor-
derived sEVs has been recently characterized. Melanoma-derived
sEVs significantly and extensively influenced the composition and
intracellular pathways of immune lineage and T-cells, favoring an
immunosuppressive environment (Du et al., 2022). Additionally, sEV
exposure significantly enhanced the PD-1/PD-L1 axis in CD4+ T-cells
and myeloid cell subsets.

EV release also contribute to the tumor cell strategies for
degrading the extracellular matrix. In fact, release of vesicles
carrying metalloproteases such as MMP-2 and MMP-9 by
melanoma cells is an important step in the invasive process
(Schnaeker et al., 2004). MT1-MMP, another extracellular matrix-
degrading enzyme is present in vesicles secreted by melanoma
(Hakulinen et al., 2008).

Melanoma-derived EVs can promote cell phenotype transition in
the tumor microenvironment. As mentioned above, melanosomes
selectively enriched for a particular set of miRNAs including miR-211
are incorporated by stromal fibroblasts. This miRNA targets
IGFR2 activating MAPK pathway and contributes to a CAF switch
(Dror et al., 2016). Additionally, miR-155 and miR-210 present in
melanoma sEVs induced a metabolic reprogramming of fibroblasts
increasing aerobic glycolysis and decreasing oxidative
phosphorylation (Shu et al., 2018). CAFs are more receptive than
their normal counterparts to tumor sEVs, as assessed by increased
transcription of genes for inflammation-supporting cytokines and
chemokines, namely IL-6 or IL-8 (Strnadová et al., 2022).
Mesenchymal stem cells (MSCs) also are influenced by melanoma-
derived sEV exposure, suffering an oncogenic reprogramming and
PD-1 expression (Gyukity-Sebestyén et al., 2019). Additionally,
melanoma cell-derived sEVs modulate bone marrow-derived MSCs
(BM-MSCs) phenotype for the production of large amounts of

FIGURE 3
Main outcomes of EV release inmelanoma progression. Melanoma cells secrete a variety of EVs includingmelanosomes, exosomes (Exos), microvesicles
(MVs) and extracellular particles (EPs). Secreted vesicles target different stromal and immune populations in the tumor microenvironment and influence their
phenotypic behaviour. The main effects induced by melanoma EVs in the tumor milieu include immune tolerance, angiogenesis and CAF formation. EVs also
promote phenotypic changes in the tumor draining lymph nodes, the bonemarrow and distant organs sucn as the lung contributing to the formation of
efficient pre-metastatic niches that facilitate metastatic colonization by melanoma cells. BMPC, bone marrow progenitor cells; CAF, cancer-associated
fibroblasts; ECM, extracellular matrix; MDSC, myeloid-derived suppressor cells; TAM, tumor-associated macrophages; Tregs, regulatory T-cells; uPAR,
urokinase plasminogen activator surface receptor.
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macrophage-recruiting chemokines such as chemokine (C-C motif)
ligand 2 (CCL2) and CCL7 (Lin et al., 2016). Furthermore, cancer-
derived EVs trigger endothelial to mesenchymal transition of human
umbilical vein endothelial cells in an in vitro microfluidic model
followed by the induction of a CAFs profile (Yeon et al., 2018). All
these phenotype changes contribute to a more favorable environment
for tumor growth. It has also been shown that CAFs can be
reprogrammed towards a pro-angiogenic phenotype through the
exosomal transfer of miR-155-5p that activates the SOCS1/JAK2/
STAT3 pathway (Zhou et al., 2018b). Another pro-angiogenic sEV-
associated molecule is uPAR that has been shown to promote
endothelial tube formation in vitro and vessel formation using in
vivo matrigel plug assays (Biagioni et al., 2021).

Tumor-associated macrophages (TAMs) are the most abundant
immune cells in the tumor microenvironment, promoting tumor
initiation, growth, progression, metastasis, and immune evasion
(Simiczyjew et al., 2020). As mentioned above, melanoma-derived
sEVs induce a tumor-promoting TAM phenotype in macrophages
(Gerloff et al., 2020).

The dynamic interaction between melanoma cells and the stroma
affects also to the adipocyte-rich hypodermic layer of the skin.
Adipocytes plentifully secrete sEVs, which are then taken up by
tumor cells, leading to increased migration and invasion. An
increase in the fatty acid oxidation in melanoma cells upon
adipocyte sEV exposure might control this pro-metastatic
melanoma feature (Lazar et al., 2016). It appears that adipocyte-
derived sEVs stimulate mitochondrial metabolism and cause a
redistribution of mitochondria to membrane protrusions
supporting cell motility (Clement et al., 2020). Drug resistance is
usually related with microenvironment interactions, and there are few
evidences supporting an EVs role on this process. Small EVs purified
from cell cultures derived from cisplatin-treated tumors contained the
drug, correlating to the pH conditions of the culture medium (Federici
et al., 2014).

Circulating EVs in plasma, lymph and
other fluids

In addition to their local effects within the tumor
microenvironment, EVs are able to reach the blood stream and the
lymphatic system through unstable endothelial layered vessels and
lymphatic capillaries present in the tumor mass. EV circulation
through the blood stream and the lymph precedes and
accompanies metastatic dissemination and growth.

As it occurs with other tumor-derived EVs, melanoma EV
presence in plasma and serum has been broadly demonstrated
(Peinado et al., 2012; Mathew et al., 2020; Pietrowska et al., 2021).
As mentioned before, a prominent characteristic of plasma-circulating
EVs in melanoma patients is their pro-coagulant and immune tolerant
properties although platelet-derived EVs and other EV sources could
considerably contribute to these features (Laresche et al., 2014;
Muhsin-Sharafaldine et al., 2016). For example, the presence and
immunosuppression exerted by plasma EV-transported PD-L1 (Chen
et al., 2018; Cordonnier et al., 2020) might have extensively been
contributed by circulating EVs derived from immune PD-L1+ cells.

A more refined method for capturing subpopulations of
circulating EVs employs specific antibodies coupled to beads. For
example, using immunocapture with anti-CD81 coated beads, not

only proteins but also fatty acids have been profiled in plasma-
circulating CD81-EVs showing an increase in fatty acid content in
melanoma late stages compared to healthy donors (Paolino et al.,
2021). Due to the systemic influence of tumor growth through soluble
factors and vesicle secretion, tumor-derived vesicles in circulation are
just a portion of the total EV content in the blood. There is a growing
interest in analyzing tumor-specific EVs in which mutations or other
proteins could be selectively increased through tumor progression.
One such a method proposed the specific isolation and separation of
melanoma-derived EVs from other cell sources (such as endothelium
or hematopoietic cells) using anti-CSPG4 affinity-based capture
(Sharma et al., 2018). Using that approach, the proteomic
comparison of melanoma-derived plasma exosomes with remaining
non-melanoma plasma exosomes showed an increase in signaling and
immune regulating proteins including LDHA, NOTCH2 and
thrombospondin-1 among others. Interestingly, high levels of ALIX
and absence or low levels of Contactin-1 in melanoma-specific plasma
EVs was associated with disease progression (Pietrowska et al., 2021),
although these results should be validated in larger cohorts.

From the clinical point of view, circulating vesicles have risen a lot
of expectation as a possible alternative or a complementary approach
to other more established liquid biopsy strategies like circulating
tumor cells (CTCs) and ctDNA. Although some studies have
similar or improved detection of specific mutations in EVs than in
ctDNA (García-Silva et al., 2020), there is still much work to do to
achieve the robustness and the clinical standards of ctDNA (Yu et al.,
2021). On the other side, the heterogenous cargo including DNA and
miRNAs present in EVs could also allow multi-marker analysis with
increasing sensitivity and specificity versus mono-parameter analysis
(LeBleu and Kalluri, 2020).

In this context, EV-based surrogate biomarkers of melanoma
progression and therapy monitoring have been proposed. Detection
of BRAF V600E mutation in melanoma patients is improved when
analyzed in isolated vesicles compared to the reference protocol for
ctDNA isolation (Zocco et al., 2020). KRAS mutations have also been
reported in RNA from plasma-derived EVs in melanoma patients
(Yap et al., 2020). Interestingly, the presence of BRAF splicing variants
in plasma due to therapy resistance to BRAF inhibitors could be
associated to extracellular vesicles (Clark et al., 2020).

Circulating miRNA are also promising biomarkers and have also
shown their association with melanoma progression (Huang et al.,
2022). In particular, MV-associated let-7g-5p and miR-497-5p have
been suggested as putative predictive markers in response to MAPK
inhibitors in melanoma (Svedman et al., 2018). Although mtDNA has
also been detected in melanoma vesicles (Cheng et al., 2020) and
circulating mtDNA mutations, in particular those in the D-loop have
been detected in the plasma of melanoma patients (Takeuchi et al.,
2004), this alternative nucleic acid material remains largely
unexplored in circulating EVs.

In addition to the blood, EV presence has been spotted in other
biological fluids such as the lymph. The interstitial pressure acting in
tissues preferentially directs solutes and small molecules to the
collecting intra-tumoral lymphatic vessels that display a specific
permeable junctional organization (Dieterich et al., 2022). This
could provide an explanation for the more elevated levels of EVs in
lymphatic drainage than in plasma from melanoma patients (Broggi
et al., 2019; García-Silva et al., 2019). Exosomes injected in the footpad
of mice have been shown to travel through the lymph and be retained
in the popliteal lymph node (LN) (Hood et al., 2011; Srinivasan et al.,
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2016). Of note, the proteomic profile of sEVs in lymphatic drainage
differs from the one obtained from plasma sEVs and constitutes an
important contribution to the lymph protein composition. Not
surprisingly, in lymphatic drainage-derived sEVs, metastatic and
immunomodulatory proteins are abundant (Broggi et al., 2019;
García-Silva et al., 2019; Maus et al., 2019). EV-associated nucleic
acid cargo appears also to be enriched in lymphatic drainage which
could also be used as a prognostic tool in addition to ctDNA. In this
regard, presence of BRAF V600E mutation in lymphatic exudate-
derived EVs after lymphadenectomy was indicative of fast disease
progression (García-Silva et al., 2019), suggesting their use as a highly
sensitive method for detection of minimal residual disease in
melanoma at early stages. LN metastatic melanoma patients also
display significantly elevated levels of metastasis-related miRNA in
lymphatic drainage than in plasma indicating that this alternative fluid
could reveal a reliable miRNA information about disease progression
(Broggi et al., 2019).

The relatively frequent presence of brain metastases in melanoma
patients suggests that melanoma-derived EVs could be detected in
cerebrospinal fluid (CSF). EV presence in CSF can be due to the ability
of EVs to alter and cross the brain-blood barrier (Zhou et al., 2014;
Tominaga et al., 2015). In particular, melanoma-derived exosomes are
able to induce downregulation of tight junctions in brain
microendothelial cells, penetrating the barrier interface and causing
glial activation on a brain-blood barrier chip (Wang et al., 2022). The
detection of melanoma-associated mRNAs (MAGE-3, MART-1 and
tyrosinase) in CSF of stage IV melanoma patients was indicative of
subsequent brain metastasis (Hoon et al., 2001). It can be speculated
that detected CSF-derived mRNAs could be loaded into EVs.
Additionally, CSF is enriched in ctDNA compared to plasma (De
Mattos-Arruda et al., 2015) and tumor BRAF mutation has been
detected and was informative of disease course in melanoma patients
with leptomeningeal involvement (Li et al., 2016; Melms et al., 2018).
Thus, it is possible that CSF-derived EVs could be a valuable source of
information for melanoma patients with brain metastases or risk to
develop them.

In agreement with their heterogeneous content, stability in
biofluids and circulation properties, we have provided here some
relevant examples of the use of melanoma-derived EVs as biomarkers
of melanoma progression. These and other relevant findings regarding
EV diagnostic potential has been reviewed recently (Bollard et al.,
2020; Kamińska et al., 2021; Lattmann and Levesque, 2022). Finally,
the physical characteristics of EVs, together with their modulable
specific cargo provide a remarkable source for therapeutic uses such as
drug or target shRNA delivery (Olmeda et al., 2021; Hou et al., 2022).

Melanoma EVs and the lymph node pre-
metastatic niche

LNs surrounding primary tumors such as melanoma, breast
cancer or prostate cancer are frequently the first places where
metastatic spread is detected. Indeed, these tumor-draining LNs are
also denominated sentinel LNs (SLNs) as their inspection after
lymphadenectomy is indicative of early metastatic dissemination.
LN status as determined by histological examination of SLNs for
the detection of metastases is the most accurate prognostic factor in
melanoma (Faries et al., 2017). Lymphatic dissemination can be
considered as an alternative route to blood circulation for

metastatic cells at least, for certain tumor types. Accordingly, LN
metastasis might be an early step towards distal metastasis since
subsequent dissemination from metastatic LNs to distant organs
such as the lung has been demonstrated (Brown et al., 2018;
Pereira et al., 2018). Furthermore, LN metastatic cells display
increased survival compared with tumor cells in subsequent
hematogenous dissemination (Ubellacker et al., 2020). This
hypothesis is also supported by the fact that the lymph could be a
more favorable travel environment than plasma with reduced
mechanical and oxidative stress and protection against ferroptosis
(Sleeman, 2000; Ubellacker et al., 2020). Recently, it has been
suggested that metastatic cells growing in the LNs induce a
systemic tolerance mediated by regulatory T-cells that could favor
distant metastasis (Reticker-Flynn et al., 2022).

Before metastatic LN colonization occurs, tumor draining lymph
nodes (TDLNs) undergo substantial changes that are a consequence of
the tumor-LN interplay and that are defined as the LN PMN in
homology to the defined concept applied to the cellular and ECM
remodeling occurring in distant organs anteceding metastatic growth
(Peinado et al., 2017). Key features of the LN PMN are active
lymphangiogenesis, fluctuations in the amounts of different
immune populations, dilation of high endothelial venules and
active proliferation of fibroblastic reticular cells related with
alterations in LN architecture and matrix composition (Qian et al.,
2006; Sleeman, 2015; du Bois et al., 2021).

TDLNs undergo extensive lymphangiogenesis that generates an
expanded lymphatic capillary network (Harrell et al., 2007; Sleeman
and Thiele, 2009; Olmeda et al., 2021) and precedes melanoma cell
colonization (Harrell et al., 2007; Olmeda et al., 2017). This process is
analogous to the one occurring in LNs elaborating immune responses
during infection and inflammation. Tumor soluble factors such as
VEGF-A and VEGF-C reaching the LNs induce active
lymphangiogenesis (Hirakawa et al., 2005; Hirakawa et al., 2007).
Cooperating with these soluble factors, tumor small EVs such as
exosomes have been shown to be retained in the LNs where they
induce LN remodeling at different levels modifying the transcriptional
programs of LN cell populations, altering matrix composition and
enhancing LN metastatic colonization by tumor cells (Hood et al.,
2011; Pucci et al., 2016; García-Silva et al., 2021; Leary et al., 2022)
(Figure 3). Lymphatic endothelial cells (LECs) are the population that
incorporates more melanoma-secreted sEVs, at least, at early time
points of exposure, probably due to their structural distribution within
the LN that establish them as the first recipients to the lymph cargo.
LECs undergo notable transcriptional and functional changes in
response to sEV exposure that includes activation of the
lymphangiogenic program (García-Silva et al., 2021; Leary et al.,
2022). Those EV-induced lymphagiogenic signals are mediated
by nerve growth factor receptor (NGFR) through NF-KB and
MAPK pathways and involve the phosphorylation of VEFGR3, a
key driver of the lymphangiogenic program. Induction of LN
lymphangiogenesis by tumor EVs has also been observed in other
cancer types such as colorectal cancer, hepatocarcinoma or cervical
squamous cell carcinoma (Li et al., 2018b; Sun et al., 2019; Zhou et al.,
2019).

In addition to the activation of the lymphangiogenic program,
adhesion molecules such as ICAM-1 and VCAM-1 are upregulated in
LECs exposed to melanoma sEVs facilitating subsequent attachment
of circulating tumor cells (García-Silva et al., 2021; Leary et al., 2022).
Interestingly, sEVs also pervade the peripheric tolerance functions of
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LECs. EV antigen cargo is cross-presented on MHC-I complexes by
LECs inducing apoptosis in CD8+ T-cells (Leary et al., 2022).

Subcapsular sinus (SCS) and medullary macrophages also take up
sEVs (Pucci et al., 2016; Broggi et al., 2019; García-Silva et al., 2021), as
expected by their phagocytic capacity. SCS macrophages appear to act
as a barrier for sEV dissemination. Disruption of this barrier during
tumor progression allows sEVs to interact with B cells which will
confer additional immunity to the growing tumor (Pucci et al., 2016).
However, it is unclear if EVs are able to modulate macrophage
functions or if their accumulation is responsible for the SCS barrier
disruption observed at later times. In this regard, murine melanoma-
derived exosomes induced a mixed M1/M2 phenotype with increased
Arginase and iNOS expression in RAW 264.7 macrophages (Bardi
et al., 2018), suggesting that, similar effects could result in an
immunosuppressive macrophage behavior in TDLNs.

Exposure to melanoma-derived sEVs also induces changes in the
composition of the LN matrix such as increased levels of laminin
15 and collagen 18 (Hood et al., 2011) and thus, sEVs could be at least
partially responsible for the elevated collagen and hyaluronic acid
deposition found in the pre-metastatic TDLNs compared to naïve LNs
(Rohner et al., 2015). Additionally, active proliferation of fibroblastic
reticular cells has also been observed in TDLNs and constitutes
another characteristic of the LN PMN (Riedel et al., 2016).
Consequently, the conduit network expands altering its size
exclusion properties and affecting antigen delivery. It is plausible
that tumor-secreted EVs could reprogram stromal populations such
as fibroblastic reticular cells, similarly to the influence that they exert
on stromal fibroblasts in the tumor microenvironment.

The important structural remodeling that occurs in the LN PMN
is accompanied by alterations in LN immune populations associated
with immunosuppressive features such as increased DC dysfunction
(van den Hout et al., 2017; Cochran et al., 2001), impairment of T-cell
capacities (Mansfield et al., 2011) and augmented secretion of
immunosuppressive cytokines (Lee et al., 2005; Torisu-Itakura
et al., 2007). In melanoma, the effects of EVs on LN immune
populations have been barely explored in vivo. Interestingly, B16-
F10-derived small EVs induced increased numbers of regulatory
T-cells in LNs when injected in mice (Du et al., 2022).

In summary, melanoma-derived small EVs are involved in the
main changes occurring in the pre-metastatic LNs that surround the
primary tumor and together with tumor soluble factors such as VEGF-
C, VEGF-A, GM-CSF favor LN remodeling and establish a more
suitable environment for metastatic colonization (Figure 3).
Remarkably, there are growing evidences that tumor-immune
system interactions in the LN setting appear to influence distant
metastasis outcome and EVs are remarkable candidates to be
involved in that interplay.

Melanoma EVs and distant pre-
metastatic niches

EV physical properties and stability in biological fluids allow for
long distance transfer of tumor molecular cargo. These characteristics
noticeably fit with the PMN concept in distant organs that establish
tumor-derived factors as key elements for pre-conditioning distant
organs by altering their cellular homeostasis and ECM structure before
tumor cell colonization occurs in order to facilitate or fuel metastatic
seeding (Peinado et al., 2017).

Another related concept is tumor organotropism that expresses
the selective capacity of cancer cells to target specific secondary organs
depending on the primary tumor type (Minn et al., 2005; Hu et al.,
2009; Gao et al., 2019). Small EVs play a key role in defining the
organotropism of tumors in such a way that sEVs from tumors that
metastasize in the lung can partially redirect cancer cells with a
different tropism to this organ (Hoshino et al., 2015). The
configuration of integrins exposed on the sEV surface determines
the selective binding to ECM and cells located in different organs
(Hoshino et al., 2015; Becker et al., 2016). For example, α6β4 and
α6β1 integrins predispose to lung colonization and αvβ5 favors liver
metastasis. Skin melanoma does not display a clear organotropism but
shows multi-organ metastatic capacity including metastasis to lung,
liver, skin and brain. Remarkably, the integrin profile in EVs secreted
by several melanoma cell lines indicates a broad expression of the
integrin protein family (García-Silva et al., 2021) that could suggest a
non-specific tropism pattern or, in other words, a broad metastatic
target range.

In early stages of melanoma, tumor-shed EVs could elicit anti-
tumor responses as shown in a poorly metastatic mouse model
(Plebanek et al., 2017). In this setup, released exosomes stimulated
the expansion of Ly6Clow monocytes, the recruitment of natural killer
(NK) cells to tumors and eventually, limited lung metastatic
colonization. However, in more advanced stages, increased
numbers of secreted exosomes and other EVs exert a wide range of
immunosuppressive functions through the expansion of Treg and
myeloid-derived suppressor cells subsets, impairment of antigen-
presentation and cytotoxic T-cell and NK cell dysfunctions
(Whiteside et al., 2021). The numbers of NK cells and CD8+

T-cells are diminished in the spleen and bone marrow of mice
exposed to melanoma-derived sEVs (Du et al., 2022). This agrees
with the presence of PD-L1 on the surface of melanoma-secreted
exosomes that interacting with CD8+ T-cells can inhibit T-cell
function (Chen et al., 2018).

Those effects notably decrease the effectivity of adaptive immune
responses and fit with the described presence of pro-inflammatory and
immune-modulatory proteins and RNAs in the cargo of metastatic
melanoma-secreted sEVs (Whiteside, 2016; Bardi et al., 2019). In
addition to these in vivo studies, there are abundant in vitro evidences
that support a role for tumor-secreted EVs in the modulation of the
immune landscape to create a permissive environment for metastatic
colonization. For example, SK-MEL-28-derived EVs promoted a
decrease in the DC maturation markers CD86 and CD83 and an
impaired secretion of chemokines such as Flt3L, IL15 or MIP-1 (Maus
et al., 2017). These effects were mediated by S100A8 and
S100A9 proteins present in the EV cargo.

In healthy lungs, melanoma-derived EVs downregulate
IFNAR1 and its downstream target cholesterol 25-hydroxylase
which prevents EV uptake. This IFNAR1 downregulation facilitates
EV message amplification by an increase vesicle uptake (Ortiz et al.,
2019). Neutrophils are also recruited to the lung PMNs by the action of
the RNA cargo in melanoma-derived sEVs. Lung epithelial cells
activate TLR3 in response to exosomal RNAs that promotes the
secretion of chemokines attracting neutrophils to those areas (Liu
et al., 2016).

In addition to these local and systemic effects of EVs, exosomes
can influence bone marrow progenitor cells (BMPCs) through the
horizontal transfer of c-MET and induce their differentiation towards
a vasculogenic phenotype (Peinado et al., 2012). Exosomes also
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promote BMPCs mobilization to the lungs of melanoma-bearing mice
by increasing pro-inflammatory molecules such as S100A8 and
S100A9 and ECM remodeling and thus contributing to the
establishment of efficient PMNs (Figure 3). Small EVs can also act
locally in the distant organ microenvironment by increasing vascular
permeability that could favor the tissue entry of inflammatory cells
(Becker et al., 2016).

Although melanoma cells can disseminate to organs other than
lung, few studies have addressed the requirements and mechanisms
for the formation of suitable PMNs in those locations. It is possible
that sEVs from different tumor types but with similar tropism opt
for parallel strategies. For example, brain-tropic breast cancer cells
secrete exosomes carrying CEMIP protein that targets brain
endothelial and microglial cells inducing endothelial cell branching
and inflammation in the perivascular niche. In this way, breast
cancer sEVs favor vascular co-option for tumor cells (Rodrigues
et al., 2019). In melanoma, a pro-inflammatory phenotype is
induced in astrocytes exposed to melanoma exosomes that
included the upregulation of IL-1α, IL-1β, CXCL1 and
CCL2 among others (Gener Lahav et al., 2019). In the liver PMN,
pancreatic adenocarcinoma-derived sEVs loaded with migration
inhibitory factor (MIF) target Kupfer cells (Costa-Silva et al., 2015).
sEV-modulated Kupfer cells induce the secretion of TGF-β by hepatic
stellate cells promoting and inflammatory and fibrotic environment.
Interestingly, in vitro studies with different melanoma cell lines
suggest that osteotropic melanoma-derived sEVs induce
CXCR7 expression in non-osteotropic cells and promote the SDF-
1/CXCR4/CXCR7 axis (Mannavola et al., 2019). This strategy could
be advantageous for the establishment of a pro-tumor PMN in
the bone.

Future directions

In this review, we have focused on melanoma-derived EVs
providing an analysis of most relevant information on the
characterization of their cargo and roles in tumor progression. Due
to space constrains, the review does not include an exhaustive
discussion about EVs from stromal and immune populations in the
microenvironment that would act in coordination with melanoma
EVs for fueling tumor progression. Particular attention can be
dedicated to EVs released by activated platelets such as MVs or
microparticles that are able to promote angiogenesis and metastasis
of several lung cancer cells (Janowska-Wieczorek et al., 2005). EVs
derived from CAF populations also influence tumor cells and favor
their metastatic behavior. However, the complex network of effects
between tumor, immune and stromal-derived sEVs is far from being
understood.

EVs have been shown to play crucial roles in different aspects of
cancer cell migration, like directional sensing, cell adhesion, ECM
degradation, and leader-follower behavior (Luga et al., 2012; Sung
et al., 2015; Sung et al., 2021), but the mechanisms are not fully
understood. Their implications for melanoma local and distal
metastasis deserve more attention.

Tumors induce other systemic outcomes that are observed in late/
terminal stages of the disease such as thrombosis, myelopoiesis or
cachexia. It is not unreasonable to speculate that those devastating
consequences of the terminal stages of cancer could also be at least in
part mediated by tumor-derived EVs and experimental evidences are

beginning to be provided in several tumor types (Yang et al., 2019;
Raimondi et al., 2020; Miao et al., 2021).

Another relevant question relates to EV heterogeneity that
theoretically would allow a vast complexity of paracrine and long-
distance cell-to-cell interactions. However, it is plausible that
depending on the cell type and the physiological/pathological
status, only certain types of vesicles are released or predominate
among the EV pool. The EV content might also be influenced by
therapeutics (Lunavat et al., 2017; Svedman et al., 2018). Undoubtedly,
more efforts would be required to thoroughly understand this
biological exchange system in the cancer context.

In conclusion, we are on the road of understanding the
communication mechanisms between tumor cells and the patient’s
body. Melanoma is a cancer with a remarkably enhanced EV release
that has extensively contributed to unravel the role of EV-mediated
tumor-environment cross-talk. Indeed, EV release exerts multiple
functions in benefit of melanoma progression. A profound
knowledge of these mechanisms could lead to the development of
novel strategies to block melanoma progression.
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