
The Importance of Gene Duplication
and Domain Repeat Expansion for the
Function and Evolution of Fertilization
Proteins
Alberto M. Rivera* and Willie J. Swanson

Department of Genome Sciences, University of Washington, Seattle, WA, United States

The process of gene duplication followed by gene loss or evolution of new functions has
been studied extensively, yet the role gene duplication plays in the function and evolution of
fertilization proteins is underappreciated. Gene duplication is observed in many fertilization
protein families including Izumo, DCST, ZP, and the TFP superfamily. Molecules mediating
fertilization are part of larger gene families expressed in a variety of tissues, but gene
duplication followed by structural modifications has often facilitated their cooption into a
fertilization function. Repeat expansions of functional domains within a gene also provide
opportunities for the evolution of novel fertilization protein. ZP proteins with domain repeat
expansions are linked to species-specificity in fertilization and TFP proteins that
experienced domain duplications were coopted into a novel sperm function. This
review outlines the importance of gene duplications and repeat domain expansions in
the evolution of fertilization proteins.
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INTRODUCTION

The fertilization of oocytes by sperm is an essential function in sexual reproduction, and multiple
stages of the fertilization cascade have been described (Vacquier, 1998). First the sperm is drawn to
the egg through chemotaxis (Ramírez-Gómez et al., 2019), and it then binds to the egg and releases
proteins stored in the acrosome. The sperm then passes through the glycoproteinaceous egg coat
(Monne et al., 2008; Wilburn and Swanson, 2016) (named Zona Pellucida in mammals), and
proceeds to the oocyte cell membrane to initiate fusion (Siu et al., 2021). Understanding fertilization
requires knowledge of both these broad steps of the fertilization cascade and the molecular
mechanism underlying them. Research into the evolution and function of gametic proteins has
implications for the development of novel contraception or treatments for unexplained human
infertility (Gelbaya et al., 2014).

Many fertilization proteins are members of gene families that result from whole gene duplication
events, which is a common mechanism for gene birth (Hughes, 1994). There has been extensive
research into the relationship between gene duplication and other aspects of reproductive biology,
including the neuroendocrine control of reproduction (Dufour et al., 2020), protease activity in the
female reproductive tract (Kelleher et al., 2007; Kelleher and Markow, 2009), the resolution of sexual
conflict (Gallach et al., 2010, 2011; Connallon and Clark, 2011; Gallach and Betrán, 2011), and
hybridization barriers (Ting et al., 2004). This review specifically focuses on our growing knowledge
of duplicated protein families implicated in fertilization. These proteins include the Izumo1 and Juno
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pair of interacting proteins, which each arose from independent
gene duplication events and are essential to gamete membrane
fusion function in mammals (Bianchi et al., 2014). DCST1 and
DCST2 are paralogous proteins expressed in the sperm
membrane of some bilateral animals, that are essential for
fertilization (Inoue et al., 2021a, 1). Other duplicated proteins
that act in fertilization include ADAMs (Primakoff and Myles,
2000; Civetta, 2003; Finn and Civetta, 2010), CRISPs (Busso et al.,
2007; Da Ros et al., 2008; Gibbs et al., 2011; Maldera et al., 2014),
Catspers (Clapham and Garbers, 2005; Navarro et al., 2008; Speer
et al., 2021), and PKDREJ on the male side (Sutton et al., 2008),
and tetraspanins (CD9,CD81) (Le Naour et al., 2000, 9; Miyado
et al., 2000; Frolikova et al., 2018) and EBR1 on the female side
(Kamei and Glabe, 2003; Hart, 2013). Genomic resources suggests
that most of these families (ADAMs, tetraspanins, EBR, PKRDEJ,
Catsper) have orthologs in other bilateral animals, while CRISP
has orthologs in animals and in yeast (Howe et al., 2021).

Duplicated genes can experience further structural
diversification, such as the duplication of individual functional
protein domains. Proteins containing tandemly duplicated
domains constitute a small, but significant portion of the
genome (Han et al., 2007; Nacher et al., 2010). Independent
tandem duplications of individual functional domains is also a
recurrent trend in some protein families (TFP,ZP) (Galindo et al.,
2002; Aagaard et al., 2010; Doty et al., 2016). There are several
families of reproductive proteins on both the sperm and egg that
show a history of being coopted from non-reproductive functions
(Figure 1). Three finger proteins (TFPs) have been frequently
coopted for fertilization including SPACA4 in tetrapods, Bouncer
in fish, and multiple classes of sperm proteins in plethodontid
salamanders (PMF, SPFs) (Doty et al., 2016; Fujihara et al., 2021).
Salamander SPFs have a duplicated three finger protein domain,
and have evolved structural modifications to those domains

(Doty et al., 2016). Similarly, the family of ZP proteins
(named after the Zona Pellucida), essential components of egg
coats across vertebrates and invertebrates (Wilburn and Swanson,
2016), show evidence of independent expansions of ZP-N
domains in different lineages (Liang and Dean, 1993; Galindo
et al., 2002). These highlight the role of gene duplication and
repeat domain expansions in fertilization. An observed trend is
rapid sequence evolution in reproductive proteins (Swanson and
Vacquier, 2002), and newly duplicated domains can provide
novel substrates for evolving new functions at multiple stages
of the fertilization cascade.

The role of duplications in genome evolution is well
documented across the tree of life. (Kondrashov et al., 2002;
Conant and Wolfe, 2008). Gene duplication (Ponting, 2008) is an
important source for new genetic material that facilitates
biological innovation. The duplication and differentiation of
genomic regions has been linked to the evolution of
modularity in organisms (Wagner et al., 2007). Modularity is
an abstract concept in which part of an organism (such as a
network of protein interactions) functions largely autonomously
relative to other aspects of the organisms’ biology (Wagner and
Altenberg, 1996; West-Eberhard, 2005). Duplicated genes can
participate in existing modular protein interaction networks,
which facilitates increasing biological complexity of these
networks (Wagner et al., 2007). Such increases in modular
network complexity through gene duplication has been linked
to adaptations in humans (Perry et al., 2007). Duplicated
functional domains can similarly contribute to the evolution of
biological complexity. This review will discuss both whole gene
duplications and within gene domain duplications, and their role
in the evolution of reproductive functions.

When genes duplicate they experience one of three possible fates:
pseudogenization, subfunctionalization, and neofunctionalization

FIGURE 1 | A cartoon schematic listing several protein families involved in reproduction. Those with notable repeat expansions are bolded.
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(Walsh, 2003; Innan, 2009). Due to redundancies in function, the
duplicated gene may no longer experience conservation and
accumulate silencing mutations, resulting in a non-coding
“pseudogene” (Figure 2). New mutations are frequently
deleterious, so pseudogenization is hypothesized to be the most
common fate of duplicated genes (Lynch and Conery, 2000).
However, the other two fates of duplicated genes
(subfunctionalization and neofunctionalization) are common
mechanisms for biological innovation. Under neofunctionalization,
one gene copy maintains its original function while the other
experiences positive selection and evolves a novel function. While
under subfunctionalization, both copies parse the original function,
and neither gene is sufficient (Walsh, 2003; Innan, 2009).

Tandem duplications of individual protein domains within a
gene can add greater complexity to the duplication process.
Paralogous genes experiencing relaxed selection can have greater
freedom for tandem domain duplications. There is strong research
interest in the mechanisms underlying domain repeat expansions
and how they affect the evolution of protein families (Björklund
et al., 2005, 2006; Vogel et al., 2005; Weiner et al., 2006; Moore et al.,
2008; Buljan and Bateman, 2009). Repeats can experience concerted
evolution where they maintain a high degree of sequence identity
(Elder and Turner, 1995; Liao, 1999), through unequal
recombination and gene conversion (Schimenti, 1999). Under
this scenario, the repeat expansion of highly identical domains is
itself an innovation that could allow proteins to evolve novel
functions. A repeat domain expansion could also affect dosage or
protein interaction networks. Repeated domains could similarly
differentiate in amino acid sequence, leading to
neofunctionalization or subfunctionalization with the original
domain. There are many possible orders and combinations of
whole gene duplications and domain duplications that can
contribute to the expansion of gene families (Figure 2). The
process by which duplicate genes are maintained and experience
subfunctionalization or neofunctionalization has been characterized
under the duplication-degeneration-complementation model
(DDC) (Force et al., 1999). While most classical population

genetics models (Walsh, 2003; Innan, 2009) primarily discuss the
effect of silencing or beneficial mutations on coding regions, the
DDCmodel focuses on the effect of mutations on regulatory regions
and subfunctionalization. Essentially, mutations that can silence
certain regulatory regions in a duplicate gene can lead to the two
genes partitioning expression and eventually function (Force et al.,
1999). Other models have suggested subfunctionalization is
primarily important as a transition phase to neofunctionalization
(Rastogi and Liberles, 2005). The mechanisms of
subfunctionalization and neofunctionalization remain a subject of
rich debate, and concepts like the DDC model could have
ramifications for protein evolution.

Subfunctionalization and neofunctionalization are
foundational to the evolution of increased complexity in
genomes and protein networks, and it is worth examining
their particular importance in fertilization. Fertilization
proteins are some of the most rapidly evolving proteins in
genomes, as evidenced by high amino divergence (Swanson
and Vacquier, 2002). Their rapid evolution is likely driven by
factors such as sexual conflict and molecular arms race dynamics
between gametes, which can also contribute to the maintenance
of fertilization barriers between species (Gavrilets and Waxman,
2002; Gavrilets, 2014). The general trend of rapid evolution in
reproductive proteins could facilitate the subfunctionalization or
neofunctionalization of domains.

IZUMO/JUNO

The fusion of sperm and egg is necessary for fertilization, but
there are only a few known pairs of interacting gametic proteins
identified at this stage (Wilburn and Swanson, 2016). After years
of research the interacting pair Izumo1 and Juno were identified
in mammals (Bianchi et al., 2014). Izumo1 is the sperm expressed
protein that mediates fusion (Inoue et al., 2005), and it interacts
with the egg surface bound folate receptor 4 (known as Juno)
(Bianchi and Wright, 2014). Izumo1 and Juno are each part of

FIGURE 2 | There are multiple possible combinations of whole gene and domain duplications that can birth new genes and functional domains. Often a whole gene
duplication begins the process, and then one of the gene duplicates experiences a domain expansion. These genes can then act as substrates for further duplication and
neofunctionalization or subfunctionalization events.
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protein families with multiple paralogues, but only the Izumo1/
Juno pair is capable of interacting (Bianchi et al., 2014). There are
four members of both the Izumo (Ellerman et al., 2009) and folate
receptor families (FOLR) in mammals (Elwood, 1989; Shen et al.,
1994; Spiegelstein et al., 2000; Petronella and Drouin, 2014).
Despite being part of the folate receptor family, Juno does not
actually bind folate, exemplifying how a single member of this
gene family has been coopted for a novel reproductive function
(Bianchi et al., 2014).

While Juno represents a clear cooption into fertilization, the
evolution of the Izumo gene family could also present an
interesting example of neofunctionalization. Izumo1-4 all
have a highly structurally conserved Izumo domain, but
Izumo1 and Izumo4 have a shared pair of β-strands
extending from this domain. Izumo1 experienced further
structural modifications, as its β-strand extensions act as a
hinge between the Izumo domain and a coopted
immunoglobulin-like domain (Aydin et al., 2016; Ohto et al.,
2016). Such substantial structural changes could be important
for the protein’s ability to bind Juno. Research into other Izumo
proteins suggests their involvement in fertilization. Izumo1-3
are transmembrane testis expressed proteins (Ellerman et al.,
2009), while Izumo4 lacks a transmembrane domain and is
expressed in the acrosome (Guasti et al., 2020). Izumo3 shows
evidence of positive selection (Grayson and Civetta, 2012), and
is necessary for sperm acrosome formation (Inoue et al., 2021b).
The parallel histories of structural modifications in Izumo1 and
Juno allowed for this essential interaction to evolve.

The relationship between Izumo1, Juno and their paralogs
is highlighted by our phylogeny (Figure 3), which contains a

long branch leading to Juno (FOLR4). This could reflect the
rapid accumulation of mutations in the Juno branch as it was
coopted to bind Izumo1 during gametic membrane fusion.
Crystal structures confirm that 1:1 binding complexes form
between Izumo1 and Juno (Aydin et al., 2016; Ohto et al.,
2016). The adhesion of Izumo1 and Juno is conserved in
mammals, and after the adhesion event Juno is released
from the egg’s surface in vesicles and may act to bind and
neutralize acrosome reacted sperm (Bianchi et al., 2014). In
mammals, this interaction functions as a block against
polyspermy (Bianchi and Wright, 2014). Blocks to
polyspermy are essential, because eggs that fuse with
multiple sperm are not viable and mammalian blocks to
polyspermy exist at both the cell membrane (Evans, 2020)
and egg coat (Fahrenkamp et al., 2020).

Mutations to residues conserved in mammals greatly reduce
binding, highlighting that particular changes to amino acid
sequence and protein structure facilitated the
neofunctionalization of Juno (Aydin et al., 2016). The more
variable structural features (Ohto et al., 2016) in Juno may be
important for the species-specificity of its binding to Izumo1
(Bianchi et al., 2014; Bianchi and Wright, 2015; Han et al.,
2016). Comparative genetic analyses identify positive selection
in a subset of mammals (Laurasiatheria) (Grayson and Civetta,
2012), and that Juno is likely rapidly coevolving with Izumo1,
which contributes to the specificity of their interactions
(Grayson, 2015). This specific binding is essential to both
Juno’s function in initiating membrane fusion, and the
post-fusion neutralization of acrosome-reacted sperm
(Wright and Bianchi, 2016).

FIGURE 3 | Unrooted maximum likelihood phylogenies for Izumo and FOLR gene families in a subset of primates, based on multiple sequence alignments (Katoh
and Standley, 2013; Kozlov et al., 2019). Both gene families independently duplicated, but FOLR4 was coopted to bind Izumo1. Crystal structures have been obtained
for the Izumo1-Juno complex (Aydin et al., 2016). For other proteins, alphafold predicted structures were used (Jumper et al., 2021). Using predictions of signal peptides
and transmembrane domains, and secondary structural alignments, we identified shared izumo domains (Sonnhammer et al., 1998; Krogh et al., 2001; Almagro
Armenteros et al., 2019).
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DCST

While Izumo1 and Juno are thought to initiate the complex
molecular process of gametic membrane fusion in mammals,
recent transgenic experiments and complementation studies
have demonstrated that DCST1 and DCST2 are also essential
(Inoue et al., 2021a). The DCST1/2 proteins are expressed on
the sperm surface, and contain variable (4–6) transmembrane
helical domains (DC-STAMP) (Inoue et al., 2021a, 1). DC-
STAMP (dendritic cell specific transmembrane protein)
refers to both the name of the domain and one of the
proteins that contains this domain (Hartgers et al., 2000).
The originally identified DC-STAMP protein has four
transmembrane domains (Hartgers et al., 2001), and it is
highly expressed in myeloid dendrocytes (Hartgers et al.,
2000, 2001; Eleveld-Trancikova et al., 2005, 2008). The
expression of DC-STAMP has been induced in
macrophages (Staege et al., 2001) and osteoclasts
(Nomiyama et al., 2005). This broad array of functions has
motivated much research into the molecular mechanisms of
DC-STAMP interactions, which has supported a role in
osteoclast fusion (Kukita et al., 2004; Yagi et al., 2005;
Jansen et al., 2009). There is also evidence of DC-STAMP
related signaling in immune response (Nair et al., 2016).
Along with these other diverse functions, it seem that DC-
STAMP domains have been coopted into an essential role in
sperm-egg membrane fusion.

DCST1/2 are the first known essential fertilization factors
that are conserved in both vertebrates and invertebrates (Inoue
et al., 2021a). DCST1/2 orthologues have been identified in
both Caenorhabditis and Drosophila (Kroft et al., 2005; Wilson
et al., 2006, 2018), which is the first known example sperm
related factors being conserved this broadly across vertebrates
and invertebrates (Inoue et al., 2021a, 1). However, there has
been extensive structural diversification of these DCST1/2
across animals (Figure 4), especially between invertebrates
and vertebrates. The low sequence identity of DCST1/2
proteins across animals, makes the conservation of
reproductive function all the more remarkable. The
ubiquitin ligase activity of DCST1 (Nair et al., 2016) raises
questions about the function of DCST1/2 in sperm. There is
intense research interest into the signal activity of long non-
coding RNA produced by DCST1 and its effect on cancer cell
progression (Hu et al., 2020; Ai et al., 2021, 1; Wang et al.,
2021). More investigation is necessary to understand the
function of DC-STAMP domains in a broad range of
signaling networks, and how they were neofunctionalized in
sperm DCST1/2.

ZP DOMAINS

ZP proteins are an essential class of egg coat proteins. An
important feature of ZP proteins is the ZP module that

FIGURE 4 | A schematic of DCST1/2 proteins in multiple species. The number of transmembrane domains and loop lengths differ across species. Transmembrane
domains and loops are colored based on conservation (Pei et al., 2008), where red coloration signifies amino acid conservation relative to humans. Therefore, the human
examples are all red.

Frontiers in Cell and Developmental Biology | www.frontiersin.org January 2022 | Volume 10 | Article 8274545

Rivera and Swanson Gene Duplication and Fertilization Proteins

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


consists of two domains, ZP-N and ZP-C, named after their
relative N-terminal and C-terminal positioning. ZP-N and ZP-C
domain are immunoglobular domains with characteristic
patterns of disulfide bonding and β-sheets (Bokhove and
Jovine, 2018), and likely resulted from an ancestral domain
duplication. The variability in amino acid sequence, disulfide
placement, and loop structures between ZP-N and ZP-C (Lin
et al., 2011) suggests differences in their biological function and
evolutionary history.

ZP-N domains are of particular interest, because they form
asymmetric dimers with their β-sandwich edges which are
believed to promote polymerization between ZP modules
(Jovine et al., 2002; Wilburn and Swanson, 2017; Bokhove
and Jovine, 2018). There are several ZP proteins identified in
vertebrates (ZP1-4, ZPAX and ZPD), and there appears to be a
history of lineage specific gain and loss of ZP proteins among
vertebrates (Galindo et al., 2002; Conner et al., 2005; Goudet
et al., 2008; Claw and Swanson, 2012; Meslin et al., 2012; Shu
et al., 2015; Killingbeck and Swanson, 2018). Like other
families discussed in this review, there also multiple ZP
proteins with non-reproductive functions (e.g., uromodulin
and tectorin-alpha) (Legan et al., 1997; Brunati et al., 2015;
Bokhove et al., 2016). This may be another example of domains
being coopted into a reproductive function, and ZP-N
polymerization domains may be important for egg coat
assembly and structure.

Not only has gene duplication produced an assortment of ZP
proteins, there are also examples of independent repeat
expansions of ZP-N in both vertebrates and invertebrate egg
coat proteins (Figure 5). Some have only one additional ZP-N

domain, but there are more dramatic repeat expansion like
mammalian ZP2 (4 ZP-Ns) and abalone VERL (23 ZP-Ns)
(Galindo et al., 2002). This process of domain duplications
helped contribute to the diversity of ZP proteins. Given the
ability of ZP-N domains to dimerize (Jovine et al., 2002;
Bokhove and Jovine, 2018; Litscher and Wassarman, 2020),
their duplications could create opportunities to evolve novel
binding functions. Proteins with duplicated ZP-N domains,
such as mammalian ZP2 and abalone VERL, are thought to be
essential for species-specific in fertilization (Avella et al., 2013,
2014; Raj et al., 2017). Species-specificity in abalone is associated
with the coevolution between VERL and the sperm protein lysin
(Galindo et al., 2003; Clark et al., 2009), suggesting a cooption of
ZP-Ns in sperm-egg interactions during egg coat dissolution.

Neofunctionalization of ZP-N domains can also drive new
interactions between ZP proteins, such as the evolution of
essential intermolecular crosslinks (Nishimura et al., 2019),
which affect the physical assemblage of proteins in the
supramolecular structure of the egg coat. Indeed, mouse
research has suggested the importance of egg coat
supramolecular structure in fertilization (Rankin et al., 2003;
Avella et al., 2013). The structure of the egg coat is also
important for the oocyte’s ability to block polyspermy. Protein
cleavage of ZP2 is thought to initiate other egg coat structural
modifications, which “harden” the egg coat and prevent sperm
binding (Bleil et al., 1981; Gahlay et al., 2010; Fahrenkamp et al.,
2020). Gene and domain duplications has produced a family of
ZP proteins that contribute to the egg coat supramolecular
structure, and are involved in both sperm recognition and
polyspermy avoidance.

FIGURE 5 | Cladograms of ZP-N proteins are based on phylogenies from the literature (Aagaard et al., 2010; Claw and Swanson, 2012). These suggest
independent repeat expansion of the ZP-N domain in both abalone and human egg coat genes.
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TFP SUPERFAMILY

Three finger proteins are defined by their TFP domains, which
have a characteristic disulfide bonding pattern and fold (Galat,
2008; Galat et al., 2008). The broader TFP protein superfamily
also includes proteins with structurally modified TFP-like
domains (Galat, 2015). While TFPs were originally identified
in snake toxins (Low et al., 1976; Tsernoglou and Petsko, 1977),
members of the TFP superfamily have been to coopted for
reproductive functions into sperm (SPACA4, PMFs, and
SPFs), egg (Bouncer), and pheromones (PMFs, and SPFs)
(Doty et al., 2016; Fujihara et al., 2021; Wilburn et al., 2022)
(Figure 6). Bouncer plays a role in species-specific sperm-egg
fusion in teleost fish (Herberg et al., 2018), which raises questions
about how other TFPs may function in fertilization. The TFP
superfamily includes both soluble and membrane bound
proteins, and has great functional diversity across many tissues
and taxa (Alape-Girón et al., 1999; Tsetlin, 1999; Kini, 2002;
Nirthanan et al., 2003; Kessler et al., 2017). Similar to ZP proteins,
we observe a history of gene duplication, repeat expansion of
domains, and functional diversification of TFP containing
proteins.

An ancestral TFP protein experienced gene duplication to
produce an assortment of single TFP-like domain proteins

(1D-TFPs). One of these TFP genes experienced a tandem
domain expansion to produce the ancestor of proteins with
two TFP-like domains (2D-TFPs). Three independent
cooption events have produced TFPs in gametes (Figure 6).
A cooption of 1D-TFPs occurred in the ancestor of tetrapods
and produced both Bouncer in fish, and SPACA4 in amniotes
(Figure 6). Despite their protein homology, Bouncer is egg
expressed while SPACA4 is sperm expressed and it is
implicated in interactions between the sperm and egg coat
(Fujihara et al., 2021), highlighting the functional
diversification of TFPs. Another independent cooption of
1D-TFPs resulted in the sperm expressed plethodontid
modulating factor (PMFs) salamanders, which extensively
duplicated producing a diverse family of reproductive
molecules (Wilburn et al., 2012, 2014, 2017; Doty et al.,
2016). Salamander PMFs are hypervariable proteins
expressed in multiple tissues, and while they are structurally
similar to other TFPs, they differ in loop length and disulfide
bridge patterning, and show evidence of persistent
diversification and positive selection (Palmer et al., 2010;
Wilburn et al., 2012, 2014).

Among 2D-TFPs there was independent cooption into the
sodefrin precursor-like factors (SPFs) of salamander sperm. SPFs
then experienced their own history of gene duplications and
radiation (Palmer et al., 2007). Both PMFs and SPFs experienced
disulfide bond reshuffling relative to the canonical 1D-TFP and
2D-TFP binding patterns, and these changes reflect the
neofunctionalization of these molecules (Doty et al., 2016).
These striking examples of independent gene duplications and
neofunctionalization for reproductive functions raises questions
as to whether there a more additional unknown cooptions of
TFPs, and whether some protein domains are more susceptible to
cooption in diverse biological contexts.

Both PMFs and SPFs are highly duplicated protein families,
with some members being coopted into pheromone function and
others for sperm expression (Doty et al., 2016; Wilburn et al.,
2022). As the sperm paralogs of PMFs and SPFs have only
recently been discovered, functional studies have not yet been
conducted. Male salamanders produce large number of PMFS
and SPFs within their mental glands which promote ritual
courtship behavior in females (Doty et al., 2016). Duplications
of secreted male-expressed sperm proteins could have provided
an evolutionary substrate to evolve new pheromones (Wilburn
et al., 2022). Structural changes in PMFs and SPFs, such as
disulfide shuffling, may contribute to new functions in both
sperm and pheromones. The TFP’s superfamily’s history of
gene duplication, domain duplication, and
neofunctionalization provides a unique model for the
evolution of large gene families involved in fertilization.

DISCUSSION AND CONCLUSION

Within this review we discussed examples of duplicated gene
families with roles in fertilization. Gene duplication and
neofunctionalization is an essential process for the evolution of
greater genomic and functional complexity in organisms.

FIGURE 6 | These two cladograms outline the whole gene and domain
duplications within the three finger protein superfamilty (TFPs) and their
expansions into reproductive systems. An ancestral single domain TFP (1D-
TFP), duplicated into multiple vertebrate 1D-TFPs, and also had a
domain level duplication which created a lineage of two TFP domain proteins
(2D-TFPs). The 1D-TFPs produced tetrapod SPACA4, fish Bouncer, and
multiple salamander PMFs. The 2D-TFPs also duplicated throughout
vertebrates including salamander SPFs. Both salamander PMF and SPF
protein families include both sperm and pheromone expressed members
(Wilburn et al., 2022).
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Duplicated paralogous genes have been coopted into both sperm
(Izumo1, DCST1/2) and egg (Juno) proteins involved in gamete
membrane fusion (Bianchi et al., 2014; Inoue et al., 2021a, 1).
Domain duplications within paralogs is also observed in the TFP
superfamily and ZPs and has allowed both groups of genes to
adopt novel functions at multiple stages of fertilization. As seen
with TFPs, duplication events are often followed by notable
protein structural changes (Doty et al., 2016) which may be
tied to their cooption for novel fertilization functions. It is
intriguing to consider hypotheses that account for these
patterns of gene family expansion and diversification common
in reproductive molecules.

Duplication events can facilitate the rapid evolution and
neofunctionalization observed in many families of
fertilization proteins. This rapid evolution can also be
influenced by multiple factors such as sexual conflict,
polyspermy avoidance, or genetic drift (Vacquier et al.,
1997). The necessity of pathogen avoidance or blocks to
polyspermy can drive oocytes to evolve reduced sperm
binding ability. The sperm would then coevolutionarily
“chase” the egg, which can contribute to the rapid sequence
evolution of gametic proteins, and to the species-specificity of
these protein interactions (Gavrilets and Waxman, 2002;
Gavrilets, 2014). The rapid evolution of reproductive proteins
is explored in terms of amino acid mutations, but the repeat
expansion of domains could also be part of this trend. Proteins
with repeated domains could experience drift resulting in ever-
changing molecular target, that interacting proteins must
coevolutionarily chase (Vacquier et al., 1997).

Duplications of reproductive proteins can also contribute to
the phenomenon of functional redundancy, in which two
duplicated genes have partially overlapping functions and can
compensate for each other’s loss (Kafri et al., 2009). Functional
redundancy has been observed in the CRISP family of
reproductive proteins (Curci et al., 2020), and this property
could emerge in other large protein families. While functional
redundancy seems like it would be temporary as duplicated genes

subfunctionalized or neofunctionalized, it can be a surprisingly
evolutionarily stable property. Functional redundancy could
confer fitness advantages by maintaining the robusticity of
protein interaction networks in spite of stochasticity of
expression between cells (Kafri et al., 2009). The rapid
evolution of other reproductive proteins in these networks
could place even greater value on robustness and stability of
essential functions. Robusticity in these protein networks is
believed to reduce the fitness cost of new mutations, which
would increase the “evolvability” of these proteins and
facilitate functional innovation (Kirschner and Gerhart, 2008).
The concepts of functional redundancy and robusticity of
function may also apply to domain repeat expansions like the
ZP-N domains of VERL. The processes of gene duplication,
repeat domain expansion, structural modification, and
neofunctionalization have been fundamental to the evolution
of reproductive molecules across life.
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