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Mechanical forces are now recognized as key cellular effectors that together with genetic
and cellular signals physically shape and pattern tissues and organs during development.
Increasing efforts are aimed toward understanding the less explored role of mechanical
forces in controlling cell fate decisions in embryonic development. Here we discuss recent
examples of how differential forces feedback into cell fate specification and tissue
patterning. In particular, we focus on the role of actomyosin-contractile force
generation and transduction in affecting tissue morphogenesis and cell fate regulation
in the embryo.
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INTRODUCTION

A complex interplay between biochemical and physical events on multiple lengths and time scales
regulates the formation of tissues and organs during embryonic development. Mechanical forces are
now recognized as central players in tissue morphogenesis that drive changes in cell shape, size,
proliferation, and movement (Heisenberg and Bellaiche, 2013; Mammoto et al., 2013). These
processes rely on dynamic feedback of mechanochemical signals whereby forces are transduced
into biochemical signals which in turn control mechanical mechanisms (Hannezo and Heisenberg,
2019; Collinet and Lecuit, 2021). Forces that lead to changes in cell form and function can either be
intracellularly generated by contractile actomyosin networks or extrinsically received from the
surrounding microenvironment through cell adhesive complexes (cell-cell or cell-extracellular
matrix (ECM) receptors) (Lecuit et al., 2011; Heisenberg and Bellaiche, 2013; Mammoto et al.,
2013; Vining and Mooney, 2017; Goodwin and Nelson, 2021). Further, cells can also respond to
stresses from changes in hydrostatic or hydraulic fluid pressure as observed during early embryonic
development (Dumortier et al., 2019; Mosaliganti et al., 2019). Coordination and transmission of
mechanical forces allow cells to change shape and position, thereby producing morphogenetic
changes at the tissue and organ level.

A crucial event during early embryonic development is the establishment of different cell
identities (fates) for specialized function and patterning of tissues and organs. Numerous studies
have now established the view that large-scale patterning is achieved by short- or long-range
morphogen signaling in tissues in a dose-dependent manner, thereby controlling local activation of
transcription factors and modulation of gene expression to determine cell fate (Gilmour et al., 2017).
Apart from genetic control of tissue patterning, recent studies highlight a significant role for
mechanical forces in cell fate specification, adding another distinct layer of control over cell fate
decision making (Mammoto et al., 2011; Brunet et al., 2013; Gordon et al., 2015). Forces generated
inside the cell, modulating cell contractility and mechanics (Samarage et al., 2015; Le et al., 2016;
Maitre et al., 2016; Mitrossilis et al., 2017) as well as stresses outside the cell such as those produced
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through hydrostatic pressure can impact on cell fate regulation
and tissue patterning (Planas-Paz et al., 2012; Chan et al., 2019).
Notably, mechanical signaling through cell–cell and cell–ECM
adhesions seems to play a significant role in the interplay between
forces and cell fate specification (Martin-Bermudo, 2000;
Kuriyama and Mayor, 2009; Maître et al., 2012; Taylor-Weiner
et al., 2015; Steed et al., 2016; Barone et al., 2017). Given the
multitude of forces present during tissue morphogenesis and the
numerous mechanosensitive proteins that can potentially affect
cell fate decisions, a major challenge is to delineate which force
inputs and which specific effectors are functionally relevant to
control cell fate.

In the following chapters, we will briefly discuss the
relationship between forces and cell fate and their
consequences for tissue and organ development on the basis
of recent discoveries in the field with a specific focus on two
processes during vertebrate development that serve as excellent
model systems of how contractility can control cell fate decisions.

Feedback Between Cell Fate and
Mechanical Forces
The link between forces and cell fate specification is essential for
understanding the underlying mechanisms that regulate robust
tissue patterning during development (Gilmour et al., 2017).
Identifying the mechanical pathways that are responsible for
cell fate specification requires quantitative force measurements
which are often intricate to accomplish in the embryo. Hence, key
findings originate from studies using cultured cells that enable
better access and control to investigate the contribution of
mechanical signals to changes in cell behavior (Engler et al.,
2006; Astudillo, 2020; Petzold and Gentleman, 2021). Such
findings revealed, for example, that environmental mechanical
cues such as matrix stiffness are key modulators of embryonic
stem cell (ESC) differentiation (Engler et al., 2006; McBride and
Knothe Tate, 2008; Huebsch et al., 2010; El-Mohri et al., 2017).
Furthermore, actomyosin contractility and membrane tension
have been shown to guide cell fate and patterning (Fu et al., 2010;
Bergert et al., 2021; De Belly et al., 2021), indicating that cortex
and membrane tension can actively contribute to cell fate
decisions. However, given the precise spatiotemporally
controlled biochemical and physical signals together with
geometric cues in the embryo, recent studies highlight the
need to investigate functional relationships between force and
cell fate in vivo (Yang et al., 2000; Hove et al., 2003; Desprat et al.,
2008; Adamo et al., 2009; Barone et al., 2017).

Notably, mechanical forces controlling cell fate is not a strictly
unidirectional pathway. Cell fate can feedback into cytoskeletal
tension generation, and this regulatory loop appears to be crucial
for robust morphogenesis during development. This typically
includes cell–cell adhesion complexes which relay physical signals
between cells and are therefore an integral part for integrating
mechanosensitive responses at the tissue level. For example, a
positive feedback loop between cell–cell contact duration,
morphogen signaling, and mesendoderm cell fate specification
was observed during early zebrafish gastrulation (Barone et al.,
2017). Moreover, compressive forces by the global extension of

the germband in Drosophila were shown to generate a stretching
of the β-catenin-E-cadherin binding site, resulting in the
expression of β-catenin target genes including the mesodermal
marker twist (Desprat et al., 2008). In turn, Twist can control the
expression of upstream regulators of actomyosin contractility
such as the activation of the Rho-family GTPase RhoGEF2
(Leptin, 1991; Dawes-Hoang et al., 2005; Kolsch et al., 2007;
Sandmann et al., 2007). Other known examples of feedback loops
between forces and cell fate come from processes regulated by
effectors of the Hippo signaling pathway that control organ size
during development. Here, the transcriptional co-activator
proteins YAP (Yes-associated protein 1) and TAZ
(transcriptional coactivator with PDZ-binding motif) are
associated with cell proliferation and fate specification and can
mechanically be controlled by extracellular matrix rigidity and
cell shape (Dupont et al., 2011; Elosegui-Artola et al., 2017). For
instance, recent work elegantly demonstrated that cell
specification of the micropyle precursor cell (MPC) within the
follicular epithelium during zebrafish oogenesis is controlled by
nuclear translocation of TAZ (Xia et al., 2019). TAZ triggers
massive growth of the MPC, which leads to mechanical
compression and deformation of its neighboring cells and,
consequently, the depletion of nuclear TAZ in these cells. This
lateral inhibition mechanism triggers a positive feedback loop,
facilitating TAZ-dependent growth of the dominant cell while at
the same time limiting growth in the surrounding cells (Xia et al.,
2019).

In the next chapters, we will discuss recent findings on how
actomyosin anisotropies can lead to different cell fates during
embryogenesis with a particular focus on early heart development
in zebrafish and first lineage segregation in the mouse.

FIGURE 1 | During cardiac trabeculation in zebrafish (between 60 and
65 hpf), proliferation-induced crowding leads to tension heterogeneity in
cardiomyocytes. CMs with higher tension constrict their apical domain and
delaminate to seed the trabecular layer. This delamination triggers
activation of Notch signaling in adjacent compact layer CMs, thereby
establishing a distinct CM fate for these two layers. The coordination between
Notch and Erbb2 pathways between neighboring cells produces a distinctive
pattern of cell shape and fate for the trabecular and compact layer formation.
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Trabeculation During Zebrafish Heart
Development
Heart development in vertebrates undergoes complex
morphogenetic transformations during cardiac trabeculation, a
process where sheet-like muscular structures form as a result of
cardiomyocytes’ extrusion and expansion into the lumen of the
ventricular chambers (Staudt and Stainier, 2012). Although the
zebrafish heart has only two chambers instead of four as the
mammalian counterpart, the major components are conserved
and similar cellular and molecular pathways are implicated
during heart development (Moorman and Christoffels, 2003).
In zebrafish, the myocardium transforms from a monolayer at
48 h post-fertilization (hpf) to a complex three-dimensional (3D)
structure that consists of two cell types: the outer compact layer
(CL) cardiomyocytes encircling the inner trabecular layer (TL)
cardiomyocytes (Figure 1). The Notch signaling pathway has
been reported to play an important role in fate specification
during trabecular morphogenesis (Samsa et al., 2015). A zebrafish
line with a Notch reporter from the Epstein–Barr virus terminal
protein 1 (TP1) gene was utilized to study cell fate specification
during trabecular morphogenesis. Notch reporter TP1 was shown
to be activated in CL cardiomyocytes but not in TL
cardiomyocytes (Han et al., 2016; Jimenez-Amilburu et al.,
2016). Moreover, abrogating myocardial Notch led to ectopic
trabeculation (Han et al., 2016). In mouse embryos, however,
Notch signaling activation is essential for ventricular
trabeculation initiation, but the inactivation of myocardial
Notch does not affect heart development (Grego-Bessa et al.,
2007; Salguero-Jimenez et al., 2018), which points to differences
in Notch-dependent regulation of heart development across
species. In zebrafish, differential myocardial fate requires
binding of epidermal growth factor neuregulin 1 (Ngr1) to
Erb-B2 receptor tyrosine kinase 2 (Erbb2) which leads to its
phosphorylation and downstream signaling (Han et al., 2016).
Endocardial Nrg1 activates myocardial Erbb2 signaling, which
triggers the expression of the Notch receptor ligand, Jag2b. In
turn, Jag2b activates Notch signaling in neighboring
cardiomyocytes, which inhibits Erbb2 expression. This
regulatory feedback mechanism prevents excessive cell
internalization of the embryonic outer cell layer to generate a
distinctive morphology and fate during early heart development
(Figure 1).

A recent study discovered that cardiomyocytes with higher
contractility delaminate even in the absence of the Nrg–Erbb2
pathway (Priya et al., 2020). In this model, tissue crowding
induces local differences in cell shape and tension to initiate
cardiomyocytes with higher contractility to segregate by apical
constriction. Moreover, changes in actomyosin contractility were
shown to be sufficient to trigger differential apicobasal polarity
and fate (Priya et al., 2020). This hypothesis is based on the fact
that myocardial Notch reporter expression correlates with the
apical surface area of cardiomyocytes. Apical domain length
quantifications showed that cells with higher expression levels
of TP1 in the CL layer have larger apical domains than those in
delaminating cardiomyocytes (Priya et al., 2020). Lastly,
myocardial wall patterning was postulated to rely on a Notch

signaling feedback pathway. In particular, Notch signaling is
activated in neighboring CL cardiomyocytes which suppresses
the actomyosin machinery in these cells and limits excessive
delamination (Figure 1). The mechanism for the Notch-
mediated lateral inhibition is still unknown, but a model
considering contact area dependence predicts that smaller cells
are more likely to be selected by the lateral inhibition process than
larger cells (Shaya and Sprinzak, 2011).

Although major advances in understanding heart
morphogenesis have been achieved, high-resolution 3D imaging
of beating hearts during developmental stages remains challenging.
Recent advances in live imaging of a developing mouse heart
coupled with computational segmentation accomplished precise
tracking of cell fate decisions during embryonic development (Yue
et al., 2020). This is a crucial first step in modeling heart
morphogenesis at a single-cell resolution in order to enhance
our understanding of heart development.

First Lineage Segregation in Mouse
Embryos
During the preimplantation stages of mammalian embryonic
development, cells of the embryo physically segregate into the
pluripotent inner cell mass (ICM), which contains the precursors
for all cells in the body, and the outer trophectoderm (TE) layer
that will form the placenta (White et al., 2018). In the mouse
embryo, this lineage segregation starts after the 8-cell stage. It has
been suggested that asymmetric cell divisions are the main
mechanism to ensure ICM formation (Yamanaka et al., 2006;
Zernicka-Goetz et al., 2009). However, asymmetric divisions are
infrequent, and the first inner cells originate primarily from cell
internalization events. During this process, blastomeres divide
with tilted angles, and one daughter internalizes gradually via
cortical tension-dependent apical constriction (Samarage et al.,
2015) (Figure 2). Apicobasal polarity and Hippo signaling are
believed to be the key molecular mechanisms by which outer and
inner cells control their fate (Plusa et al., 2005; Sasaki, 2017;
White et al., 2018). The establishment of apical polarity by Par-
aPKC components in the outer (polar) cells was shown to
promote the nuclear localization of YAP, which upregulates
the expression of Cdx2, a transcription factor essential for TE-
fate maturation (Strumpf et al., 2005; Ralston and Rossant, 2008).
In contrast, inner (apolar) cells lack apical polarity and YAP
remains cytoplasmic through phosphorylation by the Hippo
signaling pathway component Lats. Cytoplasmic YAP fails to
activate homeobox transcription factor Cdx2 expression to
promote a pluripotent fate (Nishioka et al., 2009; Sasaki 2017).
Yet, it is unclear when YAP and Cdx2 start to be differentially
regulated during inner-outer segregation (Hirate et al., 2015;
Sasaki 2017). Recent reports indicate that the F-actin-rich
apical domain might be asymmetrically inherited during cell
division to differentially control YAP and Cdx2 (Maitre et al.,
2016; Korotkevich et al., 2017). According to this model,
segregation of the apical domain generates both polarized and
unpolarized blastomeres, which are defined by the different levels
of apical aPKC and myosin 2. Unpolarized cells showed higher
cortical levels of myosin 2 than polarized ones, and the differences
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in contractility determined their sorting into inner and outer
positions (Maitre et al., 2016). Polar daughter cells that inherited
the apical domain displayed lower contractility and remained in
the outer position whereas apolar cells internalized.

Furthermore, by using a reduced system in which two
blastomeres are isolated from a 16-cell stage embryo, it was
shown that the apical domain recruits a spindle pole to ensure
its differential distribution upon division (Korotkevich et al.,
2017). According to this model, the inheritance of the apical
domain is sufficient for the daughter cell to adopt TE fate. In
contrast to this model, the apical domain seems to disassemble
when blastomeres divide before being re-established de novo
after cytokinesis (Zenker et al., 2018). These results
demonstrate that polarity establishment does not occur
immediately after division. In agreement with these
observations, it was recently reported that keratins form
long-lived filaments that become asymmetrically retained by
outer daughter cells. Keratin filaments may stabilize the cortex
to promote the subsequent establishment of apical Par-aPKC
components (Lim et al., 2020). Despite direct links between the
Hippo pathway and F-actin (Leung and Zernicka-Goetz 2013;
Sasaki 2017), the direct role of actomyosin-generated tension
in controlling cell fate during early mouse embryonic
development remains unclear. Yet, the observation that
cortical contractility causes blastomeres to become inner
cell-like with respect to phosphorylated YAP localization
and Cdx2 levels and independent of their external position,
favors such an idea (Maitre et al., 2016). These results suggest
the possibility that YAP may sense cortical tension
independently of apical polarity. Moreover, in a recent
work, a correlation between levels of nuclear YAP and the
proportion of the exposed apical surface area of each
blastomere at the 16-cell stage was observed (Royer et al.,

2020). This suggests that cells may sense the proportion of
their surface area exposed and signal to the nucleus by
modulating the subcellular localization of YAP. The authors
suggested a possible feedback loop between apical cell surface
area and YAP localization. Certain cells that exhibited a lower
proportion of exposed surface area after cell divisions from 8-
to 16-cell stage, displayed lower nuclear YAP levels and
subsequently internalized (Royer et al., 2020). However, the
precise underlying mechanisms of regulation remain unclear
and future studies will be needed to gain a complete
understanding of this process.

DISCUSSION

Understanding the crosstalk between cell- and tissue-scale
mechanics and cell fate specification is essential to uncover
the key mechanisms that regulate robust tissue patterning
during development. Mechanical forces are now recognized
as essential control mechanisms for tissue integrity and
function by regulating cellular processes such as tension,
polarity, and adhesion during development. In this mini-
review, we revisited recent studies that illustrate the impact
of forces on cell-fate specification during embryonic
development with a particular focus on zebrafish heart
development and first lineage segregation in the mouse.
Notably, the establishment of force anisotropies seems to be
a conserved feature in both systems to drive changes in cell
identities and suggests that local differences in cell shape and
contractility might be a more general mechanism in
mechanical regulation of cell fate across various species. In
this regard, it will also be critical to identify mechanosensitive
proteins and their specific contribution to cell fate changes

FIGURE 2 | First lineage segregation during 8- to 16-cell transition. The resulting daughter cells show differences in polarity, contractility, and exposed surface area.
Together, these properties may control cell fate acquisition, resulting in appropriate partitioning of ICM and TE cells during patterning of the blastocyst.
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such as mechanosensitive ion channels at the plasma
membrane including TRP (Liu and Montell, 2015) and
Piezo1 (Ridone et al., 2019), or mechanoresponsive proteins
at cell adhesion sites such as α-catenin and vinculin.

Moreover, recent work revealed that mechanical forces also
impact nuclear morphology and processes within the nucleus
(Kirby and Lammerding, 2018; Lomakin et al., 2020; Venturini
et al., 2020). Nuclear responses to mechanical force include
adaptations in chromatin architecture and transcriptional
activity that trigger changes in cell state (Hampoelz and
Lecuit, 2011). These force-driven changes also influence the
mechanical properties of chromatin and nuclei themselves to
prevent aberrant alterations in nuclear shape and maintain
genome integrity (Uhler and Shivashankar 2017). Linking cell
and nuclear mechanics to events directly controlling gene
expression involved in cell-fate specification will be an
important endeavor for future studies to completely
understand developmental programs.
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