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The growth and maturation of oocyte is accompanied by the accumulation of abundant
RNAs and posttranscriptional regulation. N6-methyladenosine (m6A) is the most prevalent
epigenetic modification in mRNA, and precisely regulates the RNA metabolism as well as
gene expression in diverse physiological processes. Recent studies showed that m6A
modification and regulators were essential for the process of ovarian development and its
aberrant manifestation could result in ovarian aging. Moreover, the specific deficiency of
m6A regulators caused oocyte maturation disorder and female infertility with defective
meiotic initiation, subsequently the oocyte failed to undergo germinal vesicle breakdown
and consequently lost the ability to resume meiosis by disrupting spindle organization as
well as chromosome alignment. Accumulating evidence showed that dysregulated m6A
modification contributed to ovarian diseases including polycystic ovarian syndrome
(PCOS), primary ovarian insufficiency (POI), ovarian aging and other ovarian function
disorders. However, the complex and subtle mechanism of m6A modification involved in
female reproduction and fertility is still unknown. In this review, we have summarized the
current findings of the RNA m6A modification and its regulators in ovarian life cycle and
female ovarian diseases. Andwe also discussed the role and potential clinical application of
the RNA m6A modification in promoting oocyte maturation and delaying the
reproduction aging.
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1 INTRODUCTION

RNA N6-methyladenosine (m6A) methylation was firstly reported in 1974 (Desrosiers et al., 1974;
Perry and Kelley, 1974). Until 2011, the invention of m6A-specific methylated RNA
immunoprecipitation with next-generation sequencing (MeRIP-seq) provided technical support
for revealing the role of m6A methylation in eukaryotes (Dominissini et al., 2012; Meyer et al., 2012).
m6A is the most prevalent internal modification in mRNA, non-coding RNA, ribosomal RNA,
polyadenylated RNA (Krug et al., 1976; Rottman et al., 1976; Schibler et al., 1977; Fu et al., 2014;
Meyer and Jaffrey, 2014), and it is composed of 0.1%–0.4% adenylate residues, most of which occurs
on ‘RRACH’ (R = G or A; H = A, C or U) consensus sequence (Narayan and Rottman, 1988; Csepany
et al., 1990). The m6A modification mainly enrich in the 5′- and 3′-untranslated regions (UTR), stop
codons and last exon.

m6A modification has become an important branch of epigenetics independent of DNA
methylation, histone modification, chromatin rearrangement and non-coding RNA regulation.
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m6A precisely regulated the RNA metabolism and gene
expression including pre-mRNA processing, transport,
localization, splicing, stability, degradation and translation of
RNA (Wang et al., 2014; Wang et al., 2015; Xiao et al., 2016;
He and He, 2021; Liu and Zhou, 2021), and played an important
role in embryonic development, tumor occurrence, organ
development and other post-transcriptional regulation in
biological or pathological processes (Atlasi and Stunnenberg,
2017; Wang et al., 2018; Ma et al., 2019).

The m6A modifications are reversible and dynamically
regulated by the m6A modulators. The formation of m6A is
catalyzed by methyltransferase (METTL3/METTL14, WTAP,
KIAA1429, RBM15 A/B, ZC3H13, and HAKAI) (Liu et al.,
2014; Ping et al., 2014; Schwartz et al., 2014), and erased by
demethylases (FTO and ALKBH5) (Jia et al., 2011; Zheng et al.,
2013). m6A can be recognized by readers, such as YTH-domain
family proteins (YTHDFs), YTH domain-containing proteins
(YTHDC1/2), IGFBP1/2/3, HNRNPs, eIF3, LRPPRC, and
Prrac2 (Xu et al., 2014; Liu et al., 2015; Du et al., 2016;
Arguello et al., 2017; Patil et al., 2018; Yang et al., 2018; Wu
et al., 2019; Wang et al., 2021a).

2 m6A METHYLATION MODIFICATION IN
FEMALE REPRODUCTIVE DEVELOPMENT
AND AGING
2.1 m6A Methylation in Development and
Aging
2.1.1 m6A Methylation in Differentiations and
Development
Many studies have confirmed that the differentiation and
development of organs and tissues are precisely regulated by
m6Amodification accurately. For example, m6A played a decisive
role on cell fate during the endothelial-to-haematopoietic
transition to specify the earliest haematopoietic stem/
progenitor cells during zebrafish embryogenesis, which was
blocked in METTL3 deficient embryos (Zhang et al., 2017).
The downregulation of ALKBH5 was responsible for the
cardiomyocyte fate determination of human embryonic stem
cells (hESCs) originated from mesoderm cells (Han et al.,
2021). Currently, m6A modification in neuromuscular system
development has been clarified in many studies. METTL3/
METTL14, ALKBH5, FTO, YTHDF1/2/3 participated in the
development, and disorders of nervous system (Li et al., 2018;
Yu et al., 2021). The silence of FTO disturbed the skeletal muscle
differentiation by suppressing mitochondria biogenesis and
energy production involved in mTOR-PGC-1a pathway (Wang
et al., 2017). m6A and its regulators participated in the
proliferation and differentiation of myoblast, as well as muscle
regeneration (Li J. et al., 2021).

In reproductive system, m6A methylation is involved in the
entire process of spermatogenesis, including mitosis, meiosis, and
spermiogenesis (Fang et al., 2021; Gui and Yuan, 2021).
Knockdown of circGFRα1 mediated by METTL14 in female
germline stem cells (FGSCs) significantly reduced their self-
renewal (Li X. et al., 2021). Some enzymes were found to be

involved in the oocyte development, such as METTL3 (Xia et al.,
2018; Sui et al., 2020; Mu et al., 2021), YTHDC1 (Kasowitz et al.,
2018), KIAA1429 (Hu et al., 2020) and YTHDF2 (Ivanova et al.,
2017). However, there are few studies on m6A methylation
modification about ovarian development.

2.1.2 m6A Methylation in Aging/Senescence
Most studies showedm6A sites gradually increased with the aging
process (Shafik et al., 2021). Abnormal m6A modification may be
related to organ aging or cell senescence. Osteoporosis is a bone
aging disease. m6A modification have been reported to be
involved in regulating the proliferation, differentiation, and
apoptosis of bone-related cells including bone marrow
mesenchymal stem cells, osteoblasts, and osteoclasts by
multiple studies (Huang et al., 2021) (Wang et al., 2021b;
Chen et al., 2022) (Wu et al., 2020). In addition, IGF2BP2
highly expressed in Alzheimer’s patients by bioinformatic
analysis using multiple RNA-seq datasets of Alzheimer’s brain
tissues (Deng et al., 2021). Su et al. found that age difference
impacted m6A RNA methylation in hearts and their response to
acute myocardial ischemia/reperfusion (I/R) injury (Su et al.,
2021). To date, increasing research have reported the connection
between m6A and organ aging/cell senescence. However, most of
them mainly focused on methyltransferase, such as METTL3/
METTL14 (Zhang J. et al., 2020; Wu et al., 2020; Liu et al., 2021;
Chen et al., 2022), and the demethylases and readers were
gradually concerned in recent years, including ALKBH5 (Li
et al., 2022a), WTAP (Li et al., 2022b), IGF2BP2 (Deng et al.,
2021). Notedly, in reproductive aging, FTO has been shown to
play the regulatory role (Ding et al., 2018; Zhou L. et al., 2021;
Jiang et al., 2021; Sun et al., 2021). Meanwhile, m6Amodification-
related key downstream or upstream proteins have not been
deeply studied.

2.2 The Role of m6A in Ovarian Development
and Function
A few studies have been reported to prove that m6A played an
important regulatory role in regulating ovarian development,
ovarian function disorders and ovarian aging. In addition,
m6A also affected the oocyte maturation, embryonic
development, early organ formation and pregnancy process.
Here, we mainly summarized current progress in the studies
of m6A involved in oocyte development and maturation, ovarian
functionmaintaining and highlighted its continuous andmultiple
influence in female reproduction and fertility.

Sexual differentiation began from 5 weeks after fertilization to
20 weeks in gestation. Primary sex cord (PSC) development from
the gonadal ridge originated from the urogenital ridge and
incorporated primordial germ cells (PGC) in XX genotype,
which migrated into the gonad from the wall of the yolk sac.
PSCs extended into the medulla and formed the rete ovary, which
eventually deteriorated. The ovaries originally developed within
the abdomen but later underwent a relative descent into the pelvis
as a result of disproportionate growth (Dudex, 2013).

Recent studies showed that RNA methylation was involved in
the ovarian development process. Sun et al. systematically
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analyzed the m6A level in ovaries, testes and detected the
expression levels of several modification enzymes at different
stages. They found that decreased demethylase (FTO and
ALKBH5) and increased methyltransferase (METTL3 and
METTL14) raised the m6A level during the development of
gonads from 12.5 dpc as well as 7dpp to adult. In addition,
m6A content was higher in luteal phase than follicular phase (Sun
et al., 2020). Some regulators were uniquely and highly expressed
in gonads. The expression of METTL3 was higher in ovaries and
tests than other organs in Zebrafish (Xia et al., 2018). Moreover,
the m6A regulated Sxl to facilitate sex determination in
Drosophila (Kan et al., 2017). Currently, the mechanism of
m6A is involved in gonadal development is not fully understood.

Ovarian aging is characterized by the constant decreasing of
the number and the quality of follicles (Figure 1). The number of
primordial follicles peaked at nearly seven million at gestational
week 20 but dropped to one million at birth. At the menopausal
age of 50 years old, about 1,000 follicles remained in ovary
(Jerome and Robert, 2017; Laisk et al., 2019). Moreover, the
more erroneous rate of meiosis during oocyte maturation
increased with aging (Greaney et al., 2018). The aneuploidy
rate of oocytes was 20% at the age of 35 and up to 60% at the
age of 45 (Kuliev et al., 2011; Franasiak et al., 2014), resulting in
the increasing incidence of aneuploid embryos, accompanied
rising miscarriage, birth defection rate, gestational and
obstetric complications (Hassold and Hunt, 2001; Frederiksen
et al., 2018; Laisk et al., 2019; Correa-de-Araujo and Yoon, 2021).
m6A modification and its regulators were essential for ovarian
development and its aberrant manifestation resulted in ovarian
aging. Jiang et al. found that downregulated FTO and increased
m6A in granulosa cells (GCs) were accompanied by ovarian
aging. They also reported that FTO slowed down the
degradation of FOS-mRNA to upregulate FOS expression in
GCs, eventually resulted in GC-mediated ovarian aging (Jiang
et al., 2021). In 2009, FTO mutation was reported to cause severe
growth retardation and accelerate senescence in the skin
fibroblasts (Boissel et al., 2009). Meanwhile, Min et al.
identified inconsistent results of m6A level during the aging
process, which may be related to the tissue differences
between the ovary and peripheral blood mononuclear cells
(Min et al., 2018).

However, the expression pattern of m6A methyltransferase
and reader in ovarian aging process have not been fully evaluated.
Moreover, we don’t know the significance of m6A content and
changes of its regulators as well as how to promote ovarian
development. In the future, the significance of m6A and its
regulators in the regulation of ovarian life cycle should be
further studied.

2.3 m6A in Oocyte Development and
Maturation
The process of oogenesis included three phases: growth,
maturation, and ovulation. Maternal mRNA is activated in the
early stage of oocytes and ceased at the germinal vesicle (GV)
stage. The accumulated mRNA was pivotal for self-development
of oocyte, post fertilization and early embryonic protein
synthesis. Germinal vesicle breakdown (GVBD) was usually
regarded as a hallmark of the progress of oocyte maturation.
Then, the maternal mRNA began to degrade after LH peaks, and
most polyadenylate mRNA disappeared before ovulation. At the
two-cell stage, abundant maternal mRNA degraded. Sui et al.
found that the signaling of m6A modification gradually decreased
with degraded maternal RNAs in the cytoplasm from GV to two-
cell stage. Conversely, this trend was opposite from two-cell to
blastocyst stage (Sui et al., 2020).

mRNA from stable to unstable was an important step in
oocyte cytoplasmic maturation and zygote transition. These
indicated that post transcriptional regulation of mRNA
methylation played a key role in oocyte maturation and zygote
transformation. Here we summarized the roles of m6A
modification in the oocyte developmental, such as follicle
selection, meiosis maturation, and maternal zygote
transformation (MZT).

2.3.1 m6A Participated in the Follicular Selection
Although the role of m6A in mammalian follicular recruitment
and selection has not been reported, there was a preliminary
study on follicular selection by Hy-line Brown hens. MeRIP-seq
data showed that chicken follicular transcriptome on average
contained 1.61 and 1.59 m6A peaks per methylated transcript in
pre-hierarchical and hierarchical follicles, respectively, which

FIGURE 1 | m6A and regulators participate in the oocyte development and matruration.
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suggested that m6A methylation dynamic modification regulated
chicken follicular selection (Fan et al., 2019). While the follicular
recruitment and dominance in mammals remained to be studied.

2.3.2 m6A Participated in the GV and GVBD Stages of
Oocyte Development
Some researchers revealed thatm6Amethylation was involved in the
arrest of GV stage oocyte, and METTL3 defection effected the
development of GV oocyte. Recent study reported that METTL3
protein was indeed located in the oocyte nucleus at postnatal day
(PD) 5 and 12, GV stage and granulosa cells. After knocking out
METTL3 specifically in oocytes, the number of GV oocytes was
significantly reduced, and the oocyte diameter of METTL3cKO also
became obviously smaller compared with WTmice. The deletion of
METTL3 mainly effected the process of growing follicle
development rather than the transition of primordial follicles to
the activated growing follicles. Next, the researchers identified that
METTL3/IGF3BP3-m6A-Itsn2 signaling axis participated in the
oocyte development (Mu et al., 2021). In addition, the oocyte of
Ythdc1fl/-Ddx4-Cre ovaries was blocked at the primary stage,
characterized by one layer of granulosa surrounding the oocytes,
caused by the massive alternative splicing defects in YTHDC1
deficiency oocytes (Kasowitz et al., 2018).

The alteration of m6A methylation resulted in GVBD failure.
Under the action of gonadotropin, oocytes underwent GVBD,
that was the conversion of the prophase of the first meiosis to the
first meiotic process (G2-M) (Zhou C. et al., 2021). METTL3
expressed at all stages of the oocyte and primarily distributed in
the oocyte nuclei and granulosa cells. Most oocytes from
METTL3cKO mice could not undergo GVBD (Mu et al., 2021).
Its homolog was identified as mettl3, Ime4, MT-A in Zebrafish,
Saccharomyces cerevisiae, Arabidopsis thaliana (Xia et al., 2018).
Xia et al. reported that the arresting rate of primary growth stage
(PG) oocytes was higher and full-grown (FG) stage follicles was
significantly lower in Zmettl3m/m compared to WT respectively.
The GVBD rate of these defective oocytes can be rescued by HCG
and 17α-20β-DHP, which suggested that the competency of
oocyte maturation was impaired by the mettl3 mutation (Xia
et al., 2018). However, other study showed that GVBD rate was
similar between GV oocyte microinjected with siRNA against
METTL3, which suggested the meiosis resumption did not rely
on METTL3 (Sui et al., 2020).

The KIAA1429-specific deficiency in oocytes resulted in
female infertility with defective follicular development and GV
oocytes failing to undergo GVBD, consequently losing the ability
to resume meiosis. Loss of KIAA1429 could lead to abnormal
RNA metabolism in GV oocytes by affecting the exon skipping
events associated with oogenesis. KIAA1429 deletion caused the
decreased localization of SRSF3 and YTHDC1 in the nucleus of
oocytes, while enrichment of the SRSF3-binding consensus and
YTHDC1-binding consensus were observed in the exon regions
near the splicing sites (Hu et al., 2020).

At present, only some enzymes of m6A have been proved to be
involved in GV and GVBD stages before meiosis, most of them
have not been deeply studied. Therefore, the interaction between
these adaptors and the factors related to oocytes development and
the upstream and downstream target genes should be identified.

2.3.3 m6A Participated in the Meiosis of Oocyte
Maturation
Oocyte maturation was the committed process in sexual
reproduction, referring to the process from the double line
stage in the meiosis I (MI) to the meiosis II (MII). Various
research reported m6A methylation were involved in the oocyte
maturation process. METTL3 knockout in mammals and plants
were embryonic lethality (Wang et al., 2014; Chen et al., 2015;
Geula et al., 2015). Researchers microinjected the siRNAs against
METTL3 to GV oocytes and found that the ratio of first polar
body extrusion (PBE) was significantly decreased, although the
similar GVBD rate implied no effect on meiotic resumption. In
addition, obvious spindle abnormalities including elongated,
wide-polar and short spindles were observed in about 50% of
MII oocytes in METTL3 knockdown group (Sui et al., 2020).
Recently, Mu et al. reported that MII oocytes were not produced
in Mettl3 Gdf9−cKO mice, with only a small number of oocytes
reached to the end of MI, and almost no first PBE occurring.
Further, most of the oocytes from Mettl3Gdf9−cKO mice could not
be fertilized to form zygotes or develop beyond the four-cell
embryo stage (Mu et al., 2021), which may affect the mRNA
translation efficiency involved in chromosome congression and
spindle formation due to METTL3 knockdown during oocyte
maturation in mice. Another study also demonstrated that total
translation efficiency of maternal mRNA was decreased in
METTL3 knockdown oocytes (Sui et al., 2020). Moreover,
environmental factors such as constant light exposure reduced
the oocyte maturation rate by reduced m6A fluorescence
intensity (Zhang H. et al., 2020).

Current research focused on the function of METTL3 in
oocyte maturation, by affecting the translation efficiency,
disrupting mRNA stability and expression of genes on sex
hormone synthesis. Besides, other enzymes of m6A
modification involved in meiotic of oocytes maturation have
not been fully identified. We hope to map the integral
mechanism network of m6A participating in oocyte
development to help diagnose the causes of follicular
development disorders and provide possible intervention ideas.

2.4 m6A Participated in Maternal-to-Zygotic
Transition
MZT referred to that most maternal RNAs were gradually
degraded after fertilization and the zygotic genome started to
govern the gene expression, which phenomenon existed in all
animal species (Zhao et al., 2017). Maternal mRNA clearance and
the zygotic genome activation maintained early embryonic
development. There was high 87% similarity in Zebrafish and
human genes, so it was widely used as a model animal in the
oocyte maturation and embryonic development in the research of
m6A. YTHDF2 defection caused MZT failure by decelerating the
decay of m6A-modified maternal mRNAs and disturbing zygotic
genome activation (Zhao et al., 2017). Another study also showed
that conditional mutagenesis of YTHDF2 disturbed maternal
function in regulating transcript dosage of MII oocytes and
further damaged early zygotic development in mice (Ivanova
et al., 2017). Deng et al. reported that YTHDF2 was vital early
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embryogenesis as it advanced maternal mRNA clearance in goat
(Deng et al., 2020). Another reader, IGF2BP2, was reported that
maternal deletion of it caused early embryonic arrest at the 2-cell-
stage in mouse embryos (Liu et al., 2019). In addition, METTL3
knockdown induced that the overall translation efficiency of
maternal mRNA in oocytes was reduced, which further
inhibited oocyte maturation and eventually impeded zygotic
genome activation and MZT by disturbing the degradation of
maternal mRNAs in MII oocytes (Sui et al., 2020).

3 m6A MODIFICATION CONTRIBUTES TO
OVARIAN DISEASES

3.1 m6A and Ovarian Aging
Ovarian aging generally includes normal ovarian aging (NOA)
and pathological ovarian aging (Zhang et al., 2019). NOA is
defined as the gradual decline of oocyte quantity and quality
with aging until menopause. Pathological ovarian aging refers
to primary ovarian insufficiency (POI). In 2018, we firstly
reported that m6A content in POI patients and CTX induced
POI mice was significantly higher than normal groups, and the
mRNA and protein expression levels of demethylase FTO were
significantly lower in the POI patients than control group,
which may be responsible for the increased risk of POI (Ding
et al., 2018). Next, we identified that CTX raised the m6A and
methyltransferase levels and inhibited the expression of
demethylases and effectors with concentration-dependent
(Huang B. et al., 2019). We also found that the expression
of FTO reduced and m6A content was increased (Sun et al.,
2021). Li team further verified that the downregulation of FTO
increased m6A modification of FOS-mRNA-3′UTR and
upregulated the expression of FOS in GCs, eventually
resulting in the ovarian aging (Jiang et al., 2021). Zhu et at
found that melatonin supplementation could protect the
human ovarian surface epithelial cells to antagonize ovarian
aging by suppressing the pathway of ROS-YTHDF2-MAPK-
NF-κB (Zhu et al., 2022).

The mechanism of ovarian aging and POI is involved in
heredity, immunity, inflammation, energy metabolism and
epigenetic modification (Figure 2). Although there were
some literatures to elaborate that m6A was related to the
occurrence of ovarian aging, more research should be
conducted in m6A modification on ovarian aging and POI
to clarify the pathogenic mechanism to build a complete
mechanism-network.

3.2 m6A and PCOS
PCOS is characterized by ovulation disorder and
hyperandrogenemia, which seriously affects women’s
reproduction and long-term health, attacking for about
6–10% females (Cooney et al., 2017). Scholars reported in
2012 that IGF-like families (IGF2BP2 and IGFBP2) from
cumulus cells in PCOS were abnormal expression (Haouzi
et al., 2012). Recently, the authors reported that m6A may be
involved in the occurrence of PCOS. Zhang et al. analyzed the
m6A profile of luteinized GCs from normovulatory women
and non-obese PCOS patients following controlled ovarian
hyperstimulation and found that luteinized GCs of PCOS
patients triggered the m6A level increased. Meanwhile, the
methyltransferases (METTL3/METTL14) and demethylases
(FTO and ALKBH5) were also elevated (Figure 2). They
identified that m6A modification was reduced in FOXO3
mRNA from the luteinized GCs in PCOS patients.
Interestingly, selectively knocking down m6A
methyltransferases or demethylases did not change the
expression of FOXO3 in the luteinized GCs of PCOS
patients. It indicated that the regulation of FOXO3 by m6A
modification in PCOS was abnormal (Zhang S. et al., 2020).
Moreover, Zhou et al. found that FTO induced the
dysfunctions of GCs by upregulating FLOT2, which might
be involved in the pathophysiology of obesity PCOS (Zhou L.
et al., 2021). In addition, multiple meta-analysis showed that
rs9939609 polymorphism of FTO gene was associated with
PCOS risk (Wojciechowski et al., 2012; Liu et al., 2017).
However, it was still controversial.

FIGURE 2 | m6A and regulators participates in the ovarian life cycle.
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4 CLINICAL APPLICATION PROSPECT OF
m6A AND ITS REGULATORS IN OVARIAN
DISEASES
Up to know, the related research ofm6Amodificationmainly focused
on the basic research, but the related research in clinical
transformation were very limited. We summarized potential
biomarkers or therapeutic targets of m6A regulators related to
ovarian diseases. Firstly, m6A regulators can be used as
biomarkers to reflect gametogenesis disorders, and to achieve
preventive treatment of infertility. For example, METTL3,
YTHDC1 are possible markers of GV oocyte arrest and GVBD
failure (Sui et al., 2020; Mu et al., 2021). KIAA1429 may be the signal
of GVBD failure (Hu et al., 2020). Secondly, precise targeting genes
such as METTL3 (Sui et al., 2020; Mu et al., 2021), KIAA1429,
WTAP (Hu et al., 2020), ALKBH5, YTHDF2, YTHDC1 and
YTHDC2 (Ivanova et al., 2017), FTO (Ding et al., 2018; Jiang
et al., 2021), may be used as the drugs to ensure normal
gametogenesis and exert a better therapeutic effect on oocyte
development and improving ovarian function. Finally, inhibitors
and activators of m6A and its regulators as important treatment
strategy have been studied and applied extensively in experimental
animals. For instance, the inhibitors of FTOwere identified including
Rhein (Chen et al., 2012), EGCG (Wu et al., 2018), Entacapone (Peng
et al., 2019), Meclofenamic acid (Huang et al., 2015), FB23(Huang Y.
et al., 2019), R-2HG (Su et al., 2018), MO-I-500 (Zheng et al., 2014).
Gossypolacetic acid (GAA) was reported as the inhibitor of LRPPRC
(Zhou et al., 2019). More inhibitors and activators of m6A regulators
displayed effective therapeutic role in animal disease models. In the
future, ovarian related diseases treated with m6A regulators might be
a promising treatment selection (Figures 1, 2).

5 CONCLUSION

Abnormal m6A methylation affected oocyte development and
maturation by interfering chromosome/spindle assembly,
affecting transcript cutting, translation and degradation,
leading to granulosa cell apoptosis and jointly damaging
ovarian function. The specific mechanism of m6A dynamic
regulatory network in the female reproductive system still
needs to be further studied. Many unknown areas may be
involved in the ovary or oocyte development process, for
example, the enhancer and R-loop in the genes modified by
m6A. In conclusion, m6A and its regulators show important
function of regulation in ovarian development and oocyte
maturation and are potential biomarkers or therapeutic
targets for developmental disorders of the oocytes and
ovarian diseases.
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