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Crosstalk between pyroptosis and tumor immune microenvironment (TIME) in cancer has
yet to be elucidated. Herein, we aimed to explore the role of pyroptosis and its association
with TIME in gastric cancer. Unsupervised clustering was performed to identify the
pyroptosis-related clusters. Pyroptosis risk score was constructed using LASSO Cox
regression. Clinicopathological and genetic data of pyroptosis clusters and pyroptosis risk
scores were explored. Reproducibility of pyroptosis risk score in predicting response to
immunotherapy and screening potential antitumor drugs was also investigated. Three
pyroptosis clusters with distinct prognosis, immune cell fractions and signatures, were
constructed. A low-pyroptosis risk score was characterized by increased activated T-cell
subtype and M1 macrophage, decreased M2 macrophage, higher MSI status, and TMB.
Meanwhile, low-score significantly correlated with PD-L1 expression, antigen presentation
markers, and IFN-γ signature. The 5-year AUCs of PRS were 0.67, 0.62, 0.65, 0.67, and
0.67 in the TCGA, three external public and one real-world validation (SYSUCC) cohorts.
Multivariable analyses further validated the prognostic performance of the pyroptosis risk
scoring system, with HRs of 2.43, 1.83, 1.78, 2.35, and 2.67 (all p < 0.05) in the five
cohorts. GSEA indicated significant enrichment of DNA damage repair pathways in the
low-score group. Finally, the pyroptosis risk scoring system was demonstrated to be
useful in predicting response to immunotherapy, and in screening potential antitumor
drugs. Our study highlights the crucial role of interaction between pyroptosis and TIME in
gastric cancer. The pyroptosis risk scoring system can be used independently to predict
the survival of individuals and their response to immunotherapy.
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GRAPHICAL ABSTRACT |

INTRODUCTION

Gastric cancer (GC) is the second leading cause of cancer
mortality worldwide, and it was responsible for about 782,685
deaths in 2018 (Bray et al., 2018). The majority of pathological
types of GCs are adenocarcinomas, which can be further
divided into intestinal and diffuse types according to the
Lauren classification (Laurén, 1965), or various other
subtypes (i.e., tubular, papillary, signet ring cell, and
hepatoid type) according to the WHO classification (WHO,
2019). Hitherto, surgical or endoscopic resection is the
mandatory treatment for early or localized GC. However,
approximately 30–40% of GC patients experience relapse or
metastasis after curative resection (Sasako et al., 2011; Noh
et al., 2014). It is worth noting that the prognosis of patients
with similar clinicopathological features (i.e., age, Lauren
subtype, and TNM stage) and therapeutic strategies could
vary significantly, indicating that substantial heterogeneity
exists among GC and that the prognostic performance of the
TNM staging system should be scrutinized. Furthermore,
despite having been proven to improve the survival of
patients with metastatic or inoperable GC (Koizumi et al.,
2008; Yamada et al., 2015; Kang et al., 2020), the therapeutic
effect of cytotoxic drugs is still far below the expectation of
patients and clinicians. The latest evidence has demonstrated
that blockade of programmed cell death protein 1 (PD-1) is
non-inferior to chemotherapy (Shitara et al., 2020a), and the
combination of PD-1 inhibitor with chemotherapy shows

superior survival versus chemotherapy alone in patients
with advanced GC (Janjigian et al., 2021). Nonetheless,
only 15–60% of patients respond to anti-PD-1
immunotherapy. Therefore, the identification of novel
markers with higher prognostic and predictive performance
for GC is crucial in the clinical settings.

Pyroptosis, a form of gasdermin-mediated cell death, attracted
researchers’ attention as it plays a role in innate immunity and
diseases (Ruan et al., 2020; Yu et al., 2021). In response to infection or
other immunological threats, the cells assemble pro-caspases and
inflammasome sensors to form inflammasomes and activated
caspases. Cleaved-caspase 1/4/5 subsequently cleaves pro-IL-1β/18
and gasdermins (GSDMs). Proteolytic cleavage of the GSDMs allows
the N-terminal (NT) domain to oligomerize and form pores in the
cell membranes. GSDMs pores can induce membrane to disrupt and
trigger inflammatory cell death through the release of pro-
inflammatory cytokines (i.e., IL-1β and IL-18) to the extracellular
space (Zheng et al., 2021). At the time of this writing, Zhang et al.
revealed that GSDME (also known as DFNA5) can inhibit tumor
growth by enhancing phagocytosis of macrophages, as well as
increasing the number and functions of natural-killer (NK) cells
and cytotoxic T lymphocytes (Zhang et al., 2020). Moreover, Ye et al.
reported a pyroptosis-related gene signature that reflects tumor
immunity and predicts the prognosis of ovarian cancer (Ye et al.,
2021). These findings suggest that pyroptosis may play an important
role in the tumor immune microenvironment (TIME). In addition,
the immune subsets within the TIME also affect the efficiency of the
immune system, such as T cells (Ayers et al., 2017; Zhang et al., 2020),
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NK cells (Havel et al., 2019), and even eosinophils (Rossi et al., 2019).
However, the effects and patterns of pyroptosis and its relationship
with TIME in GC remain to be elucidated.

In this study, the pyroptosis patterns, as well as their
association with the TIME features in GC, were investigated.
Furthermore, we proposed a pyroptosis-based risk score to
quantify the risk degree of pyroptosis. The pyroptosis risk
score demonstrates robust prognostic performance for
predicting survival and response to immunotherapy,
suggesting that it may be used to assist clinicians in providing
more efficient and personalized treatment for GC patients.

MATERIALS AND METHODS

Gastric Cancer Cohorts and Data
Processing
RNA-sequencing (RNA-seq) and clinicopathological data of GC and
pan-cancer patients of The Cancer Genome Atlas (TCGA) were
downloaded from the UCSC Xena database (https://xenabrowser.net/
datapages/). We retrieved the datasets of GC from Gene Expression
Omnibus (GEO) that meet the following criteria: 1) > 100 subjects; 2)
overall survival data available; 3) the mRNA expression of targeted
genes available. The raw data of GEO cohorts were downloaded and

FIGURE 1 | Pyroptosis-related molecular patterns with tumor immune microenvironment in gastric cancer. (A) The location of CNV of 57 PRGs on chromosomes.
(B) t-SNE of gastric cancer based on the mRNA expression of 57 PRGs. (C) Kaplan-Meier curves of overall survival of the three pyroptosis clusters of gastric cancer. (D)
Heatmap showing the correlations between pyroptosis clusters and clinicopathological characteristics, and themRNA expression of 57 PRGs. (E,F) proportion of the 22
immune cell fractions and immune signatures among the pyroptosis clusters. PRGs, pyroptosis-related genes; ns: not significant; *p < 0.05; **p < 0.01; ***p <
0.001; ****p < 0.0001.
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normalized using the multiarray quantile method (limma package).
The expression matrix of TCGA and GEO data was normalized to
transcripts per kilobase million (TPM) format and to use the sva
package to adjust the potential batch effect. Genomic data were
downloaded from the cBioPortal database (https://www.cbioportal.

org/), and analyzed using the maftools package (Mayakonda et al.,
2018). Tumor mutational burden (TMB) is calculated as the total
number of somatic mutations divided by the full length of exons. The
utilization of TCGA and GEO complied with the Declaration of
Helsinki.

FIGURE 2 |Genomic analysis of pyroptosis clusters and construction of pyroptosis risk scores. (A,B,C) Top 20most frequently mutated genes of the 3 pyroptosis
clusters. (D) Heatmap showing the correlations between pyroptosis clusters and DEGs, among which 62 genes and 23 genes were up- and down-regulated in
pyroptosis cluster 3, respectively. (E) Forest plot of HRs for 11 DEGs. (F)Partial likelihood deviance of 11 DEGs identified by the LASSO regressionmodel, in which 1000-
fold cross-validation was used for variables selection. (G) LASSO coefficients of DEGs, each curve represents a gene. DEGs, differential expression genes; HRs,
hazard ratios.
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Pyroptosis-Based Consensus Clustering
Analysis
Searching with the keyword “pyroptosis” in Gene Set Enrichment
Analysis (GSEA) (http://www.gsea-msigdb.org/gsea/index.jsp),
27 pyroptosis-related genes (PRGs) were identified from the gene
set “REACTOME_PYROPTOSIS”. In addition, other PRGs were
extracted from prior reviews (Green, 2019; Ruan et al., 2020;
Bertheloot et al., 2021; Yu et al., 2021). In summary, a total of 57
PRGs were identified (Supplementary Table S1). These PRGs
include 8 CHMP families, 7 caspases, 7 cytokines, 7 TLR
families, 6 gasdermin superfamilies, 3 inflammasomes-mediated
genes, 2 granzyme-mediated genes, and 17 un-assorted genes.

Unsupervised clustering based on mRNA expression of the 57
PRGs was used to identify different pyroptosis-related clusters
using the ConsensusClusterPlus package (Wilkerson and Hayes,
2010). T-distributed stochastic neighbor embedding (t-SNE), a
non-linear technique for dimensionality reduction, was applied to
divide patients into distinct pyroptosis clusters based on the
expression profiles of the PRGs (Cieslak et al., 2020). The
levels of pyroptosis core genes (CASP1/CASP4/CASP5/
GSDMD/IL1B/IL18) in the pyroptosis-related clusters were
compared using Kruskal–Wallis test.

Tumor Immune Microenvironment
The tumor immune contents for each patient in the TCGA
cohort were estimated using the CIBERSORTx algorithm,
which can infer a total of 22 immune cell fractions through
cell-type-specific gene expression of bulk tissue RNA profiles
(Newman et al., 2019). Only subjects with an empirical p value
of less than 0.05 were eligible for further analysis. In addition,
gene sets for nine immune signatures and immune checkpoints
were obtained from previously described methods (Thorsson
et al., 2018), and the single sample gene set enrichment
analysis (ssGSEA) was applied to quantify the immune
signatures using the GSVA package (Hänzelmann et al., 2013).

Dimension and Pyroptosis Risk Score
The pyroptosis risk score is generated using the following four
steps: 1) Screening for pyroptosis related differentially expressed
genes (DEGs): GC patients from TCGA were divided into
pyroptosis clusters and DEGs among the clusters were
calculated with the limma package (Ritchie et al., 2015). Genes
with adjusted p < 0.05 and absolute values of fold change >2 were
considered pyroptosis-related DEGs. 2) Selecting prognostic
pyroptosis-related DEGs: pyroptosis-related DEGs with p <
0.05 in the univariate Cox regression analysis were chosen. 3)
Constructing pyroptosis risk score: the least absolute shrinkage
and selection operator (LASSO) Cox regression was applied to
determine the optimal weighting coefficient and to construct a
pyroptosis risk score based on the penalized maximum likelihood
estimator using the glmnet package. The pyroptosis risk score for
each patient of the TCGA and GEO cohorts was calculated with
the following formula: pyroptosis risk score = ∑exp(i) × coef(i),
where exp(i) represents the expression of an eligible gene and
coef(i) represents the corresponding coefficient in the
LASSO model. 4) Verifying robustness of the pyroptosis risk

score: the correlation between pyroptosis risk score and
pyroptosis core genes was calculated.

Gene set Enrichment Analysis
Based on the KEGG gene sets (c2.cp.kegg.v7.4.symbols.gmt),
GSEA was applied to identify the enrichment pathways
between the high- and low-pyroptosis risk score groups
using the clusterProfiler package. Pathways with a false
discovery rate (FDR) adjusted p < 0.05 were considered
significantly enriched.

Immune Checkpoint Blockade Cohorts
Kim et al. reported on a PD1 inhibition cohort of metastatic
GC (Kim et al., 2018), the RNA-seq and clinical data of which
were obtained from the TIDE website (http://tide.dfci.
harvard.edu/); however, the survival data were unavailable.
Three anti-PD1 therapy cohorts of melanoma patients were
included to validate the prognostic value of pyroptosis risk
score: RNA-seq and clinical data of PRJEB23709 (Gide et al.,
2019) and GSE100797 (Lauss et al., 2017) cohorts were
acquired from the TIDE website, while data of the Liu
cohort (Liu et al., 2019) were extracted from the
supplementary data of the published article. The definition
of overall survival (OS), recurrence-free survival (RFS), and
progression-free survival (PFS) was described in the
corresponding cohorts. Patients with complete or partial
responses were considered responders. The pyroptosis risk
score for patients in the ICB cohorts is calculated with the
aforementioned formula of LASSO regression.

Drug Sensitivity Prediction
The profiling relative inhibition simultaneously in the matrix
(PRISM) drug repurposing resource (https://depmap.org/
repurposing) contains a total of 4518 antitumor drugs
across 578 human cancer cell lines (Corsello et al., 2020).
The RNAs-seq data of 19 GC cell lines were acquired from the
DepMap Portal (https://depmap.org/portal/). The pyroptosis
risk score of the GC cell lines was calculated using the formula
of LASSO regression, and then divided into the high- and
low-score groups according to their median values. The drug
sensitivity of an antitumor agent was quantified as log2 (fold
change) of viability values relative to DMSO.
Furthermore, the differences in drug sensitivity between
cell lines with high- and low-pyroptosis risk scores were
evaluated.

Quantitative Real-Time RT-PCR Analysis
and Survival Analysis for Eight Differential
Expression Genes in Sun Yat-Sen University
Cohort
According to LASSO regression, eight DEGs were identified. The
prognostic values of these eight genes were verified through qRT-
PCR. qRT-PCR analyses of eight DEGs were carried out on the
tumor and the corresponding mucosal tissues. All these tissues
were fresh and stored at −80°C in the Biological Specimen Bank of
our institute before use. For tumor sample analysis, we received
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informed consent from each patient and approval from the
Institutional Review Board of Sun Yat-sen University Cancer
Center. The inclusion criteria were as follows: 1) having no
adjuvant treatment before operation; 2) complete resection of
the tumor; 3) incised margin was negative; 4) without distant
metastasis; 5) follow-up data was detailed and complete.

The total RNA of the tissue was extracted using TRIzol
reagent (Thermo Fisher Scientific, Waltham, MA,
United States), and the concentration was detected using
NanoDrop2000 Spectrophotometer (Thermo Scientific,
Wilmington, DE, United States). Total RNA (1 μg) was
reverse-transcribed and qPCR was performed using an
SYBR Green reaction mix (Takara Biotechnology, Shiga,
Japan) with an ABI Quant Studio5 Real-Time PCR System
(Applied Biosystems, Carlsbad, CA, United States). The
primer sequences were shown in Supplementary Table S3.
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was
used for normalization. Only the high-quality tissues
(CTGAPDH_RNA: 15–21 and CTtargeted_RNA < 40) were
included. The expression of individual RNA molecules was
determined by the -△CT approach (△CT =
CTtargeted_RNA—CTGAPDH_RNA).

Statistical Analysis
T-test, ANOVA, and Kruskal–Wallis test were employed to quantify
the difference of continuous variables between two groups, multi-
groups, and multiple comparisons, respectively. The Pearson
correlation test was applied to quantify the association between
two continuous variables. Comparisons of categorical factors were
assessed by the chi-squared test. The cut-off values of categories in
survival analysis were determined by the survminer package with a
minimal of 15% of each subgroup. Survival was estimated using the
Kaplan-Meier method and compared by log-rank test. The
prognostic efficacy of pyroptosis risk score was assessed by
time-dependent receiver operating characteristics curves
(ROC) with the area under curve (AUC) using the
timeROC package. The differences in AUC among variables
were calculated using the bootstrap method. Uni- and
multivariate cox regression analyses were employed to
evaluate prognostic performance. A nomogram was
constructed to visualize the prognostic values of entered
factors in multivariate cox regression, and was used to
establish the merged score. All the statistical analyses were
performed by R software (version 4.1.0). Two-sided p-value
less than 0.05 was considered statistically significant.

FIGURE 3 |Molecular features of pyroptosis risk score for gastric cancer. (A) Alluvial diagram of pyroptosis clusters, pyroptosis risk score, and survival status. (B,C)
Dot plot depicting the pyroptosis risk score in the three pyroptosis clusters, and TCGA molecular subtypes, respectively. (D) Scatter plot of correlation between
pyroptosis risk score and tumor mutational burden. (E) Dot plot showing the pyroptosis risk score of 10 driver genes in gastric cancer regarding each mutation status.
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FIGURE 4 | Prognostic values of pyroptosis risk score for OS in gastric cancer. Patients were divided into high- and low-pyroptosis risk score groups according to
the optimal cutoff value using “survminer” package in the training (TCGA; (A), validation cohort-1 (GSE26901; (B), validation cohort- 2 (GSE62254; (C) and validation
cohort-3 (GSE15459; (D). Kaplan-Meier curves of OS of the high- and low-pyroptosis risk score groups in the training (E), validation cohort-1 (F), validation cohort-2 (G)
and validation cohort-3 (H). Time-dependent ROC for 2, 3, 5 years based on pyroptosis risk score in the training (I), validation cohort-1 (J), validation cohort-2 (K)
and validation cohort-3 (L) cohorts. OS, overall survival; ROC, receiver operating characteristics curves.
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TABLE 1 | Uni- and multivariable Cox regression in the training and validation cohorts.

Univariable Multivariable

HR (95% CI) p HR (95% CI) p

Training cohort (TCGA)
Pyroptosis risk score (high vs. low) 2.50 (1.82–3.43) <0.001 2.43 (1.74–3.40) <0.001
Gender (male vs. female) 1.22 (0.87–1.71) 0.240 — —

Age (>60 vs. ≤ 60 years) 1.55 (1.09–2.21) 0.015 2.06 (1.41–3.02) <0.001
Location (non-EGJ vs. EGJ) 0.93 (0.64–1.37) 0.726 — —

Grade (G3 vs. G1/G2) 1.45 (1.04–2.02) 0.030 1.28 (0.90–1.82) 0.171
AJCC stage (III/IV vs. I/II) 1.98 (1.41–2.78) <0.001 1.91 (1.35–2.70) <0.001
MSI Status (MSI vs. MSS/MSI-L) 0.70 (0.45–1.09) 0.112 — —

Validation cohort 1 (GSE26901)
Pyroptosis risk score (high vs. low) 1.88 (1.11–3.21) 0.020 1.83 (1.05–3.22) 0.034
Gender (male vs. female) 1.39 (0.78–2.47) 0.259 — —

Age (>60 vs. ≤ 60 years) 2.90 (1.70–4.94) <0.001 2.69 (1.53–4.71) 0.001
Location (non-EGJ vs. EGJ) 0.88 (0.43–1.81) 0.736 — —

Lauren (Diffuse vs. Intestinal/mixed) 0.92 (0.39–2.14) 0.839 — —

AJCC stage (III/IV vs. I/II) 4.29 (2.38–7.72) <0.001 3.23 (1.75–5.96) <0.001
Validation cohort 2 (GSE62254)
Pyroptosis risk score (high vs. low) 2.43 (1.61–3.67) <0.001 1.78 (1.16–2.72) 0.008
Gender (male vs. female) 0.90 (0.65–1.27) 0.559 — —

Age (>60 vs. ≤ 60 years) 1.26 (0.91–1.76) 0.168 — —

Location (non-EGJ vs. EGJ) 0.58 (0.38–0.89) 0.013 0.74 (0.48–1.14) 0.172
Lauren (Diffuse vs. Intestinal/mixed) 1.52 (1.10–2.09) 0.010 1.07 (0.77–1.50) 0.672
AJCC stage (III/IV vs. I/II) 3.41 (2.34–4.96) <0.001 2.94(1.98–4.36) <0.001

Validation cohort 3 (GSE15459)
Pyroptosis risk score (high vs. low) 2.35 (1.54–3.60) <0.001 2.35 (1.54–3.60) <0.001
Gender (male vs. female) 1.40 (0.91–2.17) 0.127 — —

Age (>60 vs. ≤ 60 years) 0.98 (0.64–1.51) 0.936 — —

Lauren (Diffuse vs. Intestinal/mixed) 1.19 (0.79–1.79) 0.401 — —

AJCC, American Joint Committee on Cancer; EGJ, esophagogastric junction; MSI-H, microsatellite instability-high; MSI-L, microsatellite instability-low; MSS, microsatellite instability
stable. Bold values is meaning these value less than 0.05.

FIGURE 5 | Prognostic values of pyroptosis risk score in the SYSUCC cohort. (A) Kaplan-Meier curves of overall survival of patients with low- or high-expression of
8 eight genes. Kaplan-Meier curve and Time-dependent ROC for 2, 3, 5 years based on pyroptosis risk score in the SYSUCC cohort regarding overall survival. (B) and
disease-free survival. (C) SYSUCC, Sun Yat-Sen University Cancer center.
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RESULTS

Pyroptosis-Related Molecular Patterns
With Tumor Immune Microenvironment in
Gastric Cancer
Overall, 57 PRGs were identified in this study. The location of
CNV of these PRGs on chromosomes is depicted in
Figure 1A. Among these PRGs, TP53 exhibits the highest
mutated frequency, followed by TLR4, CASP8, and NLRP3
(Supplementary Figure S1). To investigate the pyroptosis-
related molecular patterns, we performed an unsupervised
clustering analysis based on the mRNA expression of 57 PRGs
and identified three distinct clusters in the TCGA data
(i.e., Cluster 1, 2, and 3) (Figure 1B). Correlations between
clusters and the expression of pyroptosis core genes indicated
that Cluster 3 could be associated with the highest pyroptosis
level (Supplementary Figure S2). Of the 3 pyroptosis clusters,
Cluster 3 exhibited the most prolonged OS (p < 0.001;
Figure 1C). Of note, Cluster 3 also showed higher
percentage of microsatellite instability (MSI) subtype (7.2
vs. 11.7% vs. 54.2% for Cluster 1, 2, and 3, p < 0.001;
Figure 1D), while the distributions of pathological T stage

(p = 0.385), N stage (p = 0.360), and M stage (p = 0.194) were
not different among the clusters. After dividing Cluster 3 into
MSI-H and MSI-L/MSS subgroups, the MSI-H group
exhibited a tendency of having more prolonged OS, but it
did not reach a statistical difference (p = 0.22, Supplementary
Figure S1C). Furthermore, the TIME features were explored
using the CIBERSORTx and ssGSEA algorithms. Significantly
higher proportions of CD8 T cells, activated CD4 memory
T cells, activated NK cells, and M1 macrophages were
observed in Cluster 3 (Figure 1E). The immune signature
analysis also indicated that Cluster 3 corresponded with an
inflamed cancer-immune phenotype (Figure 1F). In addition,
we further analyzed the immune signatures in Cluster 3 with
MSI-H or MSI-L/MSS. Notably, 5/22 immune cell fractions
exhibited significant differences between two subgroups
(Supplementary Figure S1D).

Figures 2A–C visualize the top 20 somatic mutations in
these pyroptosis clusters. A higher frequency of somatic
mutations with higher TMB (p < 0.001) was observed in
Cluster 3. As compared with Cluster 1 and Cluster 2,
Cluster 3 also showed higher mutation rates in ARID1A,
PIK3CA and KMT2D, and a relatively lower mutation rate
in TP53.

TABLE 2 | Uni- and multivariable Cox regression of OS and DFS in the SYSUCC cohort.

Univariable Multivariable

HR (95% CI) P HR (95% CI) p

OS
Pyroptosis risk score (high vs. low) 2.70 (1.59–4.58) <0.001 2.67 (1.53–4.65) <0.001
Gender (male vs. female) 1.38 (0.77–2.50) 0.275 — —

Age (>60 vs. ≤ 60 years) 1.88 (1.08–3.25) 0.024 1.56 (0.86–2.83) 0.142
Location (non-EGJ vs. EGJ) 1.22 (0.72–2.05) 0.461 — —

Grade (G3 vs. G1/G2) 0.96 (0.57–1.61) 0.880 — —

Lauren (Diffuse vs. Intestinal/mixed) 1.02 (0.60–1.71) 0.951 — —

Nerve invasion (yes vs. no) 1.38 (0.68–2.82) 0.372 — —

Vascular invasion (yes vs. no) 1.67 (0.97–2.88) 0.062 — —

Tumor size (>5 vs. ≤ 5 cm) 3.24 (1.68–6.26) < 0.001 2.57 (1.28–5.16) 0.008
CEA (>5 vs. ≤ 5 ng/ml) 1.85 (1.08–3.16) 0.025 1.56 (0.87–2.80) 0.134
CA19-9 (>35 vs. ≤ 35 U/mL) 1.07 (0.15–7.89) 0.947 — —

CA72-4 (>5 vs. ≤ 5 U/mL) 1.12 (0.23–3.03) 0.828 — —

AJCC stage (III vs. II) 3.89 (1.67–9.07) 0.002 2.86 (1.19–6.82) 0.018
Adjuvant chemotherapy (yes vs. no) 0.38 (0.23–0.64) < 0.001 0.45 (0.26–0.80) 0.006
DFS
Pyroptosis risk score (high vs. low) 2.00 (1.23–3.24) 0.005 1.72 (1.05–2.83) 0.033
Gender (male vs. female) 1.66 (0.96–2.86) 0.068 — —

Age (>60 vs. ≤ 60 years) 1.56 (0.95–2.56) 0.077 — —

Location (non-EGJ vs. EGJ) 1.12 (0.69–1.83) 0.640 — —

Grade (G3 vs. G1/G2) 1.01 (0.63–1.64) 0.955 — —

Lauren (Diffuse vs. Intestinal/mixed) 1.03 (0.64–1.65) 0.915 — —

Nerve invasion (yes vs. no) 1.60 (0.82–3.14) 0.171 — —

Vascular invasion (yes vs. no) 1.83 (1.10–3.03) 0.019 1.37 (0.81–2.32) 0.241
Tumor size (>5 vs. ≤ 5 cm) 3.53 (1.89–6.60) < 0.001 3.09 (1.59–5.98) 0.001
CEA (>5 vs. ≤ 5 ng/ml) 1.59 (0.95–2.64) 0.076 — —

CA19-9 (>35 vs. ≤ 35 U/ml) 1.07 (0.15–7.89) 0.947 — —

CA72-4 (>5 vs. ≤ 5 U/ml) 1.27 (0.17–9.32) 0.966 — —

AJCC stage (III vs. II) 2.99 (1.48–6.06) 0.002 1.99 (0.97–4.08) 0.061
Adjuvant chemotherapy (yes vs. no) 0.53 (0.33–0.86) 0.011 0.63 (0.38–1.05) 0.076

OS, overall survival; DFS, disease-free survival; SYSUCC, Sun Yat-Sen University Cancer center; AJCC, American Joint Committee on Cancer; EGJ, esophagogastric junction; CEA,
carcinoma embryonic antigen; CA19-9, carbohydrate antigens 19-9; CA72-4, carbohydrate antigens 72-4. Bold values is meaning these value less than 0.05.
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Construction of Pyroptosis Risk Score
Transcriptomic expression profiles were compared among
the three pyroptosis clusters of the TCGA data. A total of 85
DEGs were identified in Cluster 3, including 62 up-regulated
and 23 down-regulated genes (Figure 2D). Among these
DEGs, 11 exhibited associations with overall survival
(Figure 2E). Next, these prognostic DEGs were analyzed
using LASSO Cox regression to construct a pyroptosis risk
score (Figures 2F,G). A total of 8 DEGs were identified to
calculate the pyroptosis risk score, as follows:

Pyroptosis risk score = (0.145 × expression of APOC1) +
(0.100 × expression of PDE9A) + (0.086 × expression of F5) +
(0.025 × expression of PFN2) + (0.024 × expression of AGT) +
(0.001 × expression of RBP4)—(0.033 × expression of
PLEKHS1)—(0.146 × expression of BATF2).

We also identified the negative correlation between pyroptosis
risk score and the expression of pyroptosis core genes
(Supplementary Figure S3), indicating that the pyroptosis risk
score could, in fact, represent the risk for pyroptosis. The
pyroptosis risk scores for all the eligible cohorts in this study
were calculated using the above formula.

Molecular Features of Pyroptosis Risk
Score
To investigate the molecular characteristics of the different tiers
of pyroptosis risk score, we analyzed the relationship among
pyroptosis cluster, pyroptosis risk score and survival status in the
TCGA cohort (Figure 3A). Patients in Cluster 3 had the lowest
pyroptosis risk score compared with those in Cluster 1 and

FIGURE 6 | Prognostic values of pyroptosis risk score in 33 cancer types. (A) Forest plot depicting the hazard ratios for pyroptosis risk score in 33 cancer types of
the TCGA cohorts. Kaplan-Meier curves of overall survival of patients with low- or high-pyroptosis risk score in rectum adenocarcinoma (B) and colon
adenocarcinoma (C).
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Cluster 2 (p < 0.001; Figure 3B). The distribution of pyroptosis
risk score in the TCGA molecular subtypes was also investigated,
and the MSI subtype was found to have the lowest pyroptosis risk
score, followed by the EBV subtype (p < 0.001; Figure 3C).
Interestingly, pyroptosis risk score was negatively associated with
TMB (r = −0.39, p < 0.001; Figure 3D). We further explored the
impact of mutational status of 10 common driver genes on
pyroptosis risk score in GC (Wang et al., 2011), and found
that pyroptosis risk scores increased in patients with TP53
mutation, but decreased in patients with mutations in
ARID1A, PIK3CA, KMT2D, DNAH7, TTN, ACVR2A,
CTNNB1, RPL21, or FMN2 (all p < 0.05; Figure 3E).

Prognostic Performance of Pyroptosis Risk
Score
To validate the prognostic potential of pyroptosis risk score in
GC, three external cohorts (GSE26901 (Oh et al., 2018),
GSE62254 (Cristescu et al., 2015), and GSE15459 (Ooi et al.,
2009)) with available mRNA expression data of the 8 genes
identified by the LASSO model were included in our study.
Supplementary Table S2 shows the baseline co-variates of the
TCGA and the three GEO cohorts. Patients were divided into
high- and low-pyroptosis risk score groups according to the
optimal cutoff value as determined in each cohort (Figures

4A–E). Kaplan-Meier curves revealed that shorter OS was
observed in subjects with high-pyroptosis risk score in the
training cohort (HR, 2.50; p < 0.001; Figure 4E), validation
cohort-1 (HR, 1.88; p = 0.020; Figure 4F), validation cohort-2
(HR, 2.43; p < 0.001; Figure 4G), and validation cohort-3 (HR,
2.35; p < 0.001; Figure 4H), compared with those with low-
pyroptosis risk score.

Furthermore, time-dependent ROC analysis was performed to
evaluate the prognostic accuracy of pyroptosis risk score in the
training and validation cohorts. As most of the patients did not
reach the end point for 1-year, we analyzed the expression index
of AUCs for 2-year instead. The AUC values of the pyroptosis risk
score for 2-, 3- and 5-year OS were 0.70 (95% CI, 0.63–0.77), 0.67
(0.58–0.75) and 0.67 (0.56–0.79) in the training cohort,
respectively (Figure 4I). Similar results were observed in the
validation cohorts, with the respective AUCs of 2-, 3-, and 5-year
OS as 0.62 (0.50–0.74), 0.62 (0.50–0.73) and 0.62 (0.51–0.73) in
the validation cohort-1 (Figure 4J), 0.60 (0.53–0.67), 0.61
(0.54–0.67) and 0.65 (0.59–0.72) in the validation cohort-2
(Figure 4K), and 0.67 (0.59–0.76), 0.67 (0.59–0.76) and 0.67
(0.58–0.77) in the validation cohort-3 (Figure 4L). Multivariable
Cox regression analysis further demonstrated that the pyroptosis
risk score served as an independent predictor of OS in the training
and validation cohorts, with HRs of 2.43 (1.74–3.40; p < 0.001),
1.83 (1.05–3.22; p = 0.034), 1.78 (1.16–3.72; p = 0.008) and 2.35

FIGURE 7 | Construction of merged risk score in the TCGA cohort. (A) A merged score was constructed by nomogram COX regression based on the pyroptosis
risk score, age and TNM stage in the TCGA cohort. (B)Calibration curve of the nomogram regarding the predicted and observed survival. (C)Comparison of the merged
score and other variables. (D) Kaplan-Meier curves of OS of high- and low-merged score. OS, overall survival.
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(1.54–3.60; p < 0.001), respectively (Table 1). Parallel results of
RFS were observed in the validation cohort-1 and 2
(Supplementary Figure S4).

To further investigate the prognostic value of pyroptosis risk score,
quantitative real-time RT-PCR from the real-world validation cohort
of Sun Yat-Sen University Cancer center (SYSUCC) were performed.
A total of 145 patients of SYSUCC were included. Survival analysis
showed that patients with high expression of APOC1 (HR, 2.45; p =
0.038) or PFN2 (HR, 1.97; p = 0.017) was associated with shorter OS,
and patients with high expression of BATF2 (HR, 0.59; p= 0.047) was

associated with prolonged OS (Figure 5A). The other five genes were
not associated with the survival (Figure 5B). Parallel results of DFS
were observed in the SYSUCC cohort (Figure 5C).Multivariable Cox
regression analysis further demonstrated that the pyroptosis risk
score served as an independent predictor of OS and DFS in the
SYSUCC cohort, with HRs of 2.67 (1.53–4.65; p < 0.001) and 1.72
(1.05–2.83; p = 0.033), respectively (Table 2).

The prognostic potentials of pyroptosis risk score in 33 cancer
types were further investigated in the Pan-Cancer TCGA cohort
(Figure 6A). Patients with high-pyroptosis risk score exhibited

FIGURE 8 | Construction of merged risk score in the SYSUCC cohort. (A) A merged score was constructed by nomogram COX regression based on the
pyroptosis risk score, tumor size, adjuvant chemotherapy and TNM stage in the SYSUCC cohort. (B) Calibration curve of the nomogram regarding the predicted and
observed survival. Comparison of the merged score and other variables in term of overall survival (C) and disease-free survival (D). Kaplan-Meier curves of overall survival
(E) and disease-free survival (F) of high- and low-merged score. SYSUCC, Sun Yat-Sen University Cancer center.
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shorter survival in rectum carcinoma (Figure 6B), adrenocortical
carcinoma, uterine carcinosarcoma, sarcoma, colon carcinoma
(Figure 6C), head and neck squamous cell carcinoma, and skin
cutaneous melanoma. However, prolonged survival was observed in
cervical squamous cell carcinoma and endocervical
adenocarcinoma, liver cancer, acute myeloid leukemia, brain
lower grade glioma, pancreatic cancer, kidney renal clear cell
carcinoma, and thyroid carcinoma.

Construction of Merged Score to Outstrip
the Prediction of TNM Stage
Based on the multivariable Cox regression analysis on the training
cohort, pyroptosis risk score, age, and TNM stage were used to
generate a merged score to better predict the probability of OS
through a nomogram model (Figure 7A). The calibration curve
indicated excellent goodness of fit between predicted and observed 2-,
3- and 5-year OS (Figure 7B). The merged score had significant
higher AUC [0.82 (0.70–0.97)] than TNM stage (p = 0.026;

Figure 7C), and demonstrated great prognostic performance (HR,
3.00; p < 0.001; Figure 7D).

The nomogram based on the tumor size, TNM stage, adjuvant
chemotherapy, and pyroptosis risk score in the SYSUCC cohort
was generated (Figures 8A,B). Similarly, the merged score also
had higher AUC of OS [0.77 (0.68–0.86)] and DFS [0.76
(0.53–0.74)] than TNM stage (p = 0.018, Figure 8C; p =
0.049, Figure 8D). The HRs of the merged score for OS and
DFS were 5.09 (2.96–8.74) (Figure 8E) and 3.62 (2.21–5.93)
(Figure 8F) in the SYSUCC cohort, respectively.

Regulation and Biological Phenotypes of
Pyroptosis Risk Score
To further interrogate its potential, the regulation and biological
phenotypes associated with pyroptosis risk score in TIME are
needed. First, the correlation between pyroptosis risk score and
mRNA expression of immunomodulators (IMs) was derived.
Figure 9A depicts a significant correlation between pyroptosis risk

FIGURE 9 | Gene regulation and biological phenotypes of the high- and low-pyroptosis risk score groups. (A) Correlation matrix heatmap of stimulatory and
inhibitory immune checkpoints. (B,C) Proportion of the 22 immune cell fractions and immune signatures between the high- and low-pyroptosis risk score groups.
(D) Bubble plot of top 10 enrichment GSEA pathways. ns: not significant; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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score and gene expression of IMs (all p< 0.05). Of note, pyroptosis risk
score reversely correlated with expression of PD-L1, LAG3, IDO1, and
other antigen presentation genes (all p< 0.05). In addition, significantly
higher proportions of activatedCD4memoryT cells, T follicular helper
cells and M1 macrophage, and lower proportions of M2 macrophage
were observed in the low-pyroptosis risk score group (Figure 9B).
Immune signature analysis also indicated that the low-pyroptosis risk
score group had higher scores of IFN-γ, MHC-I and wound healing,
but lower scores of TGF-β and angiogenesis (Figure 9C). GSEA
analysis revealed that the pathways significantly enriched in the
low-pyroptosis risk score group were mainly related to DNA
damage repair (DDR), such as base excision repair, DNA
replication, and P53 pathways (Figure 9D). Other enriched
pathways related to Nod-like receptors (NLRs), apoptosis, and cell
cycle were also observed, which further validated the relatively high
levels of pyroptosis in the low-pyroptosis risk score group.

Prediction of Response to Immunotherapy
by Pyroptosis Risk Score
The inflamed nature and enriched DDR pathways in the low-
pyroptosis risk score group implied the possibility of using
pyroptosis risk score as a predictor of response to ICB. In the ICB
cohort of metastatic GC (n = 45), responders exhibited a tendency of
having lower pyroptosis risk score (−0.135 ± 0.363 vs. 0.049 ± 0.422,
p = 0.190, power for test: 0.280; Figure 10A), compared with non-

responders. The objective response rate (ORR) of patients with low-
and high-pyroptosis risk score was 36.4% (8/22) versus 17.4% (4/23)
(p = 0.271, power for test: 0.170; Figure 10B). In addition, the
practicability of pyroptosis risk score was investigated in the context
of immunotherapy in the melanoma cohorts. Patients with high-
pyroptosis risk score exhibited significantly or marginally significantly
shorter OS in the Liu (HR, 2.70; p = 0.021; Figure 10C), PRJEB23709
(HR, 2.12; p=0.064;Figure 10D) andGSE100797 (HR, 3.52; p=0.035;
Figure 10E) cohorts, compared with those with low score. Analysis of
the entire cohort further demonstrated shorter OS (HR, 1.97; p< 0.001;
Figure 10F) and PFS (HR, 1.49; p = 0.017; Figure 10G) in high-
pyroptosis risk score group. The ORR of patients with low- and high-
pyroptosis risk score was 53.0% (53/100) versus 38.7% (46/119) (p =
0.047; Figure 10H). Collectively, these findings indicated that
pyroptosis risk score may serve as a predictor for ICB.

Potential Antitumor Drugs Screening Based
on Pyroptosis Risk Score
Given the limited options of antitumor drugs used in clinical practice
for GC, we conducted screening of potential antitumor drugs based
on pyroptosis risk score using the PRISM drug repurposing resource.
The potential sensitive drugs for GC cell lines are shown in
Figure 11A. Of note, PCI-24781 [histone deacetylase (HDAC)
inhibitor], LY364947 (TGF-β receptor inhibitor), bifemelane
(acetylcholine release enhancer), repsox (TGF-β receptor

FIGURE 10 | Prediction of immune response by pyroptosis risk score in ICB cohorts. (A) Dot plot of pyroptosis risk score for responder and non-responder to ICB
in the Kim cohort (gastric cancer); (B) Bar plot of pyroptosis risk score and response to ICB in the Kim cohort; Kaplan-Meier curves of OS of patients with high- or low-
pyroptosis risk score after ICB in the Liu (C), PRJEB23709 (D), GSE100797 (E) and entire (F)melanoma cohorts. (G) Kaplan-Meier curves of PFS of patients with low-
and high-pyroptosis risk score after ICB in the entire melanoma cohorts. (H) Bar plot of pyroptosis risk score and response to ICB in the entire melanoma cohort.
ICB, immune checkpoint blockade. OS, overall survival. PFS, progression-free survival.
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inhibitor), and RG108 (DNA methyltransferase inhibitor) are the
sensitive drugs for cell lines with a low-pyroptosis risk score, while
oxyquinoline (chelating agent), LCL-161 (XIAP inhibitor) and
artesunate (DNA synthesis inhibitor) are the sensitive drugs for
cell lines with high-pyroptosis risk score (Figure 11B).

DISCUSSION

This is the first study to comprehensively analyze the pyroptosis
pattern and its association with TIME features in GC. In the current
study, a pyroptosis risk scoring system was proposed to quantify the
risk for pyroptosis and to predict the survival of individuals and their
response to immunotherapy. In addition, pyroptosis risk score was
used to screen potential antitumor drugs for GC, which
demonstrated its potential in assisting oncologists with making
more efficient and personalized therapeutic decisions.

Pyroptosis is a GSDM-mediated inflammatory cell death activated
by invasive infection and danger signals (Zheng et al., 2021). Previous
studies showed that different GSDMs may play a reversing role in the
tumorigenesis of GC (Saeki et al., 2009; Komiyama et al., 2010; Qiu
et al., 2017;Wang et al., 2018). AlthoughGSDMBwas overexpressed in
GC and might act as an oncogene (Saeki et al., 2009), GSDMD was
found to be downregulated in GC and could protect against the
proliferation of GC through inhibiting S/G2 transition and the
STAT3/PI3K/PK8 pathways (Wang et al., 2018). These findings
suggest that the role and pattern of pyroptosis in GC deserve

further exploration. Based on the expression profiles of pyroptosis
genes, three distinct molecular clusters were identified for GC. Among
these, Cluster 3 was positively correlated with the expression ofCASP1,
CASP4, CASP5, GSDMD, IL1B and IL18, indicating that Cluster 3, to
some extent, represented the high levels of pyroptosis in the canonical
or non-canonical pathway. Exploration of immunogenetic
characteristics, genomic features, and prognosis among the
pyroptosis clusters further suggested that Cluster 3 were inflamed
tumors, therefore, showing the most promising prognosis.

Given the subpar prognostic performance of the TNM staging
system, pyroptosis risk scoring system was constructed to predict the
risk of pyroptosis and the survival of GC patients. The robustness and
reproducibility of pyroptosis risk scoring system in the TCGA and
three validation cohorts suggest that pyroptosis risk score is a
powerful tool for predicting the clinical outcomes of patients with
GC. To validate these analyses by in silico algorithm, quantitative
real-time RT-PCR from the real-world validation cohort from
SYSUCC cohort were performed. The prognostic value of
pyroptosis risk scoring system were validated in the SYSUCC
cohort. Previous studies reported that tumor-associated M2
macrophages could promote the metastasis of GC via the
secretion of growth factors (Chen et al., 2017), which could be
used to predict GC survival and chemotherapy benefit (Jiang
et al., 2018). In our study, dominant M1 macrophages and a
decrease in M2 macrophages were observed in the low-pyroptosis
risk score group. Likewise, higher fractions of activated CD4memory
T cells and T follicular helper cells were noted in the same group.

FIGURE 11 | Potential antitumor drug screening based on pyroptosis risk score. (A) Volcano plot depicting the sensitive drugs for gastric cancer cell lines with high-
(red) and low- (green) pyroptosis risk score. (B) Dot plot showing the fold change of viability values treated with potential targeted drugs compared with DMSO as
transformed by log2.
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Therefore, an activated immune environment in subjects with low-
pyroptosis risk score may help explain their better prognosis.
Consistent with previous studies, we found that pyroptosis risk
score could serve as either a favorable or harmful factor in
different cancer types, indicating that pyroptosis could act as a
double-edged sword in malignant tumor (Yu et al., 2021).

Despite the clinical benefit of anti-PD-1 therapy across a wide
range of malignancies (Ribas andWolchok, 2018), only a small subset
of GC patients exhibited durable response (Boku et al., 2021; Janjigian
et al., 2021). Therefore, a reliable predictor that can forecast patients’
response to ICB is urgently needed. Since the reinvigoration of
pyroptosis can lead to the release of inflammatory cytokines, such
as IL-1β and IL-18, pyroptosis can theoretically perform crosstalk with
antitumor immunity (Ren et al., 2020), andmay even predict response
to ICB. However, very little is known about the crosstalk between
pyroptosis and antitumor immunity in GC. It is recognized that
patients with EBV positivity derive greater clinical benefit from ICB in
the context of GC (Kim et al., 2018), so are those withMSI-high status
(Le et al., 2015; Fuchs et al., 2018; Kim et al., 2018) and high TMB
(Yang et al., 2020). In our study, we found that a lower pyroptosis risk
score was detected in the MSI-high subtype. Moreover, higher TMB,
PD-L1 expression, antigen presentation, IFN-γ signature and enriched
DDR pathways were also found in patients with low-pyroptosis risk
score, which suggested the potential predictive value of pyroptosis risk
scoring system with regard to response to ICB. Consistently, low-
pyroptosis risk score was also found to be associated with improved
response and survival in subjects with GC (did not reach statistic
difference because of small sample size) and melanoma. Therefore,
pyroptosis risk scoring system may be helpful in the selection of GC
patients who may clinically benefit from ICB.

GC is only sensitive to a limited amount of cytotoxic agents and
HER2 antibody (HER2-positive) (Bang et al., 2010; Shitara et al.,
2020b), and more novel and effective antitumor drugs should be
explored. Using the PRISM drug repurposing resource (Corsello et al.,
2020), we evaluated over 4000 drugs for GC. Specifically, we identified
that cell lines with low-pyroptosis risk score were more sensitive to the
inhibitors of HDAC and TGF-β receptor. It has been reported that
HDAC inhibitors can alter the subgroup of CD4 and CD8 tumor-
infiltrating T cells in colorectal cancer (Blaszczak et al., 2021) and
enhance the effectiveness of immunotherapy in multiple myeloma
(Hirano et al., 2021). Compared with PD-1 monotherapy, selective
blocking of PD-1 and TGF-β pathways can enhance antitumor activity
(Lan et al., 2018; de Streel et al., 2020). Therefore, the antitumor activity
of HDAC or TGF-β inhibitors, combining with PD-1 antibody, in GC
may warrant further investigation in vitro and in vivo.

Despite providing a more comprehensive prospective on
pyroptosis in GC, our study has several limitations. Currently, the
cornerstone drugs for GC are cytotoxic. However, the predictive
ability of pyroptosis risk scoring system in chemotherapy benefit
could not be assessed as the eligible cohort (GSE26901) that includes
adjuvant chemotherapy data did not show chemotherapy benefit
(HR, 1.51; p = 0.100) for GC. The real-world validation of SYSUCC
cohort validate the survival benefit of adjuvant chemotherapy.
However, the pyroptosis risk scoring system could not predict the
chemotherapy benefit in the real-world validation cohort
(Supplementary Figure S5). In addition, distinct pyroptosis and
TIME features in different tumor regions, such as intratumoral and

peritumoral regions, could not be evaluated from bulk tissue RNA
profiles. Lastly, this study is naturally retrospective, and confirmation
of our results in a prospective clinical trial is needed.

In conclusion, our study provides crucial clues for the crosstalk
between pyroptosis and TIME features in GC. The pyroptosis-based
risk score can serve as an independent predictor for individual
survival and response to immunotherapy. This score may also assist
in the screening of potential antitumor drugs for GC.
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