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Since the discovery of cells by Robert Hooke and Antoni van Leeuwenhoek in

the 17th century, thousands of different cell types have been identified, most

recently by sequencing-based single-cell profiling techniques. Yet, for many

organisms we still do not know, howmany different cell types they are precisely

composed of. A recent survey of experimental data, using mostly morphology

as a proxy for cell type, revealed allometric scaling of cell type diversity with

organism size. Here, I argue from an evolutionary fitness perspective and

suggest that three simple assumptions can explain the observed scaling:

Evolving a new cell type has, 1. a fitness cost that increases with organism

size, 2. a fitness benefit that also increases with organism size but 3. diminishes

exponentially with the number of existing cell types. I will show that these

assumptions result in a quantitative model that fits the observed cell type

numbers across organisms of all size and explains why we should not

expect isometric scaling.
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Introduction

Since the advent of high throughput single-cell profiling techniques, a large

number of cell types has been catalogued across many different tissues. For example,

the Tabula Sapiens consortium recently identified over 400 cell types across

24 different human tissues (Tabula Sapiens Consortium et al., 2022). Whether

each cluster of transcriptomes or other molecular profiles should be considered a

separate cell type is still under debate (Clevers, 2017; Mircea and Semrau, 2021) and

we certainly need improved methods to discriminate biologically meaningful

variability from random noise (Mircea et al., 2022). Nevertheless, single-cell

profiling has revealed a high diversity of cell states and one might be forgiven to

wonder: Could each cell be its own, highly specialized cell type? Here, I will argue,

from an evolutionary fitness perspective, that we should expect much fewer cell types

than cells in an organism. Whole-organism single-cell transcriptomics data sets are

currently still rare (Lähnemann et al., 2020) and, as mentioned above, uncertainties in

the interpretation of these data sets remain. To circumvent these problems, I base my
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arguments on recent studies by Fisher et al. (Fisher et al., 2013;

Fisher et al., 2020), who collected published cell type numbers,

mostly derived from morphological characteristics. These

studies found that the number of cell types scales

allometrically with the total number of cells in the

organism (Figure 1). Intriguingly, the data could not be fit

by a single power law, in contrast to many other allometric

relationships (West and Brown, 2005). As shown in seminal

work by Geoffrey West and co-workers, power law scaling can

arise from the optimization of metabolic rate subject to

geometric constraints of relevant tissues, such as the

vasculature (West et al., 1997; Enquist et al., 1999; West

et al., 1999; West et al., 2002). Fisher et al. therefore fit two

separate power laws, for small and large organisms,

respectively, suggesting that larger organisms face

additional constraints. In contrast to the allometric scaling

of metabolic rate, it is not immediately obvious that geometric

or physiological constraints should be the only relevant

factors for cell type allometry. One might therefore not

expect a priori to find power law scaling.

FIGURE 1
A simple model assuming diminishing fitness benefits of additional cell types performs as well as a double power law in explaining cell type
allometry. Fisher et al. (2013, 2020)) collected cell type information for a range of different organisms (open circles). They modeled the observed
allometric relationship with separate power laws for small and large organisms (top row). My model explains the observed allometry by a fitness
benefit that diminishes with increasing cell type number (bottom row). I used a Bayesian hierarchical modeling approach to compare the two
models. The data was assumed to be normally distributed with a standard deviation (sd) that was either constant (left column) or allowed to increase
linearly with log10(Number of cells) (right column). The regression curves, shown as solid lines, are posterior means of the models, with the 95%
highest density interval (HDI) indicated by a blue band. The orange band indicates the HDI of the posterior predictive distribution (ppd). For each
model, the expected log predictive density (elpd) is reported together with its standard error. Judging by the elpd, the ‘diminishing returns’ model
performs about as well as the double power law and the models with variable sd perform slightly better than the models with constant sd. Point
estimates and HDIs of all parameters can be found in Table 1.
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Diminishing returns model

Here, I develop an alternative model that can explain the

observed scaling across organisms of all sizes. This model

considers the effect of a new cell type on an organism’s fitness.

I adopt a notion of fitness described by Wagner as “a measure

predicting the competitive ability of a genotype compared to

another” (Wagner, 2010), which can in principle be determined

by pairwise competition experiments. I reason that mutations

giving rise to a new cell type can only be fixed in a population, if

they lead to an increase in fitness. I thereforemodel the appearance

of new cell types during evolution as discrete events that have an

associated fitness cost Δfcost and benefit Δfbenefit, which must

result in a net-positive fitness change Δf � Δfbenefit − Δfcost. A

common mechanism for the evolution of new cell types is the

functional segregation of a multifunctional ancestor cell type into

multiple sister cell types (Arendt, 2008). Such an event likely

inflicts a, possibly small, fitness cost Δfcost. For example, if the

number of cells remains constant, fewer cells will carry out each

function of the multifunctional ancestor, which means that these

functions might be impaired at the organismal level. Conversely, if

the number of cells increases (to keep multiple functions at their

original level), additional energy is needed. There might also be a

small “overhead” related to the creation and organization of

additional cell types during embryonic development as well as

their ongoing regulation during an organism’s adult life. In these

scenarios, a new cell type likelymodulates an organism’s metabolic

rate, which is known to obey power law scaling with cell number

(West et al., 1997; Enquist et al., 1999; West et al., 1999; West et al.,

2002). More generally, any fitness cost that is related to

(bio)physical constraints likely scales in a similar way (Kempes

et al., 2019). Hence, we model the fitness cost to scale like a power

law with cell numberN: Δfcost ∝Nδ . For the same reasons, the

fitness benefit Δfbenefit provided by a functional segregation

event is expected to obey a power law: Δfbenefit ∝Nγ. Now, I

posit that the fitness benefit should also depend on the number

of already existing cell types. Given that more specialized cell

types appear later in evolution and tend to provide functions

that are refinements or variations of existing functions (Arendt,

2008), they likely confer a reduced fitness benefit compared to

their predecessors. Δfbenefit should therefore decline with the

number of cell types K. If the fitness benefit declined as a power

law (K−α, α > 0), a single power law for K with respect to N

would result. The fitness benefit must hence decline more

quickly, i.e., exponentially. If the fitness benefit is reduced by

a factor b > 1 at each segregation event, Δfbenefit ∝Nγb−K.
Taken together,

Δf � Δfbenefit − Δfcost � aNγb−K − cNδ

Requiring Δfa0 for a new cell type to appear leads to

bK � a

c
Nγ−δ0K � log10(a/c)

log10 b
+ γ − δ

log10 b
log10 N

0K � A + B · log10 N
withA � log10(a/c)

log10 b
, B � γ − δ

log10 b

0log10 K � log10 (A + B · log10 N)
0k � log10(A + B · n)

with k � log10 K , n � log10 N

To rigorously compare this ‘diminishing returns’ model

with the double power law, I used a Bayesian hierarchical

approach (see Materials and Methods for the model

definitions and priors). I assumed that the cell type

numbers are normally distributed in log-space with a mean

given by the double power law (i.e., a piecewise linear

relationship in log-space) or the relationship derived above.

Initially, I assumed the standard deviation to be constant

(Figure 1, left column). Posterior distributions of the

parameters were obtained by Markov Chain Monte Carlo

sampling. Estimates of the slopes and breakpoint in the

double power law were very similar to those obtained by

Fisher et al. (Fisher et al., 2020) with ordinary least squares

fitting (see Table 1, first two columns). To compare the models

quantitatively I estimated the expected log posterior density

(elpd) using leave-one-out cross-validation. The elpd was

slightly larger for the double power law model but the

difference was well within the standard error of the elpd

(see Figure 1 and Table 1). The ‘diminishing returns’ model

hence fits the data as well as the double power law. As the

spread of the cell type numbers around the regression curves

seems to increase with cell number, I next tested models in

which the standard deviation was allowed to increase linearly

with log-cell number (Figure 1, right column). Judging by the

elpd, allowing the standard deviation to vary improved model

performance for both the double power law and the

‘diminishing returns’ model (Table 1). Again, the difference

in elpd between the double power law and the ‘diminishing

returns’ model was within the standard error. The increased

spread for larger organisms is possibly related to differences

between multicellular lineages and the environments in which

they evolved, as pointed out in Fisher et al (2020).

Discussion

In the derivation presented here, I made several assumptions

that require critical assessment. First, I implied that cell types are

discrete and stable entities, while others put forward the notion of

dynamic cell states that lie on a continuum (Clevers, 2017). I

further assumed that cell types are functionally different, by some

measure, and able to confer a fitness advantage when they appear.

I treated cell morphology as a reasonable proxy for cell type,

which might lead to an underestimation of the number of cell

types. Likely, the number of observed morphologies is some
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fraction of the true number of cell types, such that the true scaling

behavior is still qualitatively the same as observed by Fisher et al.

In my model, the appearance of a new cell type is a discrete event,

which is certainly a strong simplification of the actual processes

by which new cell types arise (Arendt, 2008). Finally, I modeled

the diminishing benefits provided by additional cell types with an

exponential decay. While it is reassuring that the resulting model

fits the data set considered here, direct fitness measurements will

be necessary to confirm this assumption.

In summary, I developed a phenomenological model of

cell type allometry using a minimal number of assumptions.

The model is therefore agnostic of evolutionary lineages and

related systematic differences. Nevertheless, I showed that

diminishing fitness benefits can explain the observed cell

type allometry. I hope that this manuscript will stimulate

experiments and the development of more sophisticated

models.

Materials and methods

The experimental data shown in Figure 1 was published

previously (Fisher et al., 2013) and made publicly available on

Dryad (https://datadryad.org/stash/dataset/doi:10.5061/dryad.

27q59). All models were fit in double log-space. Consequently,

log-transformed cell numbers N and cell type numbers K are

used in the model definitions:

n � log10N
k � log10K

To compare the double power law model with the

‘diminishing returns’ model, a Bayesian hierarchical approach

was used. The log-cell type number kwas assumed to be normally

distributed. For the double power law, the mean of the normal

distribution is given by a piecewise linear relationship between n

and k. In the case of constant standard deviation (i.e., the spread

of k does not depend on the log-cell number n), the double power

law model is thus defined by

k ~ NORMAL(μ � f(n), σ � Σ)
f(n) � k0 + { ssmall · n

ssmall · nbp + slarge · (n − nbp)
for n< nbp
for n≥ nbp

k0 ~ UNIFORM(a � −0.5, b � 0.5)
ssmall ~ NORMAL(μ � 0, σ � 20)
nbp ~ NORMAL(μ � 5, σ � 2)
slarge ~ NORMAL(μ � 0, σ � 20)
Σ ~ HALFCAUCHY(γ � 10)

where k0 is the intercept of log-cell type numbers k, and ssmall and

slarge are the slopes below and above the breakpoint nbp,

respectively. Normal indicates a normal distribution with

mean μ and standard deviation σ, Uniform is a uniform

distribution between a and b, and HalfCauchy is a Cauchy

distribution at location 0 with half-width half-maximum γ

TABLE 1 Estimates of model parameters and model comparison. The power law parameters reported by Fisher et al, (2013); Fisher et al., 2020) (first
column) are ordinary least-squares estimates and the intervals are confidence intervals (CIs). For the Bayesianmodels described in this paper (last
4 columns) parameters are given as the mean of the posterior together with the 95% highest density interval (HDI). The Bayesian models assume a
normal distribution of the data in log space with the regression curve as the mean. Intercept, slope (small N), breakpoint and slope (large N)
parameterize the regression curve of the double power law, whereas A and B parameterize the regression curve of the ‘diminishing returns’
model, sd is the standard deviation of the normal distribution in the models that keep the standard deviation constant. Sd intercept and sd slope
parametrize a linear increase of the standard deviationwith log-cell number in themodels that allow the standard deviation to vary. The expected
log predictive density (elpd) and its standard error (se) was calculated for the Bayesian models using leave-one-out cross-validation.

Fisher
et al.

Double power law,
constant sd

Diminishing returns,
constant sd

Double power law,
variable sd

Diminishing returns,
variable sd

intercept k0 [HDI] −0.20 [−0.41,−0.01] −0.19 [−0.30,−0.08]

slope (small N) ssmall

[CI or HDI]
0.21
[0.16,0.26]

0.21 [0.14,0.29] 0.20 [0.16,0.25]

breakpoint nbp
[CI or HDI]

4.80
[3.90 5.70]

4.82 [2.81,6.64] 5.18 [3.52,6.84]

slope (large N) slarge
[CI or HDI]

0.07
[0.03 0.11]

0.07 [0.03,0.10] 0.06 [0.01,0.10]

A [HDI] −0.29 [−0.64,0.08] −0.13 [−0.42,0.16]

B [HDI] 1.29 [1.09,1.49] 1.13 [0.94,1.33]

sd Σ [HDI] 0.32 [0.29 0.36] 0.33 [0.29,0.37]

sd intercept Σ0 [HDI] 0.12 [0.06,0.19] 0.17 [0.10,0.24]

sd slope sΣ [HDI] 0.03 [0.02,0.04] 0.02 [0.01,0.04]

elpd [se] −39.96 [7.74] −43.22 [8.08] −28.25 [8.97] −35.52 [7.82]
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that was truncated below 0 so that only positive values have non-

zero probability.

For variable standard deviation (i.e., the spread of the log-cell

type number k increases linearly with log-cell number n) the

model is defined by

k ~ NORMAL(μ � f(n), σ � g(n))
f(n) � k0 + { ssmall · n for n< nbp

ssmall · nbp + slarge · (n − nbp) for n≥ nbp

k0 ~ UNIFORM(a � 0.5, b � 0.5)
ssmall ~ NORMAL(μ � 0, σ � 20)
nbp ~ NORMAL(μ � 5, σ � 2)
slarge ~ NORMAL(μ � 0, σ � 20)

g(n) � Σ0 + sΣ · n
Σ0 ~ HALFNORMAL(σ � 1)
sΣ ~ HALFNORMAL(σ � 1)

where Σ0 and sΣ are the intercept and slope, respectively, of the

linear model for the standard deviation. HalfNormal is a Normal

distribution with mean μ = 0 and standard-deviation σ truncated
below 0 such that only positive values have non-zero

probabilities.

The ‘diminishing returns’ model, which assumes the fitness

benefit to decrease with cell type number, is correspondingly

defined by

k ~ NORMAL(μ � f(n), σ � Σ)
f(n) � log10(A + B · n)

A ~ NORMAL(μ � 0, σ � 20)
B ~ NORMAL(μ � 0, σ � 20)
Σ ~ HALFCAUCHY(γ � 10)

in the case of constant standard deviation and by

k ~ NORMAL(μ � f(n), σ � g(n))
f(n) � log10(A + B · n)

A ~ NORMAL(μ � 0, σ � 20)
B ~ NORMAL(μ � 0, σ � 20)

g(n) � Σ0 + sΣ · n
Σ0 ~ HALFNORMAL(σ � 1)
sΣ ~ HALFNORMAL(σ � 1)

when the standard deviation is allowed to increase linearly with

log-cell number n.

The posterior distributions of all parameters were obtained

by Markov Chain Monte Carlo sampling using the python

package pymc (version 4.1.2) with 2 chains, 2000 tuning steps

and 10,000 samples. The “target_accept” parameter was kept at

the default value of 0.8 except for the ‘diminishing returns’model

with constant standard deviation. That model required a

“target_accept” of 0.99 to avoid divergences. For model

comparison, the arviz python package (version 0.12.1) was

used to estimate the expected log posterior density (elpd) by

leave-one-out cross-validation. The regression curves shown as

solid lines in Figure 1 are posterior means of f(n): For each n, the

average of f(n) over the posterior distribution of the parameters

was calculated. The 95% highest density intervals (HDIs) shown

as blue bands in Figure 1 correspond to the smallest intervals that

contain 95% of the posterior distribution of f(n) for a specific n.

The 95% HDIs of the posterior predictive distribution (ppd)

correspond to the smallest intervals containing 95% of the

posterior distribution of the log-cell type number k for a given n.

The jupyter notebook used to produce all presented results

from the raw data can be obtained from github (https://github.

com/semraulab/allometry).
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