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Components of the bone marrow microenvironment (BMM) have been shown to
mediate the way in which leukemia develops, progresses and responds to treatment.
Increasing evidence shows that leukemic cells hijack the BMM, altering its
functioning and establishing leukemia-supportive interactions with stromal and
immune cells. While previous work has highlighted functional defects in the
mesenchymal stem cell (MSC) population from the BMM of acute leukemias,
thorough characterization and molecular profiling of MSCs in pre-B cell acute
lymphoblastic leukemia (B-ALL), the most common cancer in children, has not
been conducted. Here, we investigated the cellular and transcriptome profiles of
MSCs isolated from the BMM of an immunocompetent BCR-ABL1+ model of B-ALL.
Leukemia-associated MSCs exhibited reduced self-renewal capacity in vitro and
significant changes in numerous molecular signatures, including upregulation of
inflammatory signaling pathways. Additionally, we found downregulation of genes
involved in extracellular matrix organization and osteoblastogenesis in leukemia-
associated MSCs. This study provides cellular and molecular insights into the role of
MSCs during B-ALL progression.
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1 Introduction

Precursor-B cell acute lymphoblastic leukemia (B-ALL) is the most common cancer in
children. While an improved understanding of the pathophysiology of this disease has led to
increasingly effective and optimized treatment strategies, certain high-risk B-ALL subtypes
remain difficult to cure (Inaba and Mullighan, 2020). Relapsed or refractory disease, as well as
the presence of high-risk genetic mutations in blast cells, such as the BCR-ABL1 translocation or
KMT2A-rearangements, are risk factors for poor outcomes (Inaba and Mullighan, 2020). As a
result, extensive pre-clinical research is urgently required to identify new treatment strategies.

Hematopoiesis, the process through which lymphoid and myeloid blood cells are formed, is
intimately regulated by stromal and immune cell populations that reside within the bone
marrow (BM). These cellular constituents, along with blood vessels and extracellular matrix
(ECM) proteins, form the bone marrowmicroenvironment (BMM). The spatial organization of
cells and vasculature in this region create distinct ‘niches’ that carry out different roles during
hematopoiesis (Pinho and Frenette, 2019). The importance of these BM niches in regulating not
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only healthy hematopoiesis, but also hematological malignancies, has
been extensively reviewed (Mendez-Ferrer et al., 2020; Hughes et al.,
2022). Leukemic cells can exploit and remodel the BMM to favor
leukemia growth, survival and treatment resistance via various
mechanisms (Mendez-Ferrer et al., 2020; Dander et al., 2021;
Hughes et al., 2022). Thus, an in-depth understanding of the
interactions between leukemic cells and the BMM may uncover
novel therapeutic targets for treatment.

An essential component of the BMM is the mesenchymal stem cell
(MSC). MSCs can give rise to stromal cells including adipocytes,
osteoblasts and chondrocytes, and provide regulatory cues for
hematopoiesis via adhesion molecules and soluble factors (Wei and
Frenette, 2018; Kandarakov et al., 2022). However, numerous
alterations have been described in mesenchymal stem/stromal cells
following leukemic disease in the BM. In myeloid malignancies, MSCs
have been found to exhibit molecular and cellular level alterations that
establish a microenvironment favoring leukemogenesis at the expense
of healthy hematopoiesis (Geyh et al., 2016; Battula et al., 2017; von der
Heide et al., 2017; Baryawno et al., 2019; Borella et al., 2021; Zhang
et al., 2021). Additionally, MSCs have been shown to establish a
chemoprotective sanctuary for acute myeloid leukemia (AML) cells,
providing metabolic and antioxidant support (Forte et al., 2020).
Similarly, in the T-cell ALL (T-ALL) BMM, MSCs exhibit impaired
differentiation potential, increased cellular senescence and reduced
hematopoietic progenitor supportive function (Lim et al., 2016).

While less is known about the BMM of B-ALL, studies have shown
that MSCs promote engraftment, survival and chemoresistance of B-ALL
cells (Iwamoto et al., 2007; Nwabo Kamdje et al., 2011; Frolova et al., 2012;
Jacamo et al., 2014; Hu et al., 2015; Mallampati et al., 2015; Polak et al.,
2015; Burt et al., 2019; Portale et al., 2019; Yu et al., 2019; Ruiz-Aparicio
et al., 2020; Tarighat et al., 2021). Furthermore, B-ALL cells are capable of
disrupting the proliferation, differentiation, protein expression, signaling
pathway activation and hematopoietic-supporting capabilities of MSCs
(Conforti et al., 2013; Jacamo et al., 2014; van den Berk et al., 2014; Vicente
Lopez et al., 2014; Polak et al., 2015; Balandran et al., 2016; de Rooij et al.,
2017; Vernot et al., 2017;Ma et al., 2019; Portale et al., 2019; Yu et al., 2019;
Verma et al., 2020; Vanegas et al., 2021). Although, these studies provide a
clear indication thatMSCs are important components of the B-ALLBMM,
the molecular-level alterations in B-ALL-associated MSCs have not been
comprehensively assessed. Furthermore, little is known about the role of
MSCs in the BMM of the high-risk BCR-ABL1+ B-ALL subtype.

Previous characterization of B-ALL-associated MSCs has largely
relied on in vitro co-culture assays or in vivo experiments using
immunocompromised, patient-derived xenograft mouse models of
B-ALL. Here, we used our previously characterized immune
competent, syngeneic mouse model of BCR-ABL1+ B-ALL to
further explore the cellular and molecular alterations of BM MSC
populations (Cheung et al., 2018; Anderson et al., 2020).

2 Methods

2.1 Murine model of BCR-ABL1+ B-ALL

Female C57BL/6J mice aged between 7 to 9 weeks were
intravenously injected with 1000 B-ALL cells (PER-M60 cells)
carrying MSCV-BCR-ABL1-IRES-mCherry retrovirus via tail
vein (Cheung et al., 2018). Non-leukemic mice injected with

200 μl of plain phosphate-buffered saline (PBS) were used as
controls. Mice were euthanized at onset of disease symptoms.
For euthanasia, mice were first anesthetized by isoflurane
inhalation (3%), followed by cervical dislocation. BM disease
burden in mice ranged between 40%–80% leukemic blasts,
assessed by the percentage of mCherry+ cells by flow cytometry.
All experiments were approved by the Animal Ethics Committee,
Telethon Kids Institute (AEC#311 and #330).

2.2 Isolation and staining of primary MSCs
from long bones

Primary MSCs were isolated from the long bones of control or
B-ALL mice according to a previously published protocol with
modifications (Houlihan et al., 2012). Following mice euthanasia,
tibias and femurs were excised, and BM was flushed out of the
medullary cavity and discarded. The long bones were cut into small
fragments with scissors, washed thrice with PBS, and incubated with
1.5 mg/ml Collagenase Type 4 (Worthington Biochemical Corp.) and
0.1 mg/ml DNase I (Sigma-Aldrich) in PBS supplemented with 10%
fetal calf serum (FCS) at 37°C for 60 min under agitation. Bone digests
were filtered through sterile 100 μm cell strainers, and bone fragments
were crushed gently using a mortar and pestle in PBS with 5% FCS to
detach MSCs. Cells were washed from bone fragments with PBS,
strained, and pooled into the bone digests. This was repeated 6 times
to maximize the cell yield. Cells were pelleted and treated with Red
Blood Cell Lysis Buffer (BD Biosciences), followed by washing and
resuspension in 5% FCS/PBS. Cell suspensions were either stained with
appropriate antibodies for flow cytometry analysis or fluorescence-
activated cell sorting (FACS), or first cultured in vitro to increase the
number of cells.

For staining of MSCs, cells were first stained with BD Horizon
Fixable Viability Stain 700 to exclude non-viable cells, followed by
CD45-PerCP-Cy5.5 and Ter119-PerCP-Cy5.5 to exclude
hematopoietic cells and CD31-FITC to exclude endothelial cells.
PαS MSCs were identified using Sca-1-BV510 and PDGFRα-APC
(Morikawa et al., 2009). The gating strategy is shown in
Supplementary Figure S1A. All antibodies other than PDGFRα-
APC (eBioscience) were purchased from BD Biosciences. Flow
cytometry was performed using a BD Fortessa and FACS was
performed using a BD FACSAria. Flow cytometry data was
analyzed using FlowJo V10.5.3 software (BD Biosciences).

2.3 Culture of primary MSCs

For culture and maintenance of primary MSCs, cells derived from
murine long bones were incubated at 37°C and 5% CO2 (unless stated
otherwise) for 7–10 days in MesenCult media (Stem Cell
Technologies) supplemented with 100 Units/ml penicillin, 100 μg/
ml streptomycin (Thermo Fisher Scientific), 1% L-glutamine and 0.1%
MesenPure (Stem Cell Technologies). Media change was performed
every 2–3 days. Upon reaching confluence, cells were detached
enzymatically using TrypLE Express Enzyme (Thermo Fisher
Scientific), pelleted, stained and isolated by FACS for use in
functional assays. Only freshly isolated primary MSCs, or primary
MSCs at passage 1 (P1) were used for functional assays.
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2.4 Colony-forming unit-fibroblast (CFU-F)
assay

Freshly isolated MSCs were seeded at a density of 800 cells per well
in a 6-well plate and cultured for 14 days in alpha-MEM medium
supplemented with 10% FCS, 100 Units/ml penicillin, 100 μg/ml
streptomycin, 1% L-glutamine, 55 μM 2-mercaptoethanol, 1% non-
essential amino acid mix and 1% 100 mM sodium pyruvate solution
(MP Biomedicals). After 14 days, media was removed, and cells were
processed and stained with Giemsa (Sigma-Aldrich) as previously
described (Lim et al., 2016). A colony was defined as 50 or more cells.
The number of colonies were counted in each well using an Olympus
IX71 microscope.

2.5 Bromodeoxyuridine (BrdU) proliferation
assay

The in vivo proliferation rate of MSCs was assessed by a BrdU
incorporation assay. BrdU was given to control and B-ALL mice on
day 3 post B-ALL cell injection according to a previously published
protocol (Zhou et al., 2014). Mice were sacrificed 18 days post
leukemia cell injection. MSCs were stained for surface markers,
followed by staining of BrdU using the FITC-BrdU kit (BD
Biosciences) according to manufacturer’s instructions. Samples
were analyzed by flow cytometry. The gating strategy is shown in
Supplementary Figure S1B. Differentiation assay methodology can be
found in the Supplementary Material.

2.6 MSC and B-ALL cell co-culture

To detect B-ALL cells by bioluminescence, we transduced the
PER-M60 B-ALL cell line with a firefly luciferase reporter construct
(MSCV-ires-pacLUC2) and purified luciferase-expressing PER-M60
cells by puromycin selection (Endersby et al., 2018). MSCs were seeded
at 15000 cells per well into a 96-well plate in alpha-MEM media and
allowed to adhere overnight. The following day, 3000 luciferase-
expressing B-ALL cells were seeded in co-culture with MSCs.
Following co-culture for 3 days, D-luciferin (PerkinElmer) was
added to each well at a final concentration of 150 μg/ml and
luciferase bioluminescent signal in each well was measured on a
CLARIOstar plate reader (BMG Labtech). Leukemic cell numbers
from each well were calculated from a bioluminescence standard curve
and analyzed accordingly.

2.7 MSC and LSK cell co-culture

MSCs were seeded into a 96-well plate at 17500 cells per well in
alpha-MEM medium and allowed to adhere overnight. Lineage−, Sca-
1+, c-Kit+ (LSK) hematopoietic progenitor cells were sorted the
following day. To isolate LSK cells, five 8-week-old, healthy mice
were sacrificed and femurs, tibias, ilia and humeri were excised. BM
was flushed out of the medullary cavity with 2% FCS/PBS. BM cells
were pelleted and treated with Red Blood Cell Lysis Buffer. Cells were
washed with 2% FCS/PBS, followed by enrichment of hematopoietic
progenitor cells using the EasySep Mouse Hematopoietic Progenitor
Isolation Kit (Stem Cell Technologies) according to manufacturer’s

instructions. Cells were then counted using a hemocytometer. Dead
cells were excluded using BD Horizon Fixable Viability Stain 700 and
cells were stained with CD117-PerCP-Cy5.5, Streptavidin-APC-Cy7
(for removal of any remaining cells bound by the biotinylated antibody
cocktail) and Sca-1-PE-Cy7. LSK cells were isolated by FACS. The
gating strategy is shown in Supplementary Figure S1C. All antibodies
were purchased from BD Biosciences.

LSK cells were seeded in wells with MSCs at 9000/well in alpha-
MEM medium. After a 3 days co-culture, suspension cells were
removed from the wells. Adherent cells were detached
enzymatically using TrypLE Express Enzyme and pooled with
suspension cells. Cells were pelleted and stained with CD45-FITC.
CD45+ hematopoietic cells were enumerated and isolated by FACS.
The multilineage potential of these hematopoietic cells was then
assessed using a colony-forming assay. Briefly, 5000 CD45+ cells
were seeded in 35 mm dishes in complete MethoCult medium
(M3434, Stem Cell Technologies). After 7 days, the number of
colony-forming unit-granulocyte, erythroid, macrophage,
megakaryocyte (CFU-GEMM), colony-forming unit-granulocyte,
macrophage (CFU-GM), colony-forming unit-macrophage (CFU-
M), colony-forming unit-granulocyte (CFU-G), colony-forming
unit-megakaryocyte (CFU-Mk) and burst-forming unit-erythroid
(BFU-E) were counted using an Olympus IX71 microscope.
Colonies were identified and analyzed according to manufacturer’s
instructions.

2.8 RNA sequencing of MSCs

MSCs were extracted and isolated from the long bones of control
or leukemia mice (pooled from 4 to 7 mice per sample) via FACS as
described above, yielding between 12000 to 60000 MSCs per sample.
Two biological replicates were collected for both control and
leukemia-associated MSCs (L-MSCs). Following sorting, total RNA
from MSCs was extracted using the RNeasy Micro Kit (Qiagen).
Samples were then sent to BGI, Hong Kong for sequencing. RNA
concentration, quality and integrity were assessed using an Agilent
2100 BioAnalyzer to ensure a RNA integrity number of 6.5 or above.
RNA amplification was performed using the SMART-Seq v4 Ultra
Low Input RNA Kit (Takara Bio). Quality control of amplification
products was conducted prior to tagmentation-based library
construction. Circularization and library quality control was
performed prior to 100 bp paired-end RNA sequencing using the
BGISEQ-500 platform. Sequencing data is available via the Gene
Expression Omnibus (GEO) database under the accession number
GSE208719.

Data processing and analysis was performed by BGI, Hong
Kong. Quality control and filtering of data was conducted to remove
reads containing the adaptor, unknown base N content greater than
5% and low-quality reads using SOAPnuke software (v1.5.2, BGI)
(Chen et al., 2018). Clean reads ranged between 57 and 74M per
sample. Clean reads were aligned to the reference genome and genes
(Mus_musculus, NCBI, version: GCF_000001635.26_GRCm38.
p6) using HISAT2 (v2.0.4) and Bowtie2 (v2.2.5) respectively
(Langmead and Salzberg, 2012; Kim et al., 2015). The gene
expression level for each sample was calculated using RSEM
(v1.2.8) (Li and Dewey, 2011). Principle component analysis was
conducted using BGI’s Dr Tom analysis software on FPKM values
standardized by z-score. Identification of differentially expressed
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FIGURE 1
Cellular characterization of L-MSCs reveals reduced self-renewal capacity and increased potential to support the expansion of LSK cells in vitro. (A)Quantification of
thenumber ofMSCCFU-F colonies (>50cells) perwell after 14 days in culture.Datawerecollated from three independent experiments (n=7). (B)QuantificationofBrdU+

MSCs isolated from the long bones of control or B-ALL mice. Data were collated from two independent experiments (n = 7). (C) Representative images showing Alcian
blue, Oil Red O, alkaline phosphatase and Alizarin Red-stained cells following culture of control or L-MSCs in chondrogenic, adipogenic and osteogenic
differentiationmedia. (D)Quantification of Alcian blue-stained area following chondrogenic differentiation ofMSCs for 20-22days. (E)Quantification ofOil RedO-stained
area following adipogenic differentiation ofMSCs for 6 days. (F)Quantification of alkaline phosphatase-stained area and (G) number of Alizarin Red-stained bone nodules
following osteogenic differentiation ofMSCs for 13 days and26–28 days respectively. Data fromdifferentiation assays are presented asmean± SEM (n= 3per group) and
are representativeof two independent experiments. (H)Number of luciferase-expressingB-ALL cells perwell following a 3 days co-culturewith control or L-MSCs (n=3).
(I)Numberofhematopoietic (CD45+) cells perwell after a3 daysco-culturewithcontrolor L-MSCs (controlMSCsn=4, L-MSCsn=5). (J)Quantificationof thenumberof
CFU colonies formed by LSK cells post co-culture with control or L-MSCs (n = 3). This experiment has been repeated twice. Data presented are from a single experiment
but is representative of both independent experiments. All images are at × 4magnification and scale bars represent 500 μm. Error bars representmean ± SEM. *p ≤ 0.05.
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genes (DEGs) (|Log2FC|≥1, q-value≤0.05) between control and
L-MSCs was performed using the DEseq2 method (Love et al.,
2014). Gene set enrichment analysis (GSEA) using the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database and gene
ontology (GO) enrichment analysis was performed using Dr. Tom.
For GSEA, a |normalized enrichment score (NES)|≥1, nominal
(NOM) p-value ≤0.05 and false discovery rate (FDR)
q-value ≤0.25 were used as threshold values.

2.9 Quantitative reverse transcription
polymerase chain reaction (PCR)

RNA was extracted fromMSCs as described above, followed by
cDNA synthesis using SuperScript VILO Master Mix (Thermo
Fisher Scientific). Quantitative PCR (qPCR) was performed on a
QuantStudio 7 Flex Real-Time PCR System (Applied Biosystems)
using the TaqMan Fast Advanced Master Mix (Thermo Fisher
Scientific) and the following TaqMan gene expression assays:
mouse Thbs1 (Mm00449032_g1), mouse Dpep1 (Mm00514592_
m1), mouse C3 (Mm01232779_m1), mouse Cfh (Mm01299248_
m1), mouse Col1a1 (Mm00801666_g1), mouse Bmp6
(Mm01332882_m1) and mouse Gapdh (Mm99999915_g1)
(Thermo Fisher Scientific). Relative expression levels were
calculated using the ΔΔCT method, normalized to Gapdh for
each individual sample (Livak and Schmittgen, 2001).

2.10 Statistical analysis

Statistical analyses were carried out using GraphPad Prism version
8.1.1. Two-tailed unpaired Student’s t-test was performed for
comparison between groups. Results are presented as mean ± SEM
and a p-value ≤0.05 was deemed statistically significant.

3 Results

3.1 Leukemia-associated MSCs exhibit
reduced self-renewal potential

First, we utilized a CFU-F assay to assess whether the self-renewal
potential of MSCs from leukemia-bearing mice was altered. L-MSCs,
harvested from mice with BM leukemia burden exceeding 40%,
formed significantly fewer colonies than control MSCs,
demonstrating reduced self-renewal potential in the B-ALL BMM
(Figure 1A). We further examined the in vivo proliferative potential of
L-MSCs, as indicated by BrdU+ MSCs in a BrdU incorporation assay,
with no significant difference identified compared to control MSCs
(Figure 1B).

3.2 The differentiation potential ofMSCs is not
altered by B-ALL

Next, we performed a tri-lineage differentiation assay to assess
the ability of L-MSCs to differentiate into chondrocytes,
adipocytes and osteoblasts. MSCs from both healthy and
leukemia-bearing mice successfully differentiated into

chondrocytes, adipocytes and osteoblasts (Figure 1C), with no
significant difference in differentiation capacity detected between
the two groups (Figures 1D–F). Furthermore, osteoblasts derived
from L-MSCs did not exhibit a significant difference in bone
nodule formation when compared to the osteoblasts derived
from control MSCs (Figure 1G). Thus, we conclude that the
ability of L-MSCs to differentiate into stromal components of
the BMM is not altered in this in vitro setting.

3.3 L-MSCs possess similar leukemogenic
supportive capabilities in vitro compared to
healthy MSCs

We next used an in vitro co-culture assay to investigate whether
L-MSCs affect the proliferation of luciferase-expressing B-ALL cells.
Here, we compared the proliferation of B-ALL cells cultured in the
presence of MSCs that were isolated from the BMM of healthy or
B-ALL-bearing mice. We found that the number of viable B-ALL cells
after 3 days in co-culture remained similar between control and
L-MSCs, indicating that they possess similar capabilities to support
B-ALL cell growth in vitro (Figure 1H).

3.4 The hematopoietic supportive role of
MSCs is altered by B-ALL

MSCs are important regulators of normal hematopoiesis and this
function can be altered by leukemia (Conforti et al., 2013; Vicente Lopez
et al., 2014; Lim et al., 2016; Pinho and Frenette, 2019). To assess the
hematopoietic supportive ability of L-MSCs, we compared the growth of
LSK cells containing hematopoietic stem and progenitor cells with MSCs
derived from either healthy control or B-ALL mice. The growth of LSK
cells over 3 days was significantly increased in the presence of L-MSCs
compared to control MSCs (Figure 1I). Next, we examined the
myelopoietic supportive role of L-MSCs in vitro. Colony-forming
assays were performed to assess the differentiation potential of LSK
cells into CFU-GEMM, CFU-GM, CFU-M, CFU-G, CFU-Mk and
BFU-E after they were co-cultured with MSCs. The ability of L-MSCs
in inducing myeloid commitment and differentiation did not differ
significantly when compared to control MSCs (Figure 1J).

3.5 Molecular characterization of L-MSCs
reveals alterations to inflammatory, ECM and
osteogenic related processes

In addition to characterizing L-MSCs’ cellular functions and their
impact on leukemia and hematopoietic cells, we elucidated changes
occurring at the transcriptomic level via RNA-sequencing of MSCs
harvested from control or leukemia mice. Principle component
analysis highlighted that control and L-MSCs are transcriptionally
distinct, with B-ALL and control MSCs separated by principal
component 2 (Figure 2A) and a sample correlation analysis
confirming that intergroup variability was greater than intra-group
variability (Figure 2B). Differential expression analysis identified a
total of 770 DEGs, of which 423 genes were upregulated and 347 genes
were downregulated in L-MSCs when compared to control MSCs
(Figures 2C, D; Supplementary Tables S1, S2).
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To assess the biological relevance of DEGs, we conducted GSEA using
the KEGG pathway database. We identified an enrichment of
inflammatory related pathways such as NF-kappa B (NF-κB),

interleukin-17 (IL-17), tumor necrosis factor (TNF) and Jak-STAT in
L-MSCs (Figure 3A). Furthermore, GO enrichment analysis revealed
biological processes enriched in upregulated gene sets included ‘cellular

FIGURE 2
RNA sequencing reveals molecular changes in L-MSCs. (A) Principal component analysis based on row z-score of FPKM values for control and L-MSCs
shows that the control and L-MSC group variable was separated by PC2 (n = 2, four to seven mice pooled per sample). (B) Sample correlation heatmap based
on Pearson correlation coefficient identified that intergroup variability was greater than intragroup variability. (C) Volcano plot demonstrating the presence of
770 differentially expressed genes (DEGs) in L-MSCs compared to control MSCs (|Log2FC|≥1, q-value≤0.05). Green represents downregulated genes;
red represents upregulated genes. (D) Unsupervised clustering of DEGs shown in the volcano plot. Heatmap is of FPKM values standardized by row z-score.
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FIGURE 3
Transcriptomic analysis reveals distinct upregulation of immune and inflammatory related signaling, and downregulation of extracellular matrix and
osteoblastogenesis related processes in L-MSCs. (A) Gene set enrichment analysis showing gene sets that are upregulated in L-MSCs (NF-κB, IL-17, TNF and
Jak-STAT signaling pathways). Normalized enrichment score (NES), nominal (NOM) p-value and false discovery rate (FDR) q-value are shown for each plot. (B)
Gene ontology (GO) analysis of biological processes enriched in the 423 genes upregulated by L-MSCs. The top 20 significantly enriched biological
processes are displayed (based on q-value≤0.05). (C) GO analysis of cellular components enriched in the 423 upregulated genes in L-MSCs. The top
13 significantly enriched cellular components are displayed. (D)GO analysis of biological processes enriched in the 347 genes downregulated in L-MSCs. The
top 20 significantly enriched biological processes are displayed. (E) GO analysis of cellular components enriched in the 347 downregulated genes in L-MSCs.
The top 20 significantly enriched cellular components are displayed.
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response to interferon-beta’, ‘cellular response to interferon-gamma’,
‘inflammatory response’, ‘immune response’, ‘cellular response to TNF’
and ‘immune system processes’ (Figure 3B). GO analysis further revealed
that the most enriched cellular components were the ‘extracellular region’,
‘extracellular space’ and ‘external side of plasma membrane’ (Figure 3C).
To validate the upregulation of inflammatory gene signatures in L-MSCs
we examined the expression of the four most significantly upregulated
genes in the ‘inflammatory response’ process identified by ourGO analysis.
By qPCR we identified that the expression of thrombospondin 1 (Thbs1),

dipeptidase 1 (Dpep1), complement C3 (C3) and complement factor H
(Cfh) were significantly increased in L-MSCs compared to control MSCs
(Figures 4A–D).

GO enrichment analysis of genes downregulated in L-MSCs
identified biological processes involved in ‘ECM organization’,
‘collagen fibril organization’ and ‘collagen biosynthetic process’
(Figure 3D). In line with this, GO analysis of cellular components
identified that downregulated gene sets were enriched in the ‘collagen-
containing ECM’, ‘extracellular region’ and ‘extracellular space’
(Figure 3E). Finally, downregulated genes were also enriched for
osteogenic-related processes including ‘ossification’, ‘osteoblast
differentiation’, ‘positive regulation of osteoblast differentiation’ and
‘angiogenesis’ which intimately couples osteogenesis (Figure 3D).
These results indicate that major biological processes
downregulated at the molecular level in L-MSCs appear to affect
ECM regulation and osteoblast differentiation. To validate the
downregulation of osteogenic related genes in L-MSCs we assessed
the expression of two of the most significantly downregulated genes in
the ‘osteoblast differentiation’ process identified by our GO analysis.
By qPCR we showed that both collagen type 1 alpha 1 (Col1a1) and
bone morphogenetic protein 6 (Bmp6) were expressed at significantly
lower levels in L-MSCs than control MSCs (Figures 4E,F).

4 Discussion

Current treatment options for leukemia largely rely on therapies
that directly target malignant cells. In recent years, the BMM of
leukemia has been highlighted as a critical therapeutic target due to
the propensity of leukemic cells to hijack and remodel normal BM
niches into a “sanctuary” that facilitates chemoresistance and immune
escape. Therefore, normalizing BMM function or blocking leukemia-
BMM interactions may create a less hospitable environment for
leukemic cells and could thus lead to improved therapies for the
treatment of high-risk leukemia.

Our in vitro data indicates that most cellular functions of L-MSCs
do not differ significantly when compared to control. Interestingly,
L-MSCs showed a reduction in self-renewal capacity, as demonstrated
by the formation of fewer CFU-Fs in vitro. This has previously been
observed in B-ALL and T-ALL, with our data providing further
evidence that ALL cells can inhibit the self-renewal capacity of
MSCs (Balandran et al., 2016; Lim et al., 2016). While our study
did not detect any significant changes in the percentage of
proliferating MSCs through BrdU incorporation in vivo, other
studies have observed decreased proliferation of MSCs and stromal
cells in B-ALL (Conforti et al., 2013; Vicente Lopez et al., 2014;
Balandran et al., 2016; Zanetti et al., 2020). A reduced proliferative
potential has been attributed to the induction of cellular senescence in
MSCs in the ALL BMM (Lim et al., 2016; Bonilla et al., 2019; Vanegas
et al., 2021). These studies were conducted in different subtypes of
ALL, suggesting that the MSCs in different subtypes of ALL may have
different proliferation profiles. We also examined the effect of MSCs
on leukemia cell number and viability following a 3 days co-culture
and observed that both control MSCs and L-MSCs have a similar effect
on leukemia cell growth in vitro.

Our previous study demonstrated that the number of osteoblasts
and trabecular bone mass are significantly reduced in leukemia-
bearing mice (Cheung et al., 2018). However, it is unclear whether
this is caused by impaired osteogenic potential of MSCs during

FIGURE 4
Inflammatory response related genes Thbs1,Dpep1,C3 andCfh are
upregulated in L-MSCs while osteoblast differentiation related genes
Col1a1 and Bmp6 are downregulated in L-MSCs. Mean expression of
inflammatory response related genes (A) Thbs1, (B) Dpep1, (C) C3
and (D) Cfh in L-MSCs relative to that in control MSCs. Mean expression
of osteoblast differentiation related genes (E) Col1a1 and (F) Bmp6 in
L-MSCs relative to that in control MSCs. Control MSCs n = 3, L-MSCs n =
4. Data are presented asmean ± SEM. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001.
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leukemogenesis. In this study, we have shown that L-MSCs retained
their tri-lineage differentiation potential in vitro and we did not
observe significant changes in osteogenic potential between normal
MSCs and L-MSCs. Our results appear to be consistent with findings
in other B-ALL subtypes (Balandran et al., 2016; Zanetti et al., 2020).
In contrast, one study demonstrated a modest reduction in osteogenic
differentiation potential of B-ALL-associated MSCs (Vanegas et al.,
2021). It is possible that the discrepancy in findings is due to variability
between cell lines and primary samples used. While it appears that the
osteogenic potential of MSCs is not affected by leukemia development
in an in vitro culture setting, the transcriptomic analysis of DEGs
indicated an osteo-lineage defect in L-MSCs. Specifically, GO analysis
of biological processes identified a downregulation in genes associated
with osteoblast differentiation and osteogenesis in L-MSCs which we
validated by qPCR. It is plausible that the impact on osteoblast
differentiation is highly dependent on complex crosstalk with other
cellular components of the BM niche. For instance, the B-ALL niche is
known to be rich in pro-inflammatory cytokines and the pro-
inflammatory cytokines TNF and IL-17 are known to inhibit
osteoblast differentiation in MSCs via activation of the NF-κB
signaling pathway (de Vasconcellos et al., 2011; Chang et al., 2013;
Balandran et al., 2016). Our GSEA data confirmed that genes in these
pathways are upregulated in L-MSCs, thus potentially contributing to
a reduction in osteoblast formation. NF-κB activation can also
promote the expression of interleukin-6 (IL-6), which is a pro-
inflammatory cytokine known to promote osteoclastogenesis and
inhibit osteoblastogenesis and is therefore commonly associated
with various bone diseases such as rheumatoid arthritis and
osteoporosis (Libermann and Baltimore, 1990; Harmer et al., 2018).
Importantly, the expression of Il6 was significantly increased in
L-MSCs in our study (Log2FC = 2.12), thus could be contributing
to the bone loss observed in our mouse model. Future studies should
explore the inhibition of these factors and signaling pathways as a
mechanism for restoring bone formation in the B-ALL niche. The
therapeutic potential of restoring osteoblast number and function has
already shown promise in murine models of acute leukemia, thus, is
worthy of further investigation in B-ALL (Krevvata et al., 2014). In
addition to mediating bone loss, IL-6 is considered a negative
prognostic marker in many types of cancer and has been found to
promote malignant cell proliferation, metastasis and anti-apoptotic
pathways, therefore favoring disease progression (Kumari et al., 2016).
Therefore, the impact of MSC-derived IL-6 in the B-ALL BMM should
be further investigated.

The presence of pro-inflammatory factors in the B-ALL BMM is a
well-documented phenomenon that appears to be reflected in the gene
signature of our L-MSCs (Vilchis-Ordonez et al., 2015; Balandran
et al., 2016). We observed an upregulation of genes involved in the
inflammatory response which we validated by qPCR. It will be
important to explore the potential implication of this L-MSC
inflammatory response on leukemogenesis in future experiments.
For example, pro-inflammatory cytokines can result in activation of
the Jak-STAT signaling pathway (Zhao et al., 2021). Indeed, in this
study, we observed an enrichment for genes in the Jak-STAT signaling
pathway in L-MSCs. In AML, activation of Jak-STAT signaling in blast
cells and MSCs has been reported to promote blast cell proliferation
(Habbel et al., 2020). Additionally, reduced proliferation and increased
apoptosis in AML-MSCs were attributed to increased Jak-STAT
signaling which could be alleviated via Jak-STAT inhibitors (Zhang
et al., 2021). Surprisingly, limited studies have explored the role of Jak-

STAT activation in B-ALL-associated MSCs. Considering our
findings, the effect of Jak-STAT inhibition on L-MSCs and how
this may impact their B-ALL supportive function is worthy of
further interrogation.

Impairment of healthy hematopoiesis is a pronounced feature of
B-ALL, which is also recapitulated in our murine model (Cheung et al.,
2018). As MSCs are known to be essential regulators of the normal
hematopoietic stem cell (HSC) niche, we hypothesized that the
hematopoietic supportive function of MSCs may be impaired by
leukemia development (Pinho and Frenette, 2019). Our data
revealed that LSK expansion was enhanced in the presence of
L-MSCs. Interestingly, a previous study found that aged MSCs
induced greater expansion of the CD34+ hematopoietic progenitor
population in vitro than pediatric MSCs, which was attributed to
increased IL-6 production by adult MSCs (O’Hagan-Wong et al.,
2016). According to our molecular level data, Il6 is upregulated in
L-MSCs, therefore, future experiments should investigate whether this
factor could be contributing to increased LSK proliferation in co-
culture. This could be important, as dysregulated expansion of the
hematopoietic stem and progenitor pool can lead to exhaustion of the
hematopoietic system.

Degradation of the ECM is a common feature of the tumor
microenvironment and has important implications for cancer
invasiveness and metastasis (Winkler et al., 2020). Previously, we
have shown that the BM ECM was modified by BCR-ABL1+ B-ALL,
exemplified by a reduction in collagen type I in femurs of mice at Day
8 and Day 20 post leukemia cell injection (Cheung et al., 2018). Matrix
metalloproteinases (MMPs) are ECM proteases that can degrade the
BM ECM and play a vital role in the differentiation of MSCs into
different lineages (Almalki and Agrawal, 2016). B-ALL cells have been
shown to be capable of upregulating MMP-9 expression in BM MSCs
and the expression ofMMP-9 byMSCs is mediated by TNF-α-induced
activation of NF-κB signaling pathways (Verma et al., 2020). While we
observed an enrichment of TNF and NF-κB signaling pathways in
B-ALL-associatedMSCs, the expression ofMmp9was not significantly
increased in L-MSCs in our study. However, we did observe that the
expression of another member of the MMP protein family, Mmp11,
was upregulated in L-MSCs (Log2FC = 3.15).MMP11 has been shown
to be upregulated in 15 different solid cancer types and is known to
facilitate tumor invasion (Gobin et al., 2019). Additionally, our GO
analyses of L-MSCs identified a downregulation in ECM-related
processes, such as ‘collagen fibril organization’ and ‘ECM
organization’, supporting the notion of ECM dysregulation in the
BMM of B-ALL.

Finally, DPEP1 expression has recently been identified as a
negative prognostic indicator in patients with B-ALL (Zhang et al.,
2020). Overexpression of this factor in B-ALL cells was shown to
enhance their proliferation and survival, highlighting its potential as a
therapeutic target (Zhang et al., 2020). Interestingly, Dpep1 was one of
the most significantly upregulated genes in L-MSCs in our study
(Log2FC = 3.64), a finding we validated by qPCR. However, the role of
BMM-derived DPEP1 in the pathogenesis of B-ALL is yet to be
investigated and follow-up studies investigating the impact that
L-MSC-derived DPEP1 has on leukemogenesis are therefore
warranted.

It should be acknowledged that a limitation associated with the
in vitro assessment of MSC biology is the inability of culture
conditions to completely recapitulate the in vivo BMM. Thus, the
possibility of culture induced changes to MSC biology must be
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considered when examining our results. Recent studies have begun to
examine the effect of manipulating various cell culture conditions
including oxygen concentration, 3-dimensional versus 2-dimensional
culture and dynamic versus static culture on MSC biology (Tsai et al.,
2011; Ejtehadifar et al., 2015; Tsai et al., 2019; Kouroupis and Correa,
2021). In the future, standardization of MSC culture methodology that
best recapitulates the BMMwill be essential for reducing the impact of
culture on MSC biology. Ultimately, this will improve the accuracy of
the in vitro assays used to study this cell population.

In summary, significant progress has been made over recent years
in the development of therapies which target the B-ALL
microenvironment (Kuek et al., 2021). However, the BMM of
certain high-risk B-ALL subtypes, such as BCR-ABL1, remain
under investigated. In this study, we provide important insight
regarding alterations to MSC biology in the setting of high disease
burden. We have demonstrated that BCR-ABL1+ B-ALL-associated
MSCs exhibit reduced self-renewal capacity and extensive molecular
alterations, indicating potential disruptions to important signaling
pathways involved in inflammation, osteoblastogenesis and ECM
organization in vivo. Together, our findings provide vital directions
for future research, which include examining the cellular and
molecular properties of L-MSCs across sequential timepoints of
B-ALL progression to provide an understanding of how MSC
biology is altered throughout leukemogenesis; performing protein
level validation of the molecular findings identified; and delving
into the therapeutically targetable aspects of MSC biology, which
will be essential for continued improvement in clinical outcomes of
patients diagnosed with B-ALL.
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