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Research on learning and memory formation at the level of neural networks, as
well as at themolecular level, is challenging due to the immense complexity of the
brain. The zebrafish as a genetically tractable model organism can overcome
many of the current challenges of studyingmolecular mechanisms of learning and
memory formation. Zebrafish have a translucent, smaller and more accessible
brain than that of mammals, allowing imaging of the entire brain during behavioral
manipulations. Recent years have seen an extensive increase in published brain
research describing the use of zebrafish for the study of learning and memory.
Nevertheless, due to the complexity of the brain comprising many neural cell
types that are difficult to isolate, it has been difficult to elucidate neural networks
andmolecular mechanisms involved inmemory formation in an unbiasedmanner,
even in zebrafish larvae. Therefore, data regarding the identity, location, and
intensity of nascent proteins during memory formation is still sparse and our
understanding of the molecular networks remains limited, indicating a need for
new techniques. Here, we review recent progress in establishing learning
paradigms for zebrafish and the development of methods to elucidate neural
and molecular networks of learning. We describe various types of learning and
highlight directions for future studies, focusing onmolecularmechanisms of long-
term memory formation and promising state-of-the-art techniques such as cell-
type-specific metabolic labeling.
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Introduction

Learning and memory are an integral part of our daily lives. Cognitive and behavioral
alterations during learning andmemory are mediated by changes at the molecular level, most
of which seem to be remarkably conserved across species (Kandel et al., 2014). Although
research to understand the molecular mechanisms of learning and memory has made great
progress, and several protein factors important for plasticity have been identified (Kelleher
et al., 2004; Sutton and Schuman, 2006), the exact underlying molecular pathways are yet to
be fully characterized (Evans et al., 2021).

A major obstacle to research focused on the neural networks and molecular pathways
involved in learning and memory formation is the immense complexity of the brain.
Therefore, efforts have been made to develop learning paradigms in model organisms with
useful behavioral repertoires, including invertebrates with simple nervous systems and
vertebrates in which overall regions of the central nervous system have been conserved. So
far, most research on learning and memory has been performed in two highly related rodent
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model organisms, rats and mice (Figure 1A). The ability to form
memories and recall previous events and thereby alter future
behaviors provides such a strong evolutionary advantage that it is
well conserved in both invertebrates and vertebrates including
zebrafish (Farley and Alkon, 1985).

The zebrafish is a relative newcomer as a model organism in
behavioral neuroscience, with an observed sharp increase in
published studies on learning and memory in the recent decade
(Figure 1B). Characteristics of zebrafish are beneficial to study the
conserved and general principles of vertebrate nervous system
functions, including learning and memory, making zebrafish a
powerful model organism to study memory consolidation.
Zebrafish are genetically tractable, translucent vertebrates with a
small and relatively accessible brain that possesses numerous
features of brain organization conserved across vertebrates. In
addition, zebrafish exhibit complex behaviors, including learning
and memory behaviors. Combining these characteristics with their
suitability to high-throughput studies, zebrafish provides an
excellent complementary vertebrate model for studying the
molecular and neural basis of learning and memory (Gerlai, 2020).

Here, we provide a brief review of recent progress in learning
paradigms for larval, juvenile, and adult zebrafish, as well as
experimental methods to elucidate neural and molecular
networks of learning and memory. We describe various types of
learning and highlight directions for future studies, focusing on
molecular mechanisms of long-term memory formation and
promising state-of-the-art techniques, such as cell-type-specific
metabolic labeling.

Zebrafish as a model for studying
learning and memory

Zebrafish has long been a favorite model organism for
developmental biologists and geneticists, mainly due to their
suitability for genetic manipulation and translucent nature from
oocyte to developed larvae. Over the last 2 decades, researchers have
begun to appreciate the organism’s usefulness for behavioral studies,
including for social behavior and, more recently, for studying
mechanisms of learning and memory formation. Here, we discuss
1) behaviors related to learning and memory formation, and 2)
research paradigms used to study learning and memory in zebrafish.

Zebrafish brain regions associated with
learning and memory

Many basic neural systems mediating learning and memory
have been evolutionarily conserved. Mammalian brain regions
known to be key for memory, including the hippocampus and
amygdala, have functional homologous structures in the zebrafish
brain. The dorsomedial telencephalic region is involved in place
preference conditioning as was demonstrated by activity of the
immediately early gene c-fos (von Trotha et al., 2014). Further
analyses of specific markers involved in emotional behaviors
proposed this region to be homologous to the mammalian
amygdala (von Trotha et al., 2014; Porter and Mueller, 2020; Lal
et al., 2018). Likewise, the lateral pallium is involved in spatial
learning and fulfills hippocampus-like functions (Broglio et al., 2010;
Mueller, 2012; Mazzitelli-Fuentes et al., 2022).

In addition to studying established regions for memory
consolidation, unbiased approaches of studying molecular
mechanisms of learning and memory could identify additional
conserved brain regions and networks important for the
consolidation of memory, as discussed in the section “Zebrafish
for the study of molecular mechanisms of learning and memory.”

Behavioral repertoire related to learning and
memory formation

Zebrafish exhibit a broad range of behaviors depending on their
developmental stage (Nelson and Granato, 2022). These behaviors
can be manipulated and studied in the context of learning and
memory experiments. Within the first day post-fertilization (dpf),
larvae exhibit spontaneous coiling (Granato and Nüsslein-Volhard,
1996; Saint-Amant and Drapeau, 1998). At three dpf, larvae react to
touch by tail beating and backward movement and exhibit escape

FIGURE 1
Studies of learning and memory formation in zebrafish. PubMed
results for search terms (species; rats, mice or zebrafish) AND (learning
OR memory). (A) PubMed results (1985–2021) for rats, mice and
zebrafish indicating the dominance of rodents for studying
learning and memory. (B) Focus on PubMed results for zebrafish
indicating the increase in publications in zebrafish for studying
learning and memory. (C) PubMed results (date of search 16/10/2022)
for zebrafish were screened (N = 1,307) and 433 papers that we could
relate to learning andmemory formation (e.g., not including reviews or
behavioral studies that we could not categorize as learning) were
included and their data were classified for associative or non-
associative learning, short- or long-term memory. Larvae were
defined as younger than 13 dpf, juveniles as 13 dpf to 2 months old,
and adults as 2 months or older. Size of the circle represents the
percentage out of total included experiments. Data were analyzed and
visualized using R.
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behavior when exposed to touch, acoustic, or electrical stimuli
(Nelson and Granato, 2022; Santistevan et al., 2022). From three
dpf, larval zebrafish avoid both hot and cold temperatures (Prober
et al., 2008; Gau et al., 2013; Haesemeyer et al., 2015). At four dpf,
larvae perform spontaneous swimming and start to exhibit
habituation learning following repeated stimuli (Best et al., 2007).
At five dpf, larvae can feed on their own, and at 6–7 dpf they actively
hunt live prey, as well as keep a certain distance with respect to
conspecifics (Marques et al., 2017). At 6–8 dpf, larvae show
preference to a light over dark environment and actively swim to
the light environment (Hinz et al., 2013). This light-dark preference
will change to dark preference in adults, but the exact ontology is not
yet known. Social preference starts 1 week post-fertilization and
becomes robust at 3 weeks (Hinz et al., 2013; Dreosti et al., 2015). In
accordance to the behavioral repertoire during development,
numerous learning paradigms have been reported for zebrafish

across ages (Kenney, 2020; R; Gerlai, 2016; Mu et al., 2020)
(Figure 1C).

Learning paradigms in zebrafish across ages

Larval zebrafish have been predominantly used to study
habituation learning (Figure 2A) (paragraph 2. b.1; (Roberts
et al., 2013), which has been demonstrated as early as 4 dpf
(Eaton et al., 1977). In addition to this relatively simple form of
learning, it was reported that 6–8 dpf larvae can perform in an
associative place-preference paradigm (Hinz et al., 2013). At eight
dpf, partially mounted larvae performed Relief of Aversive Stimulus
by Turn (ROAST) in operant-conditioning task where the larvae
could avoid an aversive heat stimulus by moving the tail (Figure 2B)
(Lin et al., 2019). Simultaneous Ca2+ imaging revealed functional

FIGURE 2
Schematic overview of studying learning in zebrafish. (A) Schematic representation of learning and memory paradigms used in zebrafish including
forms of non-associative learning (habituation, recognition and novelty learning) and associative learning (aversive and positive-reward based learning).
(B) Behavioural setups for zebrafish learning paradigms (partially mounted and freely swimming) can include recording of behaviour, neural activity
combined with various stimuli as presented in (A), or light-dark environment (white-yellow light bulb). (C) Protein dynamics during long-term
memory formation. Left, the ability to form long-term memory increases with age (larvae, juvenile and adult from bottom to top, respectively) with only
some evidence in larvae while most studies have used adult fish (Figure 1C), highlighting the rationale to further examine long-term memory
consolidation in juvenile zebrafish (*) that possess a more accessible brain than adults. Right, a suite of methodologies allowing for the detection and
manipulation of protein dynamics during protein-synthesis-dependent long-term memory formation. The figure was created with BioRender and
Inkscape.
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connectivity changes between the cerebellum and habenula, which
correlated with decision outcomes. Other studies showed that ten
dpf larvae are able to perform a visual lateralization novel object
recognition task (Andersson et al., 2015). Classical and operant
conditioning paradigms using electroshocks showed that learning
improves during development from seven dpf, starts to be robust at
around week three and reaches adult performance at week six
(Valente et al., 2012). Another study demonstrated that a spatial
alternation task based on a food reward was successfully performed
by young adult (6–8 weeks) and adult fish (>8 weeks), while 3-4-
week-old juveniles did not learn the task (Williams et al., 2002).

Adult zebrafish are able to perform complex learning tasks,
which depends on their ability to discriminate between different
sensory stimuli (Figure 2A). They can discriminate between visual
stimuli such as shapes and colors (Colwill et al., 2005; Risner et al.,
2005; Gatto et al., 2020; Santacà et al., 2021; Santaca et al., 2022),
different odors (Braubach et al., 2008; Namekawa et al., 2018), and
individual fish (Madeira and Oliveira, 2017). These cues have been
used to train fish during complex spatial learning tasks (Williams
et al., 2002; Levin et al., 2003; Xu et al., 2006; Baratti et al., 2019;
Baratti et al., 2021). For example, fish can use the geometry of an
arena to orient themselves in order to find the exit and gain a reward
(Baratti et al., 2021).

Forms of avoidance and fear learning paradigms have also been
widely used with zebrafish (Figure 2A) (Pradel et al., 2000; Xu et al.,
2006; Castro et al., 2009; Baker andWong, 2019). For example, adult
zebrafish can formmemories of a natural olfactory alarm cue using a
contextual fear learning paradigm that depends on stress-coping
styles of the zebrafish (Baker and Wong, 2019). Most associative
learning paradigms resulting in long-term memory formation have
been demonstrated in adult zebrafish (Figure 1C). A recent study
used electroshock fear conditioning in juveniles and found that the
dorsolateral habenula is required for updating learned behaviors
(Palumbo et al., 2020). In addition to negative reinforcers or
punishment, such as electric shocks and natural olfactory alarm
cues, positive reinforcers have been studied for classical conditioning
paradigms, including food (Bilotta et al., 2005; Colwill et al., 2005;
Sison and Gerlai, 2009; Manabe et al., 2013a) and visual access to
conspecifics (Al-Imari and Gerlai, 2008; Sison and Gerlai, 2011;
Hinz et al., 2013; Fernandes et al., 2016). For example, adult
zebrafish have been successfully trained to perform well during
visual discrimination and amodal completion tasks, using both food
and conspecifics as a reward (Sovrano et al., 2022).

Zebrafish paradigms for non-associative learning
Learning can be divided into two main forms: non-associative

and associative (Figure 2A). Non-associative learning is a simple yet
fundamental form of learning, not requiring stimuli association or
pairing. It means that a response to a single event or stimulus, an
animal can change their behavior (Ioannou and Anastassiou-
Hadjicharalambous, 2021). Examples of non-associative learning
include habituation, sensitization, perceptual learning, priming and
recognition memory (Pereira and Kooy, 2013; Ioannou and
Anastassiou-Hadjicharalambous, 2021). Habituation and
sensitization learning are implicit or procedural forms of learning
that respectively attenuates or augments (sensitizes) an animal’s
sensory percept or behavioral response to a sensory stimulus upon
repeated or continual presentation of the stimulus (Harris, 1943;

Thompson and Spencer, 1966; Poon and Schmid, 2012). The altered
response to the repeated stimuli of fixed intensity is not due to
sensory adaptation, fatigue, or injury. Habituation has been
commonly used in zebrafish paradigms based on a rapid startle
response that decreases over time upon repeated exposure to a
sensory stimulus (auditory, visual, or tactile) (Eaton et al., 1977; Best
et al., 2007; Wolman et al., 2011). The light preference of larval
zebrafish has been used to show dynamic learning including
sensitization and habituation during a dark-avoidance task (Xu
et al., 2021). The use of virtual reality paradigms with larval
zebrafish embedded in agarose combined with light sheet
microscopy allows for whole brain imaging during short-term
motor learning (Kawashima et al., 2016). Regarding recognition
learning, both short- and long-term memory formation have been
demonstrated using novel object recognition and location
paradigms in zebrafish (Lucon-Xiccato and Dadda, 2014; Oliveira
et al., 2014; Andersson et al., 2015; May et al., 2015; Gaspary et al.,
2018). Additionally, Y- and T-mazes have been primarily used to
study working and short-termmemory of a previously explored arm
(Cleal et al., 2020; Fontana et al., 2021; Brinza et al., 2022).

Zebrafish paradigms for associative learning
Associative learning involves establishing a relationship

(association) between at least two separate stimuli. A basic form
of associative learning is classical conditioning (Pavlov, 1951;
Sokolov, 1963; Rehman et al., 2022). Here, animals learn how to
associate a neutral stimulus (conditioned stimulus, CS) with a
reinforcing stimulus which can be either positive or negative
(unconditioned stimulus, US) (Figure 2B). As the result of the
paired delivery of a CS and US, the animal learns that the CS
predicts the occurrence of the US. Consequently, the response to the
CS becomes similar to its initial response to the US. Classical
conditioning has been reported in both larval (Aizenberg and
Schuman, 2011; Valente et al., 2012; Hinz et al., 2013) and adult
zebrafish (Braubach et al., 2008; Agetsuma et al., 2010; Karnik and
Gerlai, 2012; Aoki et al., 2013) using both positive (Colwill et al.,
2005; Al-Imari and Gerlai, 2008; Gómez-Laplaza and Gerlai, 2009;
Sison and Gerlai, 2009; Sison and Gerlai, 2011; Manabe et al., 2013b)
and negative (Xu et al., 2006; Castro et al., 2009; Lee et al., 2010;
Pradel et al., 2000; Levin and Chen, 2004; Baker and Wong, 2019)
reinforcing stimuli. The use of classical conditioning in adult
zebrafish is dominant in the literature (Figure 1C), yet, recent
studies have adapted long-term memory associative learning-
based paradigms for juveniles e.g., (Palumbo et al., 2020).

High-throughput paradigms
Zebrafish can breed throughout the year and have progenies of

hundreds of eggs, which allows for studying memory formation in
large numbers or while testing numerous conditions in a high-
throughput manner. There have been developments in designing
learning paradigms that are more appropriate for high-throughput
screens (Stewart et al., 2015). For example, automated systems for
imaging, tracking, and analyzing dozens of larvae simultaneously
(Figure 1B) (Ahmed et al., 2010; Wolman et al., 2011; Doyle et al.,
2016; Randlett et al., 2019; Barreiros et al., 2021); paradigms that can
be performed with multiple adult fish at the same time (Kareklas
et al., 2018; Samaras and Pavlidis, 2020; Barreiros et al., 2021); and
relatively short paradigms that do not last for more than 2 or 3 days
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(Hinz et al., 2013; Lucon-Xiccato and Dadda, 2014). Efforts should
be made to ensure that fish are habituated properly to the paradigm
setup and show no signs of stress or anxiety, especially for paradigms
that use individual zebrafish (Gerlai, 2016).

Zebrafish for the study of molecular
mechanisms of learning and memory

The zebrafish model is advantageous due its nervous system
complexity and practical accessibility. Zebrafish are evolutionary
ancient vertebrates but still possess numerous conserved features
across multiple levels of biological organization in the brain.
Zebrafish larvae are the only vertebrates with a translucent brain,
allowing for imaging of the entire brain at a (sub)-cellular level, even
while the fish is alive and during learning tasks described above
(Naumann et al., 2016). Using optogenetic tools, it is possible to
manipulate neuronal activity in a specific and reversible manner.
Light-gated channels (Szobota et al., 2007; Douglass et al., 2008;
Arrenberg et al., 2009; Bundschuh et al., 2012; Fajardo et al., 2013)
can be used to either excite or inhibit neurons, which consequently
can be imaged in the intact behaving fish (Wyart and Del Bene, 2011;
Del Bene andWyart, 2012; Portugues et al., 2013). The transparency
of the larval zebrafish allows for non-invasive optogenetic detection
and modulation of neural activity, and pharmacological tools and
genetic lines exist that increase this transparency into adulthood
(Karlsson et al., 2001; Bergmann et al., 2018). Indeed, there have
been successful reports on the use of optogenetics to study both
larval (Harmon et al., 2017) and adult zebrafish behavior (Douglass
et al., 2008; Ahrens et al., 2012; Del Bene andWyart, 2012; Portugues
et al., 2013). Still, application during learning and memory
paradigms is challenging, mainly due to the need for restraining
the fish during the experimental procedure (Wyart et al., 2009).

Protein-synthesis-dependent long-term
memory formation in zebrafish

Both associative and non-associative learning can lead to short-
or long-term memory formation. Short-term memory lasts from
seconds to minutes and its formation mostly relies on biochemical
changes to existing proteins (Kandel et al., 2014). Long-term
memory lasts from hours to years and its formation is protein
synthesis dependent (Flexner et al., 1962; Josefa et al., 1963; Nee
et al., 2008). This has been demonstrated in different organisms and
using various learning paradigms (Agranoff et al., 1966; Gal-Ben-Ari
and Rosenblum, 2011; Gal-Ben-Ari et al., 2012; Kandel et al., 2014).

In zebrafish, both long-term habituation (Wolman et al., 2011;
Roberts et al., 2013; Roberts et al., 2016) and classical conditioning
leading to long term memory formation (Pradel et al., 1998; Pradel
et al., 2000; Blank et al., 2009) depend on the ability to synthesize
new proteins. For example, an essential role for the synthesis of cell
adhesion molecules in memory consolidation and recall in adult
zebrafish was discovered using an active avoidance paradigm (Pradel
et al., 2000). A conditioned place preference paradigm in zebrafish
larvae reported protein-synthesis-dependent long-term memory
formation and a role for NMDA-receptor activation in this
process (Hinz et al., 2013). The place preference for an

environment with visual access to conspecifics develops with age
and becomes more robust 2–3 weeks post fertilization (Dreosti et al.,
2015), suggesting that this promising paradigm may be more robust
in juvenile zebrafish (Figure 2C). A recent study measured brain
protein dynamics following adaptation of zebrafish to water currents
induced by magnetic stirrers and detected 57 regulated proteins in
larvae exposed to the water vortex (Langebeck-Jensen et al., 2019).
However, when measuring total protein content, newly synthesized
(nascent) proteins can be masked by already existing proteins, thus
hindering their detection. In addition, the use of whole tissue
proteomics hinders detection of cell-type-specific protein
alterations. This calls for methodologies that allow for the
detection of newly synthesized proteins, preferably in cell types
of interest.

Manipulation of protein synthesis

Due to the complexity of the brain, comprising many cell types
including neurons that possess long processes and are entangled in
the respective tissue, it is difficult to reveal the newly synthesized
proteome during learning and memory formation in an unbiased
manner. In this section, we will review evidence for the role of
protein synthesis during long-term memory formation and discuss
novel methods that allow for the labelling of nascent proteins in cell
types of interest (Figure 1C). See also reviews on de novo proteomic
methods in relation to memory consolidation (Evans et al., 2021;
Ross et al., 2021).

The pioneering studies that first showed the need for protein
synthesis during long-term memory formation used protein
synthesis inhibitors such as puromycin, delivered non-specifically
(Flexner et al., 1963). Delivering protein synthesis inhibitors can
done by injection to a brain region or for zebrafish, by adding it to
the water bath of the fish resulting in universal inhibition (Hinz
et al., 2012; Shahar and Schuman, 2020). However, within the
complex structure of the brain, different brain regions and cell
types enable the formation, consolidation, and recall of memory
(Camina and Güell, 2017). Although inhibitors can be delivered
directly to specific brain regions at different stages of long-term
memory formation, they cannot be restricted to specific cell types
and therefore cannot distinguish between the role of neuronal
subtypes or glial cells in memory consolidation. Furthermore,
although memory research has predominantly focused on
hippocampal neurons, other brain cells including glia have been
shown to play a role too (Yoo et al., 2021). Recently, tools that enable
cell-type-specific drug-inducible inhibition of protein synthesis have
been developed including a toxin from Maize that can be expressed
in a cell-type-specific manner (Heumüller et al., 2019) which has so
far only been demonstrated in vitro. Another approach enables rapid
and reversible phosphorylation of eukaryotic initiation factor 2α,
leading to inhibition of general translation (Shrestha et al., 2020).
Such tools have the potential to increase the spatiotemporal
resolution in which protein synthesis can be detected during
learning and memory adaptations. Similarly, protein synthesis
has been artificially increased in specific cell types through
overexpression of initiation factors (Shrestha et al., 2020; Xu
et al., 2020). Another way to modulate translation of memory
consolidation related proteins and in a cell-type-specific manner
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is by modifying the kinase activity of elf2a, which affects memory
consolidation in mice (Gould et al., 2020; Sharma et al., 2020).
Future studies in zebrafish could provide additional information on
conserved vertebrate brain regions and cell types involved in
different stages of memory formation.

Labeling of nascent proteins

Given the evidence that protein synthesis is required for long-
termmemory formation, identifying which proteins are synthesized,
and their specific roles, is fundamental for understanding the
complexity of the underpinning molecular mechanisms (Flexner
et al., 1963; Sutton and Schuman, 2006; Costa-Mattioli et al., 2008;
Gal-Ben-Ari et al., 2012; Hinz et al., 2013). Manipulation of protein
synthesis provides useful information about the importance of
protein synthesis in certain cell types and brain regions during
memory consolidation, but it does not identify which proteins are
being synthesized. Therefore, efforts have been made to identify
newly synthesized proteins in a given brain region in a cell-type-
specific manner. One widely used technique is Stable Isotope
Labelling with Amino Acids in cell culture (SILAC) (Koren et al.,
2019). Isotope tagging of proteins leads to a shift in the molecular
mass of the labelled peptide, thus enabling identification via mass
spectrometry (Engmann et al., 2010; Chen et al., 2015). However,
although this technique labels the newly synthesized proteins, it does
not enrich for them, therefore, newly synthesized proteins in low
abundance may be missed due to masking by highly abundant
existing proteins. Additionally, although the technique has been
adapted for its use in animal models (Price et al., 2010; Rauniyar
et al., 2013), it cannot be directed to specific cell types, since it uses
endogenous amino acids to label newly synthesized proteins.

A method that purifies only nascent proteins uses the general
protein synthesis inhibitor puromycin (Nemoto et al., 1999).
Puromycin is molecularly similar to aminoacyl-tRNA and uses
the endogenous translational machinery to integrate itself into
proteins as they are being synthesized (Dieck et al., 2015).
Puromycin-tagged proteins can be labeled with anti-puromycin
antibodies and subsequently visualized via
immunohistochemistry, or purified and identified via mass
spectrometry. Because of the rapid integration of puromycin into
the newly synthesized amino-acid chain, this method can be used to
examine local protein synthesis (Hafner et al., 2019). This
is important because both in neurons and glial cells, it has been
demonstrated that protein synthesis occurs locally, which likely
plays an important role in synaptic plasticity (Sutton and
Schuman, 2006; Sakers et al., 2017; Spaulding and Burgess, 2017).
Click-chemistry compatible analogs of puromycin have been
developed (Liu et al., 2012) and used to label neuronal
nascent proteins (Holt et al., 2019). A disadvantage of
puromycilation is its interference with the translation machinery
and the resulting truncated peptides (Schmidt et al., 2009) and
recent evidence suggests that puromycilation may not be a
good indicator of nascent proteins (Enam et al., 2020; Hobson
et al., 2020). Puromycin-independent techniques have been
developed as well.

Non-canonical amino acid tagging (NCAT) has emerged as a
strategy for identifying nascent proteins without terminating

translation. Bio-Orthogonal NCAT (BONCAT) and
Fluorescent NCAT (FUNCAT) methodologies tag newly
synthesized proteins with either azide- or alkyne-bearing non-
canonical amino acids (NCAAs) (Kiick et al., 2002; Link et al.,
2004; Yang et al., 2018). Using click chemistry, the azide or alkyne
group of the NCAA can be clicked to biotin for purification and
mass spectrometry analysis (BONCAT), or a fluorophore for
imaging (FUNCAT) (Hinz et al., 2012; Ngo et al., 2013; Ullrich
et al., 2014; Lehner et al., 2017). As a result of the low toxicity,
higher concentrations of NCAAs and longer labelling periods can
be used in vivo, increasing proteome coverage (Koren et al.,
2019). Moreover, since NCAAs do not affect the rate or efficiency
of protein translation (Calve et al., 2016), this method is much
more suitable for examining protein synthesis during long-term
memory formation.

Cell-type-specific labeling of nascent
proteins

Modifications to NCAAs allow for cell-type-specific tagging
of newly synthesized proteins. For example, the NCAA
azidonorleucine (ANL) is not recognized by the endogenous
methionine tRNA synthetase and therefore does not integrate
into proteins in wild-type cells. ANL incorporates only into
newly synthesized proteins in cells expressing mutant
methionyl-tRNA synthetase (MetRS) in which, in zebrafish,
Leucine 270 is replaced with Glycine (MetRSL270G) (Shahar
and Schuman, 2020). In mice, this technology has been
successfully used to label nascent proteins in hippocampal
excitatory principal neurons and cerebellar Purkinje neurons,
to discover differentially regulated proteins in mice exposed to an
enriched environment (Alvarez-Castelao et al., 2017) and to
identify 156 proteins in hippocampal excitatory neurons
during an aversive cue learning paradigm (Evans et al., 2020).
We have used both BONCAT and FUNCAT in zebrafish larvae
expressing cell-type-specific MetRSL270G in a pan-neuronal
manner to label neuron-specific nascent protein, which
revealed elevated levels of neuronal newly synthesized proteins
following induced neuronal activity (Shahar and Schuman,
2020). FUNCAT provides spatial information and indicates
the intensity of newly synthesized proteins. Moreover, a
Proximity Ligation Assay (PLA) can be used in combination
with FUNCAT (PLA-FUNCAT) to reveal the cellular location of
nascent proteins-of-interest (Dieck et al., 2015; Evans et al.,
2019). The PLA detects the spatial colocalization of two
antibodies: one that identifies the newly synthesized protein
by using click chemistry to the azide or alkyne group of the
NCAA, and another that identifies a specific epitope in a protein
of interest. Only when the two antibodies are in proximity, will a
ligation amplification circle reaction occur, resulting in
fluorescent signal (Dieck et al., 2015). The relative ease of
creating transgenic zebrafish lines expressing mutant MetRS
under glial and neuronal subtype promotors enables the
exciting opportunity to identify cell-type-specific protein
synthesis during long-term memory formation in vertebrates.

Thus, NCAT-based methods seem very promising for the
analysis of protein-synthesis-dependent memory formation. It is
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important, however, to realize that strategies for NCAA delivery and
labeling durations can affect experimental outcomes, which likely
differs between species. While longer labelling periods enable the
labeling of a large number of newly synthesized proteins, shorter
labelling periods may be preferable for examining memory-phase-
specific protein synthesis. In addition, labeling tools for nascent
proteins have a bias towards proteins with a high turnover, because
they are synthesized more regularly and thus more likely integrate
the NCAA or puromycin (Schanzenbacher et al., 2016). Lastly, while
these methods are able to identify the nascent proteome, it does not
reveal their functionality. Their identity can be used for functional
prediction, which can be further examined as next steps.

Conclusion

The characteristics of zebrafish, including their 1) ability to
learn, 2) relative ease of genetic manipulation, 3) suitability for
high-throughput studies, and 4) translucent brain in young ages,
make it an excellent vertebrate model to study the molecular
underpinnings of learning and memory. The collective data thus
far suggest that larval stages are easier to work with due to the
more accessible brain and translucency, and that complex
learning such as long-term memory formation work better in
juveniles, starting at about two to 3 weeks post-fertilization and
becoming more robust in adults. The fact that the brain of young
juveniles (2–4 weeks post fertilization) is smaller and more
accessible than that of adult zebrafish, poises them as a
promising tool for future research. Combining young juveniles
with advanced, novel techniques, in particular labeling with
NCAAs in a cell-type-specific manner, is relatively unexplored
but starting to be used for examining the nascent proteome
during various forms of learning and memory. We envision a

rise in the use and further refinement of the zebrafish model,
including applications of these novel techniques, which will
hopefully increase the understanding of conserved
mechanisms of long-term memory formation in vertebrates at
the molecular level.
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