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regulation of aging
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Protein translation is an essential cellular process playing key roles in growth and
development. Protein translation declines over the course of age in multiple animal
species, including nematodes, fruit flies, mice, rats, and even humans. In all these
species, protein translation transiently peaks in early adulthood with a subsequent
drop over the course of age. Conversely, lifelong reductions in protein translation
have been found to extend lifespan and healthspan in multiple animal models. These
findings raise the protein synthesis paradox: age-related declines in protein synthesis
should be detrimental, but life-long reductions in protein translation paradoxically
slow down aging and prolong lifespan. This article discusses the nature of this
paradox and complies an extensive body of work demonstrating protein translation
as a modulator of lifespan and healthspan.
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1 Introduction

The life of a protein begins with translation of mRNA into a nascent polypeptide chain
[reviewed in (Hebert and Molinari 2007; Taylor and Dillin 2011; Balchin et al., 2016)]. During or
after synthesis, a protein then adopts a higher-level stable three-dimensional structure to become
biologically functional. This process is called co- or post-translational folding and occurs
spontaneously; only the information contained in the amino acid sequence is required for
folding of proteins into their native state. Especially, chemical forces created by specific amino acid
sequences within the particular position of the polypeptide chain (e.g. hydrophobic interactions
and hydrogen bonds) guide the proper folding. Although protein folding can occur
spontaneously, there are several molecular chaperones that facilitate the folding by
accelerating rate-limiting steps. Chaperones also assist refolding of unfolded or denatured
proteins and prevent them from being aggregated. Once a protein is properly folded, it is
chemically modified and trafficked to the correct cellular compartment. Finally, when proteins
reach the end of their life or become damaged, they get degraded by the autophagy-lysosomal
pathway or ubiquitin-proteasome system (UPS) (Figure 1).

Disruption in any of the process mentioned above can disturb protein homeostasis
(proteostasis), cause protein aggregations and cellular death, and ultimately contribute to
the pathogenesis of several diseases, including neurodegenerative disorders (Hebert and
Molinari 2007; Powers et al., 2009; Taylor and Dillin 2011).

To date, a large body of research has demonstrated dysfunction in many of aspects of the
proteostatic network as a critical component of aging. The proteasome system was shown to
deteriorate as a consequence of either age or disease; conversely, enhancing proteasome function
can extend lifespan/healthspan and protect against age-related diseases (Munkacsy et al., 2019;
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FIGURE 1

Protein lifecycle. Graphical representation of proteostatic cycle.
Protein synthesis is shown on the right and protein degradation on the
left. The Chinese philosophical concept Yin and Yang are denoted in the
center with Yang denotating synthesis and Yin degradation. This is
used to denote the importance of balance between synthesis and
degradation. This figure shows that in balanced proteostasis, proteins are
translated using the available amino acid pool (top right), folded by
molecular chaperones (bottom right), degraded by proteasome or
autophagial pathways (bottom left), and amino acids are recycled to
form new proteins. Imbalance from insufficient molecular chaperone
function, ROS, or insufficient degradation leads to unfolded proteins
(bottom center), which may be refolded by molecular chaperones or
removed by degradation pathways. If protein quality control does not
occur, aggregates may form. Created with BioRender.com

Nguyen et al,, 2019; Chocron et al., 2022). In addition, several studies
demonstrated dysfunction of autophagial pathway with age and how
augmentation of the autophagial system can extend lifespan (Hansen
et al,, 2018). Likewise, functions of molecular chaperones were shown to
decline with age, whereas overexpression of such chaperones was able to
extend lifespan (Soti and Csermely 2003). Despite extensive aging studies
in degradation systems, there is a lack of studies in the other arm of the
proteostatic control: protein synthesis. In this review, we extensively
discuss how modulation of protein synthesis and lifetime protein
translation dynamics regulate the onset of aging.

2 The process of eukaryotic protein
translation

Protein translation occurs in three phases: 1) initiation of mRNA
translation, 2) elongation of the polypeptide chain, and 3) termination
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FIGURE 2

Protein translation pathways. The process of translation initiation

and elongation in eukaryotic cells. Key eukaryotic initiation factors (elFs)
and eukaryotic elongation factors (eEFs) are highlighted. This process is
described in detail in section 3 with involvement of highlighted
factors in aging described in section 5. Created with BioRender.com.

of mRNA translation (Sonenberg and Hinnebusch 2009; Jackson et al.,
2010) (Figure 2).

During the initiation phase, the eukaryotic initiation factor 2
(eIF2) forms a ternary complex with GTP and methionine-charged
methionyl-tRNA (Met-tRNA;*) (Sonenberg and Hinnebusch 2009;
Jackson et al., 2010). The ternary complex then binds to the small 40S
ribosomal subunit along with several eukaryotic initiation factors
(eIF1, eIF1A, elIF3, and elIF5) to form the 43S pre-initiation
complex. Subsequently, eIF4F complex, consisting of eIF4E, eIF4G,
and elF4A binds to the 5' cap region of mRNA and unwinds this
region in an ATP-dependent manner with eIF4B. This allows for the
43S pre-initiation complex to attach to the mRNA being translated.
The 43S complex then scans the 5'untranslated region (5" UTR) from
the 5’ to 3’ direction to the initiation codon (AUG). After the AUG
codon is recognized, elF2-bound GTP is hydrolyzed by eIF5 and
eIF5B, leading to dissociation of elFs and joining of 60S ribosomal
subunit to form the elongation-competent 80S ribosome.

Elongation of peptide chains by the 80S ribosome is assisted
by eukaryotic translation elongation factors (eEFs) (Sonenberg
and Hinnebusch 2009; Jackson et al., 2010). Once aminoacyl
tRNA synthetase loads the tRNA with the amino acid
corresponding to the codon, eEF1A-GTP complex brings this
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incoming aminoacyl-tRNA to the A site of the ribosome. If the
correct aminoacyl-tRNA fits to the A site, GTP is hydrolyzed and
eEF1A-GDP complex becomes dissociated. eEF1B catalyzes the
exchange of bound GDP for GTP, enabling the next cycle to occur
again. Then, peptidyltransferase in the 60S ribosomal subunit
(28S ribosomal rRNA) catalyzes the transfer of peptide attached
to the aminoacyl-tRNA in the P site to the amino group at the
aminoacyl-tRNA in the A site, forming a peptide bond.
Subsequently, eEF2-GTP complex facilitates the transfer of
peptidyl-tRNA from the A site to the P site, which is called
translocation.

Finally, when the A site encounters a stop codon (UAG, UAA, or
UGA), releasing factor (eRF) binds GTP and stimulates the transfer of
peptidyl group from the P-site tRNA to H,O instead of the A-site
tRNA (Sonenberg and Hinnebusch 2009; Jackson et al., 2010). This
results in the release of the peptide along with uncharged tRNA and
eRF-GDP complex, followed by dissociation of 40S and 60 S ribosomal
subunits.

3 Regulation of protein translation rate

The first initiation phase of protein translation is a rate limiting
step, where most regulations are exerted (Gebauer and Hentze 2004;
Sonenberg and Hinnebusch 2009; Jackson et al., 2010). The global rate
of protein translation is mostly regulated by altering the activity and
availability of eIFs. Two most heavily regulated eIFs to adjust the rate
of protein translation are eIF2 and eIF4E.

elF2 consists of three subunits: a, B, and y (Gebauer and Hentze
2004; Sonenberg and Hinnebusch 2009; Jackson et al., 2010). GTP
hydrolysis by the y subunit of eIF2 facilitates the formation of ternary
complex, which is the key step in translation initiation. Exchange of
GDP for GTP is catalyzed by eIF2B and is necessary for regenerating
active elF2. Phosphorylation of the a subunit of eIF2 impedes the
dissociation of eIF2B, blocks the GDP-GTP exchange, and thereby
pronouncedly lowers the rate of protein translation (Donnelly et al.,
2013). As such, eIF2a phosphorylation by eIlF2a kinases is frequently
used by cells to attenuate protein translation in response to
physiological or environmental conditions. For example, when
unfolded or misfolded proteins accumulate in the lumen of
endoplasmic reticulum (ER), one of the eIF2a kinases called PKR-
like ER kinase (PERK) phosphorylates elF2a, reduces the protein
translation rate, and thereby decreases the ER protein folding load
(Walter and Ron 2011). This translational control by PERK is one of
the branches of the so-called unfolded protein response (UPR) (Walter
and Ron 2011). Another kind of eIF2a kinase called GCN2 is primarily
activated by amino acid and glucose deprivation and lowers the rate of
protein translation to adjust for nutrient availability (Zhang et al,
2002a; Donnelly et al., 2013).

The cap binding protein eIF4E facilitates the recruitment of the
43S pre-initiation complex to the 5'cap, which is regarded as the rate-
limiting step in protein translation initiation (Jackson et al., 2010). The
availability of active eIF4E is regulated by the eIF4E-binding protein
(4E-BP) (Marcotrigiano et al., 1999; Musa et al., 2016). 4E-BP prevents
eIF4E from interacting with eIF4G, thereby blocking the formation of
eIF4F complex and halting protein translation initiation. The ability of
4E-BP to bind eIF4E is regulated by the phosphorylation of several
serine and threonine residues of 4E-BP. Hypophosphorylated 4E-BP
has a strong binding affinity to eIF4E, whereas hyperphosphorylated
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4E-BP loses the binding affinity to eIF4E. Indeed, the deletion of 4E-
BP significantly increases levels of active eIF4E and enhances the rate
of global protein translation, whereas hyposphorylated forms of 4E-BP
deplete active eIF4E and thereby inhibit protein translation (Oulhen
et al., 2009; Carvalho et al., 2017).

Multiple signaling pathways regulate protein translation by
modulating the activity of elFs (Roux and Topisirovic 2012; Roux
and Topisirovic 2018). Especially, mechanistic target of rapamycin
(mTOR) is the major signaling pathway involved in regulating the
global rate of protein synthesis (Wang and Proud 2006; Ma and Blenis
2009). mTOR is an evolutionarily conserved serine/threonine kinase
that stimulates anabolic processes including protein translation, in
response to high nutrient/oxygen availability, high energy status, and
high levels of insulin/growth factors/growth hormones. mTOR
complex 1 (mTORC1), consisting of mTOR, the scaffolding protein
raptor, the GTPase P subunit-like protein (GPL), proline-rich AKT
substrate of 40 kDa (PRAS40), and Deptor, can directly enhance the
activity of translational machinery. For example, the activated
mTORCI hyperphosphorylates and inactivates 4E-BP, which
normally attenuates protein translation by preventing eIF4E from
interacting with eIF4G to form the eIF4F complex (Wang and Proud
2006; Ma and Blenis 2009).

In addition, mMTORCI can indirectly enhance protein translation
by phosphorylating the Thr389 site of the S6 kinase (S6K) and thereby
activating S6K (Wang and Proud 2006; Ma and Blenis 2009). S6K has
been shown to promote protein translation by phosphorylating
multiple components of the translational machinery. For instance,
S6K stimulates ribosomal biogenesis and protein translation by
phosphorylating ribosomal protein S6 (rpS6) of the 40S ribosomal
subunit (Jastrzebski et al., 2007; Chauvin et al., 2014). S6K also
disinhibits eEF2 by phosphorylating/inactivating the eEF2 kinase
(eEF2K), a well-known negative regulator of eEF2 (Price et al,
1991; Wang et al,, 2001). Since eEF2 is a GTPase facilitating the
transfer of peptidyl-tRNA from the A site to the P site, S6K activation
promotes the ribosomal translocation and ultimately protein
translation by stimulating the eEF2 activity. Further, S6K activation
upregulates the eIF4A activity by inactivating programmed cell death
4 (PDCD4) and stimulating eIF4B, leading to high protein translation
rate (Dennis et al., 2012). PDCD4 is known to repress elF4A activity
by blocking eIF4G-eIF4A interactions (Yang et al., 2003). eIF4B has
been shown to bolster the RNA-unwinding activity of eI[F4A (Andreou
et al.,, 2017).

Multiple upstream signaling pathways converge on mTOR
signaling so that protein translation rate can be adjusted in
response to external stimuli and internal cellular conditions (Wang
and Proud 2006; Ma and Blenis 2009). Growth hormones and growth
factors (e.g. insulin and insulin-like growth factor (IGF)) first activate
phosphoinositide 3-kinase (PI3K) via receptor tyrosine kinases and
associated adaptor proteins such as insulin receptor substrates (IRS).
PI3K in turn activates protein kinase B (AKT), which feeds to the
mTORCI signaling via tuberous sclerosis complex 2 (TSC2). Growth
factors can also stimulate the mTORCI signaling via Ras GTPases and
mitogen-activated protein kinase (MAPK) cascades, which also feed to
TSC2. Information of the nutrient availability and energy status is
conveyed to mTORCI1 via Rag GTPases, AMPK serine/threonine
kinase, and regulated in development and DNA damage responses
1 (REDD1). Via the crosstalk of mTOR signaling with other pathways,
cells can timely promote protein translation when environmental
conditions are favorable for growth.
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C.elegans Studies examining change in protein translation with age
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FIGURE 3

Lifetime protein translation dynamics. (A) Replotted protein translation rates across lifespan from studies in C. elegans, Drosophila, mice, rats, and
humans. (B) Table of studies examining protein translation rates comparing young and old animals. Created with BioRender.com.

Besides mTOR signaling, mRNA processing bodies (known as
P-bodies) also play crucial roles in regulating the rate of protein
translation in response to environmental stress (Decker and Parker
20125 Luo et al, 2018). P-bodies are cytoplasmic ribonucleoprotein
granules known to sequester mRNA and facilitate the mRNA decay
via deadenylation and decapping, which reduces the mRNA stability.
In addition to promoting the mRNA decay, P-bodies can attenuate
protein translation rate by trapping translation initiation factors,
mainly eIF4E (Brengues and Parker 2007; Rieckher et al, 2018).
The P-bodies-dependent halting of global protein translation is
particularly beneficial in response to various cellular stresses since
this can protect the proteome and divert energy sources into stress
responses instead (Yamasaki and Anderson 2008; Rieckher et al,

2018).

4 Protein translation declines with age

Since the 1970s, many investigators have studied how aging
impacts the rate of protein translation. In general, the rate of
global protein translation is high during early-adulthood but
thereafter drops with age (by up to 88%) in yeast, C. elegans,
Drosophila, mice, rats, sheep, and humans (Hrachovec 1969; Young
et al., 1975; Webster and Webster 1979; Dwyer et al., 1980; Ekstrom
et al., 1980; Webster et al., 1981; Blazejowski and Webster 1983;

Frontiers in Cell and Developmental Biology

Webster and Webster 1983; Bailey and Webster 1984; Ward and
Richardson 1991; Sonntag et al., 1992; Rooyackers et al, 1996;
Connors et al., 2008; Belozerov et al., 2014; Depuydt et al., 2016;
Hu et al,, 2018; Ravi et al., 2018). This age-related decline in protein
translation was observed in a wide variety of cellular fractions (cytosol
and mitochondria), tissues, and organs, including brain, lung, heart,
thymus, muscle, liver, kidney, intestine, pancreas, etc and has almost
universally shown a decline in PT with age this includes a review
of >40 studies of protein translation in the liver of mice and rats using
multiple measures of protein translation including cell free, liver slices,
isolated hepatocytes, and perfused livers (Ward and Richardson 1991)
(Figure 3). There is only one study to our knowledge showing PT to
increase with age, comparing PT in heart tissue in 4 months-10 month
old mice (Ravi et al., 2018). Most of studies examine an older age (22+
Months for the older time point), it is possible that PT rises early life
and then subsequently falls. This is consistent with data in livers
showing a rise in PT from month three-six then a subsequent decline
(Ward and Richardson 1991).

The exact molecular mechanism underlying this age-related
decline in protein translation is still unknown. However, several
studies suggest that reductions in the activity and levels of eIFs
may impair the initiation step and thereby contribute to the age-
dependent fall in protein translation. For example, the amount of
elF2 and the activity of eIF2 to promote ternary complex formation
decline with age in multiple tissues of rats such as liver, spleen, kidney,
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lung, and brain (Vargas and Castaneda 1983; Cales et al.,, 1986;
Kimball et al., 1992). Similarly, the amount and activity of eIF2B,
which is essential for replenishing the eIF2 activity by facilitating the
GDP-GTP exchange, declines with age in brains and livers of rats
(Kimball et al., 1992). Interestingly, age-related reductions in levels of
active eIF2 were strongly correlated with the decline in protein
translation across the lifespan (Kimball et al., 1992). Besides elF2,
the amount of eIF5, which promotes the formation of the 43S pre-
initiation complex, also declines with age in several brain areas of rats
(Luchessi et al., 2008). Whether the activity and level of other eIFs such
as elF1, elF3, eIF4A, eIF4E, elF4G, etc. decline with age is still
unknown.

The elongation step of protein translation is also compromised
with age. For instance, the ribosomal half-transit time (the elongation
time required for the synthesis of an average half-length of a nascent
peptide) was increased by ~60% in hepatocytes isolated from old rats
(Coniglio et al., 1979). The later in vivo studies with yeast, C. elegans,
mice, rats, and sheep also showed that the rate of peptide elongation
significantly slows down with age (Blazejowski and Webster 1984;
Merry and Holehan 1991; Connors et al., 2008; Stein et al., 2022). With
age, as ribosomal elongation slows down, the frequency of ribosomal
pausing increases as well, leading to increased ribosomal collisions and
less efficient protein translation (Stein et al.,, 2022). Based on these
observations, subsequent studies have investigated how the amount
and function of elongation factors alter with age. The initial study done
with Drosophila found that the protein level and activity of eEFIA
declined with age by ~60% (Webster and Webster 1983). The decline
in eEF1A mRNA level occurred at the same time. Consistent with
these data, the catalytic activity of eEF1A to bind aminoacyl tRNA to
ribosomes was decreased by 60%-85% in liver, brain, kidney, and
skeletal muscle of mice and rats (Moldave et al., 1979; Vargas and
Castaneda 1981; Gabius et al., 1983; Webster and Webster 1983;
Rattan et al., 1991). Unlike the eEF1 data, there have been some mixed
reports on age-related alterations in eEF2. Some studies reported age-
related decline in the amount and activity of eEF2 (Takahashi et al.,
1985; Munoz et al., 2017), whereas others failed to observe such age-
related changes (Moldave et al., 1979; Gabius et al.,, 1983).

Based on these results, in an attempt to prevent age-related decline
in protein translation, Shepherd et al. created a Drosophila line that
overexpresses the eEF1A gene (Shepherd et al., 1989). Interestingly,
the extra copy of the eEF1A gene significantly prolonged the median
and maximum lifespan of flies (~41% increase in the median lifespan).
However, the later study raised potential problems of the genetic
construct and challenged interpretations of the data (Shikama et al.,
1994). Shikama et al, just like the original study by Shepherd et al., did
observe a robust lifespan extension in the fly line that overexpresses
eEF1A. However, Shikama et al. found that the fly line that is supposed
to overexpress eEF1A gene did not actually express more eEFIA
mRNA or have more eEF1A protein levels. The lifespan extension was
proposed to result from not the insertion of the transgene per se but the
insertion of P-element reverting a life-shortening effect of the rosy
gene mutation background. Since then, no studies have investigated
how age-related alterations in eEF1A impact protein translation and
lifespan.

The ribosomal loading to mRNA is also impaired with age. For
example, the proportion of ribosomes in polyribosome (polysome)
fractions significantly decreases with age in multiple animal species
(Wallach and Gershon 1974; Kurtz 1978; Webster et al., 1981; Pluskal
etal, 1984; Lee et al., 1993; Hu et al., 2018). Conversely, there is an age-
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dependent increase in monomeric ribosomes (monosomes), implying
that less ribosomes are actively associated with mRNA with increasing
age. As a result, the ability of ribosomes to incorporate labeled amino
acids into a polypeptide chain is severely compromised with age (Britton
and Sherman 1975; Kurtz 1978; Mori et al., 1979; Ekstrom et al., 1980;
Linnemann et al., 1993). The age-related reductions in the amount and
functionality of various elFs (discussed above) may contribute to the
impairment in ribosomal attachment to the mRNA. Another
contributor to the compromised ribosomal loading would be age-
related decline in translational output of ribosomal protein mRNA
and transcripts related to ribosomal biogenesis, potentially due to their
increased methylation (D’Aquila et al., 2017; Hu et al., 2018; Anisimova
et al,, 2020). In fact, ribosome occupancy of translation-related genes
drops with age by twofold or even more (Anisimova et al,, 2020). At the
same time, translational output of genes that downregulate protein
translation is increased: e.g. ssdl, which sequesters mRNAs and
translational machineries into P-bodies and Gcn2, which inactivates
the elF2-dependent ternary complex formation (Hu et al,, 2018).
Recent studies suggest that not only reductions in ribosomes or
translational machineries per se but also the disruption of the
stoichiometry of translational machinery components may contribute
to decline in protein translation with age. For example, the parallel
analysis of Ribo-seq (ribosome profiling) data and RNA-seq data in
young and old yeast cells showed that the abundance of transcripts
increased with age whereas the translation of each transcript decreased
with age (Hu et al,, 2018; Tye et al,, 2019). These data suggest that the
imbalance between transcripts and translational machineries becomes
exacerbated with age, which may cause inefficient loading of
translational apparatus to mRNA. Similar divergent changes in
transcripts and proteins with age were observed in mammals as well.
For example, in African killifish, levels of transcripts encoding ribosomal
proteins continuously increased with age whereas the abundance of
ribosomal proteins decreased with age (Kelmer Sacramento et al., 2020).
This age-related loss of stoichiometry of ribosomal proteins may impair
the ribosomal assembly, leading to decreased efficiency of protein
translation. The subsequently increased pool of orphan ribosomal
proteins may increase the risk of protein misfolding and aggregation
(Tye et al.,, 2019), which may further attenuate protein translation by
activating the PERK-UPR axis (Walter and Ron 2011). Consistent with
these results, the translational output of ribosomal proteins increased
whereas that of other translational factors decreased in rat brains across
ages (Ori et al,, 2015). This proteomic imbalance between ribosomal
proteins and translational factors may impair efficient assembly of pre-
initiation complex and compromise the ribosomal loading to mRNA.

5 Life-long reduction in protein
translation improves lifespan and
healthspan

Protein translation is an essential cellular process, playing crucial
roles in growth, development, and reproduction (Pan et al., 2007). As
previously discussed, protein translation precipitously declines with
age, staying at low basal levels throughout middle-old ages in multiple
animal species, including humans. One would expect that lowering
protein translation would be detrimental to health. However, a life-
long reduction in protein translation slows down aging, prolongs
lifespan, and ameliorates cellular senescence and several age age-
related diseases (Scheuner et al., 2005; Pan et al., 2007; Syntichaki
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Interventions to reduce protein translation
Intervention Effect Species Reference
kit Increased lifespan C. elegans Syntichaki et al., 2007
delectionknockdown D EK0 Y i
elF4G downregulation Increased lifespan C. elegans Panet al., 2007; Rogers et al., 2011
elF3 Incroasediifostan € olotans Cattie et al., 2016; Curran and Ruvkun,
delectionknockdown p G 2007
egl-45 knockdown Increased lifespan C. elegans Curran and Ruvkun, 2007
elF1 knockdown Increased lifespan C.elegans Curran and Ruvkun, 2007
elF2 knockdown Increased lifespan C. elegans Chenetal, 2007
b |nh|b|to_r Increased lifespan C. elegans Takauji et al., 2016
cyclohexamide
- Increased lifespan + . Demontis and Perrimon, 2010; Wessells
4E-BP overexpression NS Drosophila etal, 2009
BT negatr_ve 258 Increased lifespan Drosophila Kapahi et al., 2004
overexpresion
6IF2 inhibition EREE LGN | o Mittal et al, 2017
lifespan
60S nbosomgl subunits Increas_ed replicative Yot Steffen et al., 2008
deletion lifespan
S i ey | R LI Steffen et al., 2008
lifespan
S6K1 deletion Increased lifespan Mice Selman et al., 2009
: i Renetal, 2019, Castaneda et al., 2012;
S6K downregulation Improved healthspan Mice Selman et al, 2009: Um et al.. 2004

FIGURE 4

Impact of protein translation repression on lifespan and healthspan. Table of studies examining impact on lifespan or healthspan of genetic and drug

interventions to repress protein translation.

et al., 2007; Steffen et al., 2008; Selman et al., 2009; Tain et al., 2009;
Blagden and Willis 2011; Rogers et al., 2011; Martin et al., 2014;
Takauji et al., 2016; Ren et al., 2019) (Figure 4).

From 1970s to 1990s, most of aging studies had focused on the effects
of aging on protein synthesis. Since the early 2000s, investigators began to
examine the reverse relationship: the effects of protein synthesis on the
aging process. Syntichaki et al. were one of the first groups to study how
perturbations in protein translation impact the animal lifespan
(Syntichaki et al., 2007). Syntichaki et al. attenuated protein translation
in C. elegans by deleting or knocking down the translation initiation factor
elF4E isoforms in somatic tissues. This manipulation substantially
prolonged the nematode lifespan (~55% extension in the median
lifespan). Subsequent studies inhibited mRNA translation by mutating
or knocking down other translation initiation factors and observed robust
lifespan extension effects as well. For example, downregulation of eIF4G,
which interacts with eIF4E to facilitate formation of the eIF4F complex,
improved the nematode lifespan by more than 30% (Pan et al., 2007;
Rogers et al,, 2011). Similarly, deletion or RNAI of eIF3, which plays a
critical role in formation of the 43S pre-initiation complex, led to ~40%
extension of the C. elegans lifespan (Curran and Ruvkun 2007; Cattie et al,,
2016). Knocking down other translation initiation factors such as elF1,
elF2, elF2B, elF4A, elF5A, efc. also significantly improved the lifespan
(Hamilton et al., 2005; Chen et al.,, 2007; Curran and Ruvkun 2007;
Tohyama et al., 2008).
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Later studies have targeted different translational machineries to
inhibit protein synthesis in animal models other than C. elegans.
Similar lifespan extension effects were observed. For example,
overexpression of 4E-BP, which sequesters eIF4E and thereby
attenuates protein translation, ameliorated age-related protein
aggregation, improved functions of heart and skeletal muscle at old
ages, and extended the Drosophila lifespan (Wessells et al., 2009;
2010). Moreover, reducing protein
translation by inhibiting the eIF2 activity via Gcn4 extended the
replicative lifespan of S. cerevisiae (Mittal et al., 2017). Further,
deletions of or mutations in several ribosomal proteins significantly

Demontis and Perrimon

increased the lifespan of the budding yeast and filamentous fungi
(Belcour et al., 1991; Steffen et al., 2008). Likewise, reducing the levels
and activity of S6K, which promotes ribosomal biogenesis, robustly
improved the lifespan of C. elegans, Drosophila, and rodents (Kapahi
et al,, 2004; Pan et al., 2007; Selman et al., 2009). For example, in fruit
flies, dominant negative forms of S6K significantly increased the
lifespan, whereas constitutively active forms of S6K caused
accelerated aging and shortened the lifespan (Kapahi et al., 2004).
Consistent with these results, inhibiting mTOR signaling, which
enhances protein translation via S6K activation, promotes longevity
in multiple animal models (Johnson et al., 2013).
Pharmacologically inhibiting protein translation has also been
shown to slow down aging as well. For example, cyclohexamide, a
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well-known protein synthesis inhibitor targeting the elongation phase
of translation, abolished senescent features in human cells and
robustly improved the C. elegans lifespan (Takauji et al., 2016). In
addition, diazaborine, which reduces levels of 60S ribosomal proteins
and inhibits ribosomal biogenesis and maturation, significantly
increased the replicative lifespan of the budding yeast (Steffen
2008). Further, attenuating protein translation by
minocycline enhanced proteostasis and promoted the longevity in

et al,

C. elegans (Solis et al., 2018). Minocycline also had neuroprotective
and anti-inflammatory effects and ameliorated AD-related cognitive
deficits in rodents (Choi et al., 2005; Festoff et al., 2006; Seabrook et al.,
2006; Choi et al., 2007; Noble et al., 2009). However, unlike
cyclohexamide and diazaborine, minocycline is an antibiotic that
does not specifically target protein translation and has the potential
to impact other pathways.

Manipulations that lower protein translation improve not only
lifespan but also healthspan and ameliorate several age-related
diseases, including frailty, osteoporosis, metabolic disorders,
cardiovascular disease, cancer, and neurodegenerative disorders.
For example, diminishing protein translation rate by inhibiting
ribosomal biogenesis alleviated physiological aging of human
mesenchymal stem cells and counteracted the development of
frailty and osteoarthritis in mice (Ren et al,, 2019). Moreover,
downregulating S6K signaling to attenuate protein translation in
mice improved the locomotor activity, increased the population of
naive T cells, enhanced the bone volume and density, and protected
against age- and diet-induced obesity/diabetes by improving
insulin sensitivity and reducing adiposity (Um et al, 2004;
Selman et al., 2009; Castaneda et al., 2012). Consistent with
these studies, in rodent models of type II diabetes, S6K signaling
was overactive and protein translation rates were elevated in islet 3-
cells (Hatanaka et al., 2014; Talaei et al., 2014). In addition,
enhancing  protein  translation via  overactivation  of
elF2 impaired glucose tolerance and caused diabetic phenotypes
in mice (Harding et al., 2001; Zhang et al., 2002b). Conversely,
attenuating protein translation by lowering the eIF2 activity
ameliorated the apoptosis of P cells and improved the glucose
tolerance (Scheuner et al., 2005; Back et al., 2009).

Further, reduction in protein translation by depleting eIF4E with
4E-BP slowed down cardiac aging and decreased the frequency of
cardiac failure at old ages (Wessells et al., 2009). Knocking down
eIF4E ameliorated tumorigenesis as well, and consequently, drugs
targeting eIF4E to inhibit mRNA translation have been heavily tested
in clinical trials for hematologic malignancies (Rinker-Schaeffer
et al., 1993; Blagden and Willis 2011). Overexpression of 4E-BP
also prevented dopaminergic neuronal loss and ameliorated
locomotor deficits in fly models of Parkinson’s disease, induced
by parkin and pinkl mutations (Tain et al., 2009; Liu and Lu 2010).
Likewise, in another fly model of Parkinson’s disease caused by the
mutation in leucine-rich repeat kinase 2 (LRRK2), the most common
genetic cause of both familial and sporadic Parkinson’s disease,
global protein translation rate was elevated due to
phosphorylation of ribosomal protein s15 (Martin et al., 2014).
Introducing phosphodeficient s15 to attenuate protein translation
ameliorated dopaminergic neuronal degeneration and age-related
locomotor deficits in LRRK2 mutant flies (Martin et al., 2014).

A few studies suggest that overactive protein translation may
contribute to the AD pathogenesis as well. For example, the

pathogenic AP, 4, increased protein translation by activating the
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eIF4E activity (Ghosh et al., 2020). In addition, cytoplasmic FMR1-
interacting protein (CYFIP), which represses protein translation by
blocking elF4E-elF4G interactions, was downregulated in post-
mortem brains of AD patients, and CYFIP reduction caused AD
pathologies in mice (Tiwari et al, 2016; Ghosh et al., 2020).
Further, tau K174 acetylation, which occurs in brains of AD
patients/mice at early stages of the disease, enhanced protein
translation by causing nucleolar expansion (Min et al, 2015;
Portillo et al, 2021). Reduction in protein translation by
downregulating S6K signaling improved spatial memory and
synaptic plasticity in an AD mouse model (Caccamo et al., 2015).

Consistent with the data discussed above, long-lived strains of
animals show low rates of protein translation. For example, long-
lived C. elegans strains with reduced insulin/IGF signaling, reduced
mTOR
mitochondrial electron transport chain functions, etc. showed smaller

signaling, reduced germline signaling, or impaired
sized nucleoli, decreased ribosomal biogenesis, and significantly lower
protein translation rates (Depuydt et al, 2013; Tiku et al, 2017).
Likewise, long-lived growth hormone-deficient Snell dwarf mice
exhibited decreased rates of protein translation in liver, heart, and
skeletal muscle (Bates and Holder 1988; Thompson et al., 2016).
Conversely, fibroblasts from patients with premature aging disorders
showed nucleolar expansion, increased ribosomal biogenesis, and
elevated protein translation rates (Buchwalter and Hetzer 2017).
These data indirectly suggest that long-lived animals may achieve the

longevity by sustaining low rates of protein translation.

6 Discussion and conclusion: Protein
translation paradox

Extensive studies from the 1970s to 1990s have shown protein
translation rates to decline over the course of age. These studies
encompass a menagerie of organisms including yeast, C. elegans,
Drosophila, mice, rats, sheep, and humans in a plethora of tissues
including brain, lung, heart, thymus, muscle, liver, kidney, intestine,
pancreas, etc. Thus, it has been postulated that reduction in protein
translation would accelerate the aging process. However, research
since the 2000s has shown that life-long reduction in protein
translation actually robustly improves the lifespan and healthspan.
These conflicting findings raise the so-called protein synthesis paradox
(Blagosklonny et al., 2007). The paradox has not been resolved, which
imposes a substantial barrier to fully understand how protein
translation regulates aging.

The paradox may have mainly arisen from the assumption that
age-related decline in protein translation is a passive byproduct of
aging. Proteasomal and autophagial degradations decline with age, so
in order to match with the reduced capacity of degradation
machineries and thus maintain proteostasis, protein translation
may have been repressed with age as an adaptive response. In this
way, organisms can minimize proteostatic burden, reduce levels of
damaged and aggregated proteins, and thus optimize the lifespan. This
new theoretical framework can resolve inconsistently-seemed findings
with regard to translational regulation of aging. To validate this idea,
further studies should be done to investigate how the rise and fall in
protein translation across lifespan regulate aging and proteostasis. Till
now, all the aging studies have manipulated protein translation
throughout the whole life rather than modifying it in a specific
time window. With understanding of how lifetime protein
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translation dynamics regulate the onset of aging, we will be able to fully
appreciate how protein translation modulates the aging process.
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