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mRNA translation is the ubiquitous cellular process of readingmessenger-RNA strands
into functional proteins. Over the past decade, large strides in microscopy techniques
have allowed observation ofmRNA translation at a single-molecule resolution for self-
consistent time-series measurements in live cells. Dubbed Nascent chain tracking
(NCT), these methods have explored many temporal dynamics in mRNA translation
uncaptured by other experimental methods such as ribosomal profiling, smFISH,
pSILAC, BONCAT, or FUNCAT-PLA. However, NCT is currently restricted to the
observation of one or two mRNA species at a time due to limits in the number of
resolvable fluorescent tags. In this work, we propose a hybrid computational pipeline,
where detailed mechanistic simulations produce realistic NCT videos, and machine
learning is used to assess potential experimental designs for their ability to resolve
multiple mRNA species using a single fluorescent color for all species. Our simulation
results show that with careful application this hybrid design strategy could in principle
be used to extend the number ofmRNA species that could bewatched simultaneously
within the same cell. We present a simulated example NCT experiment with seven
different mRNA species within the same simulated cell and use our ML labeling to
identify these spots with 90% accuracy using only two distinct fluorescent tags. We
conclude that the proposed extension to the NCT color palette should allow
experimentalists to access a plethora of new experimental design possibilities,
especially for cell Signaling applications requiring simultaneous study of multiple
mRNAs.

KEYWORDS

mRNA translation, nascent chain tracking, single-cell experimental design, stochastic
gene expression, fluorescence microscopy simulation, machine learning, totally
asymmetric exclusion process (TASEP)

OPEN ACCESS

EDITED BY

John Albeck,
University of California, Davis,
United States

REVIEWED BY

Jan Spille,
University of Illinois Chicago,
United States
Ben Montpetit,
University of California, Davis,
United States

*CORRESPONDENCE

Timothy J. Stasevich,
tim.stasevich@colostate.edu

Brian Munsky,
brian.munsky@colostate.edu

RECEIVED 25 January 2023
ACCEPTED 09 May 2023
PUBLISHED 30 May 2023

CITATION

Raymond WS, Ghaffari S, Aguilera LU,
Ron E, Morisaki T, Fox ZR, May MP,
Stasevich TJ and Munsky B (2023), Using
mechanistic models and machine
learning to design single-color
multiplexed nascent chain
tracking experiments.
Front. Cell Dev. Biol. 11:1151318.
doi: 10.3389/fcell.2023.1151318

COPYRIGHT

© 2023 Raymond, Ghaffari, Aguilera, Ron,
Morisaki, Fox, May, Stasevich andMunsky.
This is an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Cell and Developmental Biology frontiersin.org01

TYPE Original Research
PUBLISHED 30 May 2023
DOI 10.3389/fcell.2023.1151318

https://www.frontiersin.org/articles/10.3389/fcell.2023.1151318/full
https://www.frontiersin.org/articles/10.3389/fcell.2023.1151318/full
https://www.frontiersin.org/articles/10.3389/fcell.2023.1151318/full
https://www.frontiersin.org/articles/10.3389/fcell.2023.1151318/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2023.1151318&domain=pdf&date_stamp=2023-05-30
mailto:tim.stasevich@colostate.edu
mailto:tim.stasevich@colostate.edu
mailto:brian.munsky@colostate.edu
mailto:brian.munsky@colostate.edu
https://doi.org/10.3389/fcell.2023.1151318
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2023.1151318


1 Introduction

mRNA translation is the process of reading messenger RNA
strands to create functional proteins and is a crucial underpinning of
known cellular life. With such a vital role, mRNA translation has
been the subject of intense study over the past decades (Basyuk et al.,
2020; Knight et al., 2020; Neelagandan et al., 2020; Das et al., 2021).
Despite the focus, the effects that cellular signals have on the
translation of individual mRNA molecules remains elusive due to
two key factors: the staggering amount of dynamics, mechanisms,
and modifications affecting the in vivo mRNA transcriptome
heterogeneity and the limitations of experimental techniques that
can accurately and informatively probe these dynamics molecule-
by-molecule and in a time-resolved manner. Previous methods used
to probe mRNA translation dynamics such as ribosomal
footprinting (Brar and Weissman, 2015; Ingolia, 2016), RNA-seq
(Wang et al., 2009; Chen et al., 2019; Stark et al., 2019), proteomics/
protein abundances (Gorgoni et al., 2016; Aslam et al., 2017), and
smFISH (Cui et al., 2016; Pichon et al., 2018) provide snapshot bulk
data in high quantity, at the detriment of obscuring the temporal
dynamics of individual mRNA molecules. Pulsed SILAC, PUNch-P,
BONCAT/QuaNCAT allowed mass spectrometry quantification of
recently translated protein abundances via treatment with
noncanonical amino acids (Eichelbaum et al., 2012; Howden
et al., 2013). Methods such as FUNCAT/SUnSET bridged the gap
of detecting active mRNA translation as well as subcellular location
by labeling nascent peptide chains and imaging in fixed cells (David
et al., 2012; Dieck et al., 2012). FUNCAT-PLA and Puro-PLA then
provided spatial resolution and imaging of the recent protein
production via detection with a proximity ligation assay (PLA)
(Dieck et al., 2015). Despite their innovations, these techniques
require fixation or lysis of the cells of interests. As a consequence,
none of these methods are able to capture long-term temporal
imaging of translation at a single-molecule level of the same
mRNA molecules (Chekulaeva and Landthaler, 2016).

Since 2016, Nascent Chain Tracking (NCT) has provided
experimentalists with a technique to study single, actively
translating mRNA transcripts and quantify their dynamics
with the use of a dual fluorescent labeling system (Morisaki
et al., 2016; Pichon et al., 2016; Wu et al., 2016; Yan et al.,
2016; Pichon et al., 2018; Cialek et al., 2020). The key to this
technique is multiple epitope sequences that are placed on a tag
within the coding region of the studied mRNA; After this tag
region is translated, fluorophore-conjugated intrabodies bind to
the growing nascent polypeptide chain resulting in an amplified
fluorescent spot. After translation is completed, fluorescently-
tagged single proteins are free to diffuse away. The mRNA
molecule is tagged in the 3’ untranslated region with a hairpin
loop repeat system recognized by fluorophore-conjugated MS2 or
PP7 coat proteins, conferring a constant intensity in a separate
color channel for tracking purposes. The combination of these
two elements gives a co-localized, diffraction-limited, two-color
spot trajectory denoting an mRNA location and a live nascent
chain activity readout. NCT has been utilized to investigate many
processes of interest such as mRNA frameshifting (Lyon et al.,
2019), mRNA IRES-mediated translation (Koch et al., 2020),
mRNA decay (Horvathova et al., 2017; Hoek et al., 2019),
translation suppression during cellular stress (Moon et al.,

2019), and mRNA spot to spot heterogeneity (Boersma et al.,
2019). NCT has also proven beneficial to extract important
biophysical parameters, including elongation rates, initiation
rates and ribosomal densities (Morisaki et al., 2016; Pichon
et al., 2016; Wu et al., 2016; Yan et al., 2016), and microRNA
mediated decay (Cialek et al., 2022; Kobayashi and Singer, 2022).

Notwithstanding NCT’s current adoption and importance,
application of NCT to understand how different cellular signals
affect translation of different mRNA is currently prevented by
strong limits on the fluorophore color palette. Currently, only
three or four resolvable colors exist in most microscope settings;
one color is dedicated to tracking the mRNA, leaving only two or
three resolvable colors to design experimental setups and
constructs. Use of too many fluorescent probes with similar
emission spectra leads to imaging issues such as light bleed
through into each channel. Additional laser wavelengths also
limits the frame rates that one can utilize due to the time required
to switch laser or filters between each frame. While this has not
proven detrimental to previous NCT experiments that have
explored one (Morisaki et al., 2016; Wu et al., 2016; Yan et al.,
2016) or two (Boersma et al., 2019; Lyon et al., 2019; Koch et al.,
2020) translation products at a time, there is an anticipation that
this limitation will become a roadblock for designing future,
more elaborate experiments, particularly for processes involving
differential control of multiple mRNAs under cellular stimuli.
Specifically, we speculate that the current form of NCT
technology has already reached its peak in experiments where
two different genes are correctly detected and differentiated on
the same cell (Boersma et al., 2019; Lyon et al., 2019; Koch et al.,
2020).

Recently, machine learning has enjoyed an explosion of
applications in biological and biomedical imaging contexts
(Haque and Neubert, 2020; Tchapga et al., 2021). Convolutional
neural networks have achieved the state-of-the-art performance on a
wide variety of classification tasks such as speech recognition (Palaz
et al., 2015), computer vision (Jarrett et al., 2009), natural language
processing (Liao et al., 2017), and in myriad biomedical contexts
(Zhu et al., 2018; Feeny et al., 2020). For the purpose of our work, we
utilize 1D convolutional neural networks to classify signals from two
mRNA species recaptured from a realistic noise model and realistic
mRNA translation model. One dimensional convolutional neural
networks (CNNs) are well equipped to handle 1D signals for
classification and see frequent use for applications across the
biomedical field such as ECG (Murat et al., 2020) and EEG
signals (Xie and Oniga, 2020).

Applying machine learning to NCT experiments cannot be done
outright as of time of writing due to a lack of large and standardized
data sets, and it is not clear exactly howmuch data, and under which
conditions, would be needed to build successful classifiers. To more
efficiently explore these questions, we generate large sets of realistic
NCT experiment simulations using a new pipeline, as detailed
below. In brief, translation of nascent proteins and their
corresponding Fluorescent intensity signals are modeled with a
codon-dependent Totally Asymmetric Simple Exclusion Process
(TASEP) to consider elongation rate changes due to codon
selection along each mRNA transcript, as well as ribosomal
collisions. In this paper, we use our previously described mRNA
translation mechanistic model–a full comprehensive explanation of
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FIGURE 1
Overview of approach to simulate Nascent Chain Tracking data and assign labels. rSNAPsim provides simulated NCT fluorescent intensity
trajectories from a codon-dependent TASEPmodel for eachmRNA spot. rSNAPed adds experimental spatial movement (Brownianmotion) and temporal
noise by introducing a point spread function for each spot. Simulated cell background frames are generated randomly from a per pixel Gaussian
distribution with their means and standard deviations taken from 20 frames of real blank cell backgrounds. Spots in videos are processed with the
disk and doughnut method to generate simulated NCT intensity data.
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this model and its parametrization can be found in (Aguilera et al.,
2019). Fluorescent intensity signals from the mechanistic model are
then combined with our realistic video rSNAPed pipeline, which
applies a point spread function and adds a simulated cell
background with microscope noise calibrated from real videos.
mRNA molecules freely diffuse with a set diffusion rate within
the simulated cell mask to simulate Brownian motion. The resulting
intensity from the simulated videos are then processed as if they
were real images to generate “simulated nascent chain tracking”
data. Through this means, we construct a controllable “experiment”
whose measurement is a corrupted fluorescent signal, where we can
easily control various factors such as signal-to-noise ratio (SNR),
spot size, diffusion rates and mechanisms, mRNA initiation and
elongation rates, and imaging conditions (frame rate/frame interval
and number of frames taken).

In this paper, we use these simulations to demonstrate that
high classification accuracy is achievable in principle using a
machine learning approach across a large range of biophysical
and experimental parameters, even if two mRNAs are utilizing
identical tagging approaches and fluorescent colors. To extend
NCT color palette, our computational pipeline of mRNA
translation modeling, spot simulation, spot tracking, and
machine learning uses as features various statistics of the
spot’s intensity fluctuations, such as their moments, relative
intensity ratios, and decorrelation times to discriminate
between different mRNA species. This type of “temporal
multiplexing” could radically expand the number of mRNAs
imaged in a cell. Different color fluorophores could be held in
reserve for mRNAs whose characteristics are too similar to each
other, or eschewed altogether to increase microscope imaging

speed and decrease experiment cost. The entire pipeline can be
used to explore potential NCT experimental designs without
using valuable lab time and resources. We envision that the
proposed model-based strategies to tag multiple mRNAs using
single color tags will add new possibilities for future experimental
NCT investigations.

2 Methods

2.1 Simulated NCT experiment pipeline

Figure 1 graphically describes the current study’s computational
pipeline, which combines the RNA Sequence to NAscent Protein
SIMulator (rSNAPsim) and rSNAP Experiment Designer
(rSNAPed) scientific libraries to generate synthetic training and
testing data sets for multiple experimental conditions. rSNAPsim is
a Pythonmodule that provides simulated fluorescent intensity traces
from a given mRNA transcript using a codon-dependent TASEP to
simulate ribosomal elongation (Aguilera et al., 2019). This
mechanistic model for translation assumes two parameters: the
ribosomal initiation rate, ki, is defined as the average number of
ribosomes to initiate translation per second, assuming that other
ribosomes are not blocking the initiation site. The elongation rate, ke
is defined as the global stepping rate (aa/s) averaged over all coding
regions in the genome, again assuming no ribosome-to-ribosome
exclusion. Because the actual local stepping rates depend the specific
codon usage of an mRNA, and because rSNAPsim includes a 9-
codon ribosome exclusion footprint that prevents two ribosomes
from occupying the same site at the same time, the effective stepping

FIGURE 2
Machine learning to classifier mRNA spots (A) The ML model consists of two separate convolutional layers–one receiving a normalized fluorescent
trajectory and the other an intensity autocorrelation. The filter outputs are regularized and concatenated for a dense layer of 200 neurons for
classification. Fundamentally, this architecture learns off frequency and intensity information from the NCT trajectory. (B) Accuracy of the architecture for
different training data sets. A total of 4,000 unique spot trajectories were split into 2–10 independent training data sets of the specified size. A
classifier was trained with each training data set and tested on the same withheld validation set of 1000 NCT spots. A trend-line was added by fitting a Hill
function to the test accuracy average across 15 bins in training data size (y � 0.5 + 0.39

1+(6.336/x).521). The architecture was applied on simulated P300 and
KDM5B trajectories from the selected base experimental condition (5 s frame interval, 64 frames, 0.06 1/s initiation rate, 5.33 aa/s elongation rate).
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rate for each mRNA is based on the specific sequence of the mRNA.
For full details on the rSNAPsim model, including calculations for
the individual codon elongation rates, see (Aguilera et al., 2019). We
have shown previously that the rSNAPsim module can reproduce
much of the fluctuation statistics observed in NCT translation
experiments (Aguilera et al., 2019; Lyon et al., 2019; Koch et al.,
2020). However, the movement of NCT spots across the cell
background can lead to large drops in intensity when, for
example, a spot leaves a bright nuclear region and enters a
dimmer cytoplasmic region. These movements from areas of
high to low or low to high backgrounds cause intensity
fluctuations that are not due to the translation process itself but
are, nevertheless, always present in real experimental data.

rSNAPed is a second python module that accounts for artifacts
of microscopy, motion relative to a heterogeneous cellular
background, and image processing effects. rSNAPed combines
the rSNAPsim model intensity prediction with a point spread
function, a controllable signal-to-noise ratio, simulated cellular
background based on experimental video of non-labeled cells,
and simulated motion for the NCT spots. To create a video for
any length of time, rSNAPed takes 20-frame videos from one of
seven unlabeled cells, randomly rotates and flips the videos and uses
pixel-by-pixel statistics to formulate distributions from which to
generate new simulated frames. Specifically, for each simulated
frame, rSNAPed uses each pixel’s empirical mean and standard
deviation to draw a new Gaussian distributed value for the respective
pixel1 Supplementary Figure S1 provides a comparison of real cell
background video and a simulated video from rSNAPed. Simulated
mRNA spots are added to this cell background by simulating a point
spread function on a 3 × 3 pixel patch, which is centered at a position
that moves according to Brownian motion. After simulating the
NCT experiment, videos are processed to find intensity trajectories
using the “disk and doughnut”method (Lyon et al., 2019), where the
instantaneous signal is quantified as the difference between the
average of the disk (3 × 3 patch centered at the spot) compared to the
average of the doughnut (9 × 9 patch excluding the 3 × 3 disk patch).
Units of intensity are reported as “units of mature protein” or UMP,
which is calculated as the number of complete epitope tags in the
NCT spot (i.e., if a simulation has two ribosomes downstream of a
10xFLAG tag and one halfway through the tag, the intensity at that
time is 25 epitopes or 2.5 UMP).

The combination of rSNAPsim and rSNAPed allows generation
of vast amounts of synthetic video in different situations (e.g., for
different mRNA sequences, different biophysical parameters, and
different imaging conditions) that can match the translation
statistics and spatial heterogeneity that an NCT spot would
experience as it moves around a cell. For each mRNA in each

condition, we generate 2,500 simulated NCT trajectories (5,000 total
trajectories for two mRNA types in the same video). Theses
trajectories are collated from 100 independent NCT simulated
cells, each containing 25 spots of each mRNA for 3,000 s at one
second resolution (25 spots × 2 classes × 100 cells = 5,000 total NCT
spots for 3,000 s). Smaller data sets can be generated as needed from
these full length data sets by slicing the 1 s × 3,000 frame video
trajectories to the desired frame interval and number of frames.

By generating such data for multiple different potential
experimental conditions, we can train and test our machine
learning methods to ascertain which feasible experimental
conditions are most favorable to allow for successful classification.

2.2 Machine learning

Figure 2A shows the machine learning architecture used to
classify mRNA spots. Given two different mRNA species in the same
cell and NCT observations that rely on identical tags, one could
attempt to classify the mRNA based on their intensity signals, their
particle sizes, or their x, y, and z coordinates over time (with z having
poorer resolution than x and y). Of these, we focus on intensity
signals, which contain both statistical moments, such as the signal
means and variances, as well as signal frequency content, similar to
that which could be obtained with methods like spectrogram
analysis or fluctuation correlation spectroscopy (FCS). We apply
convolutional neural networks to classify the NCT simulation data
based on one or both types of signal intensity inputs. First, to
prioritize extraction of features related to intensity statistics, we use
min-max normalization of all intensity signals in the same video. Let
Ii(t) denote the intensity for spot i ∈ (1, 2, . . . ) and at frame number
t ∈ [0, 1, . . . , T − 1] that has been collected from a given NCT
experiment or simulation video. Define Imax and Imin as the
maximum and minimum spot intensities across all spots and all
times in the video:

Imax � max
i,t

Ii t( ), and Imin � min
i,t

Ii t( ). (1)

The min-max normalization of each signal, Ii,norm, which scales
features from zero to one for later convenience in machine learning,
is computed as:

Ii,norm t( ) � Ii t( ) − Imin

Imax − Imin
. (2)

Second, to prioritize features related to fluctuation frequencies, we
use the normalized empirical auto-correlation function for each
spot, Gi(τ), which is defined as the sample covariance between the
signal fluctuation at frames t and t + τ, is calculated as:

Gi τ( ) � 1
T − 1 − τ

∑T−1−τ
t�0

Ii t( ) − μi
σ i

( ) Ii t + τ( ) − μi
σ i

( ), (3)

where t is an index corresponding to the frame number, τ is the
correlation lag time; T is the total number of frames; and μi and σi are
the ith signal’s trajectory average and standard deviation,
respectively (Coulon and Larson, 2016; Morisaki et al., 2016).

The normalized inputs from Eqs 2, 3 are each passed to their
own separate convolutional 1D layer and subsequent max pooling
layer for feature extraction. For convenience, the two convolutional

TABLE 1 Hyperparameter optimization grid.

Hyperparameter Variable range

kernel size 1 × 3, 1 × 5, 1 × 7

number of kernels 16, 32, 64

batch size 16, 32, 64

epochs 50, 100
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layers have the same size filter kernels and amount of filters. The
extracted feature vectors from each input are concatenated and
passed into one fully connected layer with a cross-entropy objective
to classify the mRNA. The entire network (2 conv1D, 2 maxpooling,
1 dense) was trained end to end, and elastic net regularization is used
to reduce over-fitting (Zou and Hastie, 2005). During training, data
was split with an 80:20 ratio into training and testing sets, and
training was performed with a 3-fold cross validation using a
random search to select hyperparameters. Specifically, we
searched over the possible combinations of options listed in
Table 1 (Bergstra and Bengio, 2012), and selected the
hyperparameter set that maximized validation accuracy. After
training and hyperparameter selection, the final architecture was
tested on the 20% withheld test data to quantify the model
performance on unseen data.

2.3 Hardware

All machine learning experiments were done with TensorFlow
2.2.0 on 2 × NVIDIA Geforce 2080 Supers. Simulated NCT
experiments were generated on an AMD Ryzen Threadripper
3,970 × 32-Core Processor utilizing 8 threads for each simulated
NCT experiment generation.

Time for generating one 5,000 spot NCT experiment with base
experimental conditions: ≈ 2 h 44 m

Time for generating one 50-spot cell with base experimental
conditions (short output + not saving video): ≈197 s

2.4 Microscopy

The seven background videos used for video generation in the
rSNAPed were captured using a custom-built wide-field
fluorescence microscope with a highly inclined illumination
regime with 488, 561, and 637 nm excitation beams (Vortran)
((Tokunaga et al., 2008; Morisaki et al., 2016)). An objective lens
of × 60, NA 1.49 oil immersion, Olympus, was used. The emission
signals were split by an imaging grade, ultra-flat dichroic mirror
(T660lpxr, Chroma) and detected using two separate EM-CCD
(iXon Ultra 888, Andor) cameras via focusing with 300 mm tube
lenses ultimately producing 100 × images with a 130 nm/pixel

resolution. JF646 signals were detected with the 637 nm lasers
and the 731/137 nm emission filter (FF01-731/137, Semrock).
Cy3 signals were detected with the 561 nm lasers and the 593/
46 nm emission filter (FF01-593/46, Semrock).

The lasers, the cameras, and the piezoelectric stage were
synchronized via an Arduino Mega board (Arduino) and image
acquisition was done with open source Micro-Manager software
(Edelstein et al., 2014). An imaging size of 512 × 512 pixels2 was used
and exposure time was set to 53.63 msec. This resulted an imaging
rate of 13 Hz with 23.36 msec readout time and 13 Z-stacks were
captured at 500 nm step size.

U-2 OS cells were loaded with Cy3-FLAG Fab and JF646-Halo-
MCP 6–10 h prior to imaging. Right before imaging, cells were
transferred into the stage top incubator set to a temperature of 37°C
and supplemented with 5% CO2 (Okolab). Acquired 4D (xyzt)
images were processed to 3D (xyt) maximum intensity
projections for the rSNAPed image generation.

3 Results

To begin our exploration of the potential to use NCT signal
intensity fluctuations to differentiate mRNA species, we choose
baseline experiment using P300 (7257 NT) and KDM5B
(4647 NT) mRNA, each with a 10xFLAG epitope tag. Both
constructs are assumed to have equal initiation and elongation
rates of ki = 0.06 1/s and ke = 5.33 aa/s, and both are assumed to
be images for 64 frames with a rate of one frame every 5 s.

3.1 For typical mRNA and experiment
designs, large training data sets may be
needed to build an accurate classifier

To see how much training data are needed to build an accurate
classifier, we use the baseline mRNA designs and experimental
conditions (with 64 frames), and we trained our architecture with
progressively increasing training data sizes. Figure 2B shows the
resulting accuracy on a withheld validation set of 1,000 NCT spots,
when the model is trained on independent training sets of the
different sizes. The accuracy of the classifier levels off at about 87%
when the training data set reaches 800–1000 NCT spots.

TABLE 2 Selected base experimental conditions, statistics are calculated before microscope noise addition via rSNAPed.

Gene 1 - KDM5B Gene 2 - P300 Imaging conditions

Parameters L: 4647 NT L: 7257 NT 64 frames

Ltag: 1011 NT Ltag: 1011 NT 5 s frame interval

ke: 5.333 aa/s ke: 5.333 aa/s KDM5B SNR: 6.2

ki: 0.06 1/s ki: 0.06 1/s P300 SNR: 8.9

Statistics μI: 19.3 UMP μI: 28.2 UMP

σ2I : 18.7 UMP σ2I : 28.5 UMP

tdwell: 354 s tdwell: 517 s

* NT = nucleotides, * aa = amino acids.
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Unfortunately, such a large amount of data is approaching
unfeasible in current NCT laboratory settings, highlighting the
need for using mechanistic simulation to Supplementary Data
when training a classifier. It is important to note that this result
is for the experimental base conditions listed in Table 2; as we will
discuss below, other parameter combinations can increase or
decrease classification difficulty and result in variations for the
amount of training information required.

3.2 Realistic simulations of nascent chain
tracking for KDM5b and P300 mRNA reveal
that two mRNA can be distinguished using
only their fluorescence intensity fluctuations

As a proof of concept and to further explain the process of
labeling spots by their behaviors rather than by their colors, Figure 3
presents a example of our machine learning pipeline. Two simulated
cells (Figure 3A, top) are generated using the baseline conditions but
with double the amount frames (128 instead of 64, but with the same
5 s interval between frames) to better highlight the ribosomal dwell-
time difference between the two mRNAs. The 2 cells can be
processed with a disk and doughnut approach (see Methods) to
extract fluorescence intensity trajectories for each of the 100 spots
(Figure 3A, bottom).

In practice, biophysical parameters could be estimated from
these NCT measurements of fluorescence intensity trajectories
(i.e., from the intensity distributions and autocorrelations) as
done previously in (Aguilera et al., 2019) and illustrated in
Figure 3A. For simplicity of description, we assume that these
parameters are known, although we will relax this assumption
later in the investigation. Using these assumed parameters, we
use our computational pipeline to simulate a training data set of
5,000 NCT spots from simulated NCT experiments, and we use this
simulated data to train a classifier (Figure 3C). With this classifier,
the user can then finally label their original data artificially or use the
trained classifier to label any newly collected data (Figure 3D).

3.3 Simulations can reveal which aspects of
experimental data are most informative for
multiplexed mRNA classification

For two different NCT spots within the same cell and under the
same experimental conditions, our dual input architecture
(Figure 2A and Methods) utilizes both relative intensity
differences and signal frequency content to classify spots. Using
both features allows for improved classification robustness across
parameter space. There are experimental conditions and biophysical
parameters where intensity information is more useful, conditions
where frequency is more informative, and conditions where a
mixture of both information sources is utilized by our
architecture. To highlight this, we simulated three separate data
sets: one with markedly different intensity distributions, one with
mostly overlapping distributions, and one with nearly identical
intensity distributions, Table 3. For each of these conditions
(which have different translation initiation rates), both P300 and
KDM5b use the same average elongation rate, but because the genes

have different lengths and different codon usages, they exhibit
different ribosomal dwell time.

We applied our architecture to each of these data sets across a
large swath of imaging conditions (i.e., different numbers of
frames and frame intervals) to show our architecture’s ability to
self select which features to use for classification as well as
highlight which imaging conditions are ideal for these
experiments conditions. Figure 4A (left) shows that the first
condition (different dwell times and different intensity
distributions) is trivial to classify–Simply looking at which
spots are brightest and which are dimmest is sufficient to
reach than 90% accuracy in just a few frames. Figure 4A left)
also shows that for mRNAs with such different intensity
distributions, fluctuation frequencies are less informative, and
the optimal frame interval should have as long a delay as possible
so that each measurement is as statistically independent as
possible.

Conversely, identical intensity conditions can be obtained by
tuning the initiation rates such that each mRNA has the same
ribosomal occupation average over time, and thus almost
identical intensities (there is a slight difference due to codon
dependence and ribosomal occupation probabilities per codon
leading to varied occupation downstream of the tag region across
each mRNA’s length). In this condition, our classifier can only
learn on the autocorrelation function and frequency information.
Expected ribosome dwell times for P300 and KDM5B under these
conditions are approximately 517 s and 353 s, respectively–a
statistic that is available to the classifier through the
autocorrelation of its intensity fluctuation. Figure 4A (right)
shows the test set classification accuracy as a function of video
frame intervals and total number of frames. This plot highlights a
clear region of image settings that would be sufficient to capture
enough frequency information for classification, ≈20–30 s
between frames for over 150 total frames. To be effective, the
frequency-based classifier needs enough frames at the right
intervals to sample the auto-correlation of ribosomal
movements. If the total video time is too short, too few
ribosomes will complete translation, and the NCT intensity
signal would remain almost fully correlated with itself. As a
result, one would have insufficient number of independent data
points with which to calculate an effective autocorrelation.
Conversely, if one observes the process too slowly
(i.e., approaching or exceeding ribosomal dwell times), each
frame would sample an independent set of ribosomes from the
previous frame and any observed correlations would arise only
from artifacts of imaging noise.

Figure 4A (middle) shows an experimental condition where
intensity distributions are similar enough such that both frequency
and intensity information provide useful information for
classification. The ideal imaging still uses an intermediate frame
interval needed to capture the frequency differences, but
classification is bolstered by the intensity information across the
whole parameter space, with 10 frames at any frame interval being
sufficient to provide 60% accuracy.

To further probe how intensity distributions and frequency
information each contribute to ML classification, Figure 4B
shows each half of the architecture applied separately to
100 frames at varying frame intervals and varying amounts of
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FIGURE 3
Example for labeling identically-tagged mRNAs in a simulated NCT experiment [(A), top] Two simulated cells with 25 KDM5B and 25 P300 spots
translating at identical biophysical parameters [(A), bottom] Spot 11 in Cell 1 is highlighted in the intensity trace, showing the red background, green
background, and extracted spot intensity via the disk and doughnut method (B) Model parameters (ki and ke) are inferred by fitting auto-correlation
functions and intensity distributions (C) A classifier is trained with a large cohort of simulated data generated with the inferred parameters (D) This
classifier can then be used to label the original data or any subsequent data taken.
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frames at a 30 s frame interval (Highlighted row and column of
Figure 4A, middle panel). Both individual halves Intensity
distribution, I), and Frequency, F), have roughly a similar
accuracy until frame interval grows too large to obtain a good
sampling of the autocorrelation function (60 s). When both
features are available, (IF), the classifier has a marked
improvement in accuracy compared to the individual halves.
It is important to note that we selected these specific
experimental conditions such that there is partial information
in both the autocorrelation and the intensity moments. If the
experiment is designed such that either frequency or intensity is
more informative, the proposed ML architecture adapts to rely
more on that type of information and including the other will
have marginal or no effect on validation accuracy (e.g., Figure 4A
left or right panel). Full classification heat-maps using
architecture subsections are shown in Supplementary Figure S2.

Although classification requires collection of a sufficient
video length and at high enough temporal resolution, other
experimental considerations are missing in this first analysis
but must be taken into account to constrain imaging
conditions in a real laboratory setting. Taking too many
frames or a too short a frame interval may increase
photobleaching effects that will require re-calibration or
computational correction or may necessitate the use of a lower
laser power, which will reduce signal strength. Conversely,
choosing too low a frame interval (i.e., longer delays between
images) could lead to spot tracking issues if particles diffuse too
fast in comparison to the frame rate or if there is too high a
density of overlapping particles. This trade-off between too fast

and too slow a frame interval can be partially ameliorated by
tracking only on the RNA tag channel with a higher frame
interval and imaging in the protein channel with a slower rate,
but this solution requires more complex steps for image
collection and processing.

3.4 Simulated data is ideal for testing
different experimental and biological
conditions to probe the possibilities and
limitations of NCT multiplexing

Now that we have a computational pipeline to generate
simulated data and a flexible classifier to train using both
intensity and frequency information, we can explore multiple
parameter spaces to guide experimental design toward conditions
that are more conducive for accurate classification. Additionally, by
generating data over a large parameter swath, we can examine
multiple experiment setups that are unresolvable to obtain
insight for what mitigation strategies an experimentalist could
take to improve classification results.

In this study, we limit the scope of exploration to five key
variables (Table 4): mRNA length (LmRNA), frame interval (time
in seconds between frames, FI), number of frames used (nF),
ribosomal initiation rate (ki) and ribosomal elongation rate (ke).
We choose these specific parameters because they are the most
experimentally relevant as they influence how long of a video to
take and what types of mRNA constructs to design. Additionally,
these five parameters directly influence one or both of the two

TABLE 3 Long imaging time data sets.

Comparison case Variable range Constants

Imaging Dataset - Identical Iμ
ki, KDM5B: 0.014139 s−1

ki, P300: 0.009676 s−1

* Gene 1: P300 (7257 NT)

Iμ, both ~ 4.7 UMP

* Gene 2: KDM5B (4647 NT)

* Frame interval: 1 every 1 s

* Frames: 24,000

* ke: 5.33 aa · s−1
* D: 0.21 pixels2/s

* SNR: 3

Imaging Dataset - Similar Iμ
ki,KDM5B: 0.01860 s−1

ki,P300: 0.009676 s−1

* Gene 1: P300 (7257 NT)

Iμ,KDM5B ~ 6.0 UMP
Iμ,P300 ~ 4.7 UMP

* Gene 2: KDM5B (4647 NT)

* Frame interval: 1 every 1 s

* Frames: 24,000

* ke: 5.33 aa · s−1
* D: 0.21 pixels2/s

* SNR: KDM5B (3.9) and P300 (3)

Imaging Dataset - Different Iμ
ki,KDM5B: 0.04242 s

−1

ki,P300: 0.009676 s
−1

* Gene 1: P300 (7257 NT)

Iμ,KDM5B ~ 13.7 UMP
Iμ,P300 ~ 4.7 UMP

* Gene 2: KDM5B (4647 NT)

* Frame interval: 1 every 1 s

* Frames: 12,000

* ke: 5.33 aa · s−1
* D: 0.21 pixels2/s

* SNR: KDM5B (8.9) and P300 (3)
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FIGURE 4
Classification accuracy versus imaging conditions and differences in mRNA intensity mean (A) Accuracy versus frame interval and number of frames
(Left) For constructs with substantially different intensities, the classifier requires only a few frames for a high classification accuracy (Middle) Overlapping,
but non-identical, intensity conditions leverage both frequency and intensity information for classification (Right) Identical intensity conditions can only
classify using frequency information, which requires an ideal frame interval (B) Accuracy of ML using Intensity only (I), Frequency only (F), and both
(IF) versus frame interval (top) or number of frames (bottom). Plots for (IF) correspond to the vertical and horizontal regions highlighted in Panel A, middle.
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statistics we are using as learning features, specifically the
decorrelation times and intensity levels. The selected
parameters to explore and a list of dynamics affected by each
of these parameters are provided in Table 4. For example, an
increase in mRNA length has a corresponding increase in
ribosomal dwell time and therefore fluorescent intensity of a
mRNA spot.

Although, for the sake of brevity, we focus on the five
parameters presented in Table 4, we note that our proposed
simulation and classification pipeline is general and can be used
to explore many other mechanisms of the translation or the
imaging system. Other parameters of potential interest may
improve or worsen classification accuracy. These include
effects such as non-equilibrium dynamics (all mRNA
simulations in this paper are at steady state), differing
diffusion dynamics (spatial considerations from cell
morphology or dependence on mRNA translation state). To
focus our analysis on our current parameters of interest, all
data in the main text are generated without photobleaching
effects and are analyzed using the specific coordinates of the
simulated spots within the rSNAPed module; i.e., we are not
relying on a spot detection and tracking algorithm. A preliminary
exploration of photobleaching and imperfect tracking is
presented in the Supplemental Material Section 1.1. We find
that classification accuracy for perfectly tracked KDM5B and
P300 mRNA spots remains high even with substantial levels of
photobleaching (see Supplementary Figure S3), at least provided
that all NCT probes bleach at the same rate. In this case, the
relative differences in fluorescence intensities and fluctuations (at
higher frequency than the bleaching rate) can still be used for
classification. However, we note that the number of correctly
classified spots per cell depends heavily on the accuracy and
completeness of tracking. Using the trackpy tracking pipeline
(Allan et al., 2021), we can only track approximately 40% of spots
for long contiguous time courses (Supplementary Figure S3),
although classification accuracy for those spots is only slightly
below that for perfect tracking (Supplementary Figure S3). We
note, however, that this preliminary analysis assumes a simple
exponential decay model for photobleaching and only explores
one option for particle tracking; a complete analysis would
require in-depth examination of different photobleaching
models (Wüstner et al., 2014; Miura et al., 2020) and should

explore additional approaches for track linking (Shen et al.,
2017). In the current analyses, all mRNA translation models
are run until they reach steady state (burn in time: 1,000 s) before
they are used to generate NCT spots, but rSNAPed allows for
simulation of non-stationary conditions or experiment
perturbations (e.g., Harringtonine treatment to interrupt
translation, or fluorescence recovery after photo-bleaching
(FRAP) to examine ribosome replacement as studied in
(Pichon et al., 2016; Wang et al., 2016; Wu et al., 2016).
Finally, in the current analyses, all spot motion is simulated
using normal Brownian motion with a constant diffusion rate of
0.925 μm2/s (0.55 pixel2/s) but settings for rSNAPed can easily be
changed to allow for anomalous or temporal or mRNA state-
dependent diffusion rates. In addition, beyond using just
intensity and frequency, one could potentially improve
classification using additional features for machine learning
such as x, y, and z spatial positions or spot velocities.

Figure 5 (top) summarizes the set up for four parameter
sweeps designed to explore the effects of selected parameters on
ML classification: (CT1) compares pairs of mRNA with many
different lengths, (CT2) compares two mRNA with many
different combinations of shared elongation and initiation
rates, (CT3) compares two mRNA each with different
elongation rates, and (CT4) compares two mRNA each with
different initiation rates. For each comparison, mRNA
translation simulations use parameters selected from a survey
of literature reporting experimentally measured rates (Morisaki
et al., 2016; Pichon et al., 2016; Wang et al., 2016; Wu et al., 2016;
Yan et al., 2016), and all parameters are shown in Table 5. For
CT1, the mRNA length range selected (1,200–7,257 NT) covers
53% of the lengths in the human consensus coding sequences
(current CCDS nucleotide release—11.28.2021 (Pujar et al.,
2018)). A baseline NCT experiment was selected as 10xFLAG-
p300 vs. 10xFLAG-KDM5B with an initiation rate and elongation
rate of 0.06 1/s and 5.33 aa/s at imaging conditions of 64 frames
with a 5 s frame interval. When parameters are held constant in
the comparison analysis they are held to these values. The results
of the various comparison tests are shown in Figures 5A–D and
6A–D, to be discussed individually below, and all full data sets are
available upon request. Data sets can also be resimulated from the
provided Github repository https://github.com/MunskyGroup/
Multiplexing_project.

TABLE 4 Dynamics affected by selected variables to investigate with the NCT ML pipeline.

Variable Dynamic impacted when increased Controllable

Frame interval (FI) ↑ information/resolution

↑ information/resolutionNumber of Frames (nF)
Experimentally

controllable

mRNA Length (LmRNA) ↑ ribosomal dwell time Semi-controllable

↑ fluorescent intensity (Gene/tag selection)

Initiation Rate (ki) ↑ fluorescent intensity Semi-controllable

(UTR Selection)

Elongation Rate (ke) ↓ ribosomal dwell time
↓ fluorescent intensity

Semi-controllable (codon usage)
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FIGURE 5
Comparison of ML test accuracy under variations in biophysical parameters (Top) legend of which experimental parameters are changed for each
panel (A) Effect of construct length on classification test accuracy when trained on 4000 NCT spots and tested on 1,000 withheld spots. Imaging
conditions, initiation, and elongation are held constant while mRNA lengths are swept from 1200 NT to 7257 NT using different mRNAs. All classifiers are
trained on 4000 NCT spots and tested on 1000 NCT spots to get the test accuracy (B) Classification accuracy for P300 and KDM5B versus shared
initiation and elongation rates (C) Classification of P300 and KDM5B with shared initiation rate (0.06 1/s) but with different varying elongation rates. (D)
Classification of P300 and KDM5B with shared elongation rates (5.33 aa/s) and varying initiation rates. The green star in each panel denotes the default
P300/KDM5B experiment with 5 s frame interval, 64 frames, initiation rate of 0.06 1/s, and elongation rate of 5.33 aa/s.
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3.5 mRNAs with sufficiently different lengths
can be differentiated using their fluctuation
intensity signals

To explore the effect ofmRNA length differences on classification, we
applied our architecture to NCT experiments where the only difference
between mRNAs is their length (Figures 5A, 6A). In addition to the
previous P300 and KDM5B constructs, ten new genes with
approximately evenly spaced nucleotide length coding regions were
selected from the human consensus coding sequence database,
Table 5 row 1. A standard 1,011 nucleotide 10x-FLAG tag was added
to the N-terminus end of each before simulating the NCT experiments.
We assume a common set of global cell translation parameters, that is,

every mRNA has a common ribosomal initiation and elongation rate
since all mRNAwould be in the same cell and they have been designed to
have identical UTRs. Specifically, for this parameter sweep, we assume
that ke = 5.33 aa/s and ki = 0.06 ribosomes/s and that video is recorded for
amoderate length of 64 frames at a rate of one frame every 5 seconds. For
each NCT simulation, the longer of the two mRNA species will retain
ribosomes for longer periods of time and will therefore exhibit slower
decorrelation times and higher average intensities.

For convenience, the difference between mRNA lengths can be
quantified by the fold change:

ΔLfold � max LmRNA,1, LmRNA,2( )
min LmRNA,1, LmRNA,2( ). (4)

TABLE 5 Comparison analyses parameters.

Comparison case Variable range Constants

mRNA Length vs.
mRNA Length

mRNA length (without tag): 1200 NT—7257 NT * Frame interval: 5 s

RRAGC—1,200 * Frames: 64

ORC2—1734 * ki: 0.06 s−1

LONRF2—2,265 * ke: 5.33 aa · s−1
EDEM3—2,799 D: 0.21 pixels2/s

TRIM33—3,333 SNR: 3.7 (RRAGC) - 17.6 (P300)

MAP3K6—3,867

COL3A1—4,401

KDM5B—4,657

KDM6B—4,932

PHIP—5,466

DOCK8—6,000

P300—7,257

ke (both mRNAs) vs.
ki (both mRNAs)

ki: 0.01–0.1 s−1 * Gene 1: P300 (7257 NT)

ke: 2–12 aa · s−1 * Gene 2: KDM5B (4647 NT)

* Frame interval: 5 s

* Frames: 64

D: 0.21 pixels2/s

SNR 1–36

ke mRNA1 vs.
ke mRNA2

ke: 2–12 aa · s−1

* Gene 1: P300 (7257 NT)

* Gene 2: KDM5B (4647 NT)

* Frame interval: 5 s

* Frames: 64

* ki: 0.06 s−1

D: 0.21 pixels2/s

SNR KDM5B: 2.6–14.2

SNR P300: 3.9–23

ki mRNA1 vs.
ki mRNA2

ki: 0.01–0.1 s−1

* Gene 1: P300 (7257 NT)

* Gene 2: KDM5B (4647 NT)

* Frame interval: 5 s

* Frames: 64

* ke: 5.33 aa · s−1
D: 0.21 pixels2/s

SNR KDM5B: 1.3–9.3

SNR P300: 1.7–13.3
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As one should expect, Figures 5A, 6A show that as ΔLfold
becomes larger, the classification becomes easier for our
machine learning architecture. For our simulated conditions
and video length, we find that a 1.4-fold difference is sufficient
to achieve greater than 80% classification accuracy of any two
mRNA combinations of the 12 we selected. However, Figure 6A
shows that one can lower the required length fold change by
increasing the number of frames given. For example, if one
extends imaging to 128 frames at 5 s resolution (double the
frames of the original condition), then one could achieve an
80% classification for a smaller ΔLfold = 1.1. However, there is a
diminishing benefit to adding extra video length; extending
imaging to 1,500 frames at 2 s resolution (a barely achievable
amount of data to collect with current NCT capabilities)
provides only a marginal further improvement (compare teal
and brown lines). This diminishing return emphasizes the need
for careful consideration when designing NCT experiments
with multiple mRNAs with identical tags, either to avoid
designs that would require an unobtainable amount of
sampling or to reduce sampling for designs that can be
differentiated with fewer imaging resources.

3.6 mRNA with different lengths can be
distinguished for a range of different
combinations of their biophysical
parameters

In the next comparison, we sought to understand how classification
accuracy depends upon the biophysical parameters that govern
translation dynamics. Specifically, Figure 5B; Figure 6B explore how
the accuracy to classify P300 and KDM5B constructs would depend on
their shared rates of translation initiation and elongation (ki and ke,
respectively). Because the two constructs have fixed lengths in this
comparison, every combination of (ki, ke) yields the same ratio of
intensity mean and decorrelation time. Therefore, classification should
be possible across the entire parameter range, provided that one obtains
a sufficient level of video sampling. Figure 6B and Supplementary Figure
S4 (second row) show that indeed, once there is enough video
resolution, all (ke, ki) pairs can be classified with higher than 90%
accuracy. However, when constrained to a fixed number of frames and
frame interval (e.g., 64 frames with 5 s frame interval as considered in
Figure 5B), some combinations of parameters yield signals that are
brighter and are therefore easier to classify using intensity statistics.

FIGURE 6
Increasing video length to resolve difficult to classify mRNA combinations (A) Classification accuracy versusmRNA length fold difference, assuming
identical tag designs and parameters and videos with 64, 128, or 1,500 frames (B) Classification accuracy for P300 and KDM5B with identical tags and
parameters vs. average P300 intensity (proxy for signal-to-noise ratio). As SNR, video length, and resolution increase, there is a corresponding increase in
classification accuracy (C) Classification accuracy versus ratio of P300 and KDM5B elongation rates. As parameters approach the dotted line at ke,
P300/ke, KDM5B =1.46, the frequency and intensity information is identical between the two mRNAs, and increasing video length provides only marginal
improvements (D) Classification accuracy versus ratio of P300 and KDM5B initiation rates. As parameters approach the dotted line at ki, P300/ki,
KDM5B =0.648, the twomRNA attain similar intensity means, but classification can be achieved through frequency content and is improved substantially by
collecting longer videos.
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Specifically, when the initiation rate is high and the elongation rate is
low, more ribosomes enter per second and remain longer on the
mRNA. Conversely, “sparse” loading conditions prove harder to
classify due to low ribosomal occupancy and rare ribosomal entry
and thus, a lower signal to noise ratio.

In natural constructs, different 3′ and 5′UTR sequences will
affect the availability of initiation factors and regulatory
elements such as uORFs, and as such one should expect that
translation initiation rates will vary from one mRNA species to
the next (Gray and Wickens, 2003; Fraser, 2015; Mayr, 2016;
Leppek et al., 2017). To explore how differences in initiation
rate would affect classification accuracy, Figure 5C; Figure 6C
compare the classification accuracy as a function of both
mRNAs’ unique initiation rates. In this case, it is possible for
both mRNA to have very different or nearly identical intensity
means depending on how close the ratio of the initiation rates
compares to the inverse ratio of their lengths. For our particular
case of KDM5B and P300 mRNA, if we neglect ribosomal
collisions, the ratio of mean intensities can be estimated as
(Aguilera et al., 2019):

IP300
IKDM5B

� 1 − Ltag
2LP300

( ) · τP300 · ki,P300
1 − Ltag

2LKDM5B
( ) · τKDM5B · ki,KDM5B

. (5)

By setting this intensity ratio to unity, we can rearrange to find the
corresponding ratio of initiation rates as

ki,P300
ki,KDM5B

� 1 − Ltag
2LKDM5B

( ) · τKDM5B

1 − Ltag
2LP300

( ) · τP300 � 1 − 1011NT
2·5658NT( ) · 353 s

1 − 1011NT
2·8268NT( ) · 517 s � 0.662,

(6)
Where we calculated the expected elongation times for the two
mRNA (τKDM5B and τP300) under an assumption of sparse loading
for the ribosomes (i.e., no collisions). Figure 5C, Figure 6C show that
when the two mRNAs’ initiation rates approach this critical ratio,
the accuracy decreases substantially. However, although these
mRNAs may have similar intensities, their different lengths still
result in distinct dwell times, and Figure 6C, Supplementary Figure
S4 show that frequency information can still provide for accurate
classification, especially as one increases the amount of video.

Figure 5D, Figure 6D explore the opposite circumstance, where
the two mRNA have the same initiation rate, but with two different
elongation rates. In this case, it would be possible for both the
intensity means and the dwell times to be identical for the two
constructs if their elongation rates satisfy the ratio:

ke,P300
ke,KDM5B

� τP300/LP300

τKDM5B/LKDM5B
� 2756 aa
1886 aa

· 1 � 1.46129. (7)

Figure 5D, Figure 6D show that NCT signals along this parameter
manifold are virtually indistinguishable as the only variation
between their statistics is the time ribosomes spend in the tag
region. Specifically, ribosomes on P300 reach full intensity
fluorescence 1.46 x faster than those on KDM5B. Increasing
video resolution could potentially resolve parameter sets close
to this manifold, but Figure 6D shows that accurate
discrimination would require an unrealistic amount of NCT
video. In conditions like these, it may be best to tag the mRNAs
with different tag colors or use different tagging strategies as we
discuss in the next section.

3.7 mRNAs with similar fluctuations and
intensities can be made more classifiable via
intelligent design of tag placements

Considering the comparisons in Figures 5A–D, we observed that
there are several conditions under which machine learning may be
unable to classify NCT spots. Specifically, classification may fail
when: 1) videos are too short to sample intensity distributions or
have a too poorly chosen frame interval to quantify intensity
frequencies (Figure 4); 2) when signal intensities are too low to
capture the relevant statistics; or 3) when the mRNA lengths,
initiation rates, or elongation rates combine such that both
mRNAs yield identical statistics for both intensity and
frequencies. As discussed above, the solution to the first two
“failure modes” is to collect more information (i.e., longer videos
with a more appropriate temporal resolution). In contrast, for
conditions where intensity and frequency statistics are nearly
identical, such as in Figure 5C, Figure 6C, no amount of extra
information or imaging will be able to tell these NCT spots apart. In
such a circumstance, the similarity between the two mRNA could be
ameliorated by changing the mRNA constructs themselves. For
example, one could alter the fluorescent signal statistics either by
lengthening one of the mRNAs in question or by employing an
alternate tagging design. Changing the length of the mRNA with
linker or junk regions may introduce unwanted effects in the
mRNA/protein targets under study, so changing the tag region is
preferable. To demonstrate this possibility; Figure 7A, B considers
the case from above where the elongation rates of P300 (kP300e =
11.04 aa/s) and KDM5B (kKDM5B

e = 7.56 aa/s) differ by the critical
factor of 1.46, such that the 10xFLAG-P300 and 10xFLAG-KDM5B
constructs yield identical intensity fluctuations that cannot be
discriminated from one another. We then propose several
modifications to the tagging scheme for KMD5B to explore
how different designs might affect classification accuracy as
follows.

• 10x Flag Tag on the N-terminus of KDM5B (original
ineffective design)

• Splitting the tag region to relocate 3 epitopes to the C-terminus
• Relocating the tag region to the C-terminus of KDM5B’s CDS
• Adding 5 epitopes to the end of the 10x Flag Tag (adding in
5 ‘DYKDDDDK’ sequences separated by two glycines each)

• Removing 5 epitopes from the 10x Flag Tag (mutating the last
5 epitopes from ‘DYKDDDDK’ to ‘DYKDGGDK’)

• Relocating the 10x Flag Tag to the C-terminus of
KDM5B’s CDS

Figure 7C shows that any of these permutations to the
original 10x Flag tag on the 5′ end of KDM5B allows the two
mRNAs to be classified with greater than 85% test accuracy. Each
tagging strategy changes the intensity dynamics of KDM5B spots,
shifting them away from similar means and variances of the
P300 spots, allowing classification without resorting to using a
different color tag. One should note that each of these strategies
comes with its own potential drawbacks: Moving the 10x flag to
the end does not allow any information about the upstream
translation dynamics to be captured in the NCT experiment, and
removing/moving 5 epitopes tag to the 3′ end creates a dimmer
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spot, potentially obscuring translation dynamics under study.
Adding epitopes also has its own potential drawback of needing
longer plasmids for transfection.

3.8 Classifiers can retain accuracy despite
uncertainties or assumption errors in
biophysical parameters

In the previous sections, we explored how well classification would
work in the ideal situation in which the classifier is trained on data that
match (in probability) to the circumstances of the testing data (although
every intensity trajectory is different due to stochastic fluctuations in
translation, motion, and cellular background noise). In other words, the
stochastic model used to generate the training data was the same as the
model used to generate the testing data. For a more realistic test of how
well one might expect a classifier trained using simulated data to work
when applied to experimental data, one must acknowledge that true
biophysical parameters are unknown, and theymay vary from cell to cell
or from one individual mRNA to the next. For example, in the analysis
of KDM5B and P300, it is reasonable to assume that the mRNA designs
and lengths are known, but onemight only have a rough estimate for the
initiation and elongation rates based on analyses for other mRNA, cells,
or conditions. Ideally, the classifier should still work despite finite errors
in these parameter estimates. To explore how well a simulation-trained
classifier might work when parameters are incorrect, Figure 8 shows the
accuracy versus unknown rates ke and ki when the model is trained at
three specific assumptions for those rates (denoted by red squares in
Figure 8). When the model is trained with a fast elongation rate and a
slow initiation rate (Figure 8A), classification accuracy is always poor (as
discussed above, see Figure 5B). However, when themodel is trained in a

condition that is more conducive for accurate classification (Figure 8B),
the accuracy is strong not only for the exact parameters under which the
model was trained, but for a large range of surrounding parameter sets.
The practical implication of this result is that one could in principle use
an approximate model (e.g., the simulations presented in this study) to
train a classifier and then reliably trust that classifier despite unavoidable
but finite errors in the underlying model or parameter assumptions. To
maximize the utility of such a classifier, we performed a search over all
possible sets of parameters onwhich to train themodel and askedwhich
training set leads to a classifier that would work best when averaged over
the unknown “true” parameters. Figure 8C) depicts the accuracy of this
model (which is trained at ki = 0.07 s−1 and ke = 6.44 aa/s) as a function
of all parameters, and it results in an expected average classification
accuracy of 70% but with classification greater than 80% for large
regions of parameter spaces.

3.9 Using combinations of intensity
fluctuation information and different color
mRNA tags, one could design experiments
to distinguish several mRNAs within the
same cell

Finally, to highlight the how our proposed pipeline might be
used to increase the potential of NCT experiments, we demonstrate
it on the simulation of seven tagged species within a single cell under
the assumption of consistent initiation and elongation rates across
spots. Using Figure 5A heat map, we selected four mRNAs species
that were differentiable from each other with a higher than 90%
accuracy for the green channel, and three mRNA species for the blue
channel with the same accuracy threshold, Table 6. A single

FIGURE 7
Changing tag designs to improve classification accuracy (A) Tag design for P300 construct is kept fixed (B) Five different tag designs for KDM5B
created by splitting the tag, increasing or decreasing the amount of epitopes, or relocating the tag region to the 3′ end (C) Accuracy for classification
corresponding to each of the design combinations, and all assuming an elongation rate ratio of 1.46, under which the original design was non-classifiable
(Figures 5D, 6D). All alternative designs would dramatically increase classification accuracy.
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simulated “multiplex” cell video was generated with the
conditions described in both tables. Ten spots for each of the
seven mRNAs were added to the appropriate color channel for
each cell. An additional class of non-translating spots was also
added by taking 2,500 trajectories from the opposite (no-spot)
channel, but with the same Brownian motion. The ML
architecture was adjusted to account for the multiple mRNA
labels and the noise label for non-translating spots, and the final
layer was set to a softmax layer and an output of the number of
species in each color channel (four for blue and five for green,
including one the non-translating spots in each channel). A
model was trained with the process described in the ML section
for each color channel using the matching data from the
construct length dataset, (7,500 NCT spots for blue,
10,000 spots for green with 80:20 train-test split and three-
fold cross validation). Test Video trajectories were normalized
with the same min-max scaling as the training data.

After training, the models were applied to classify the simulated
trajectories in 50 new multiplexing videos. Figure 9A shows
representative images of the artificial ML labeling results applied
to an example multiplexing video. Correctly identified spots are
denoted by circles and incorrect classification results are shown with
‘x’. A representative crop for each spot type is shown on the left.
Figure 9B shows the confusion matrix for each mRNA class and the
blank trajectories. The green channel classifier had an 81% accuracy
(disregarding blank trajectories) and struggled mostly with the two
middle length genes LONRF2 and MAP3K6. The blue channel
classifier had a 91% accuracy disregarding noise only spots. As
expected, the majority of misclassified spots were to their length
neighbors that have the most similar statistics. The shortest,
dimmest mRNA NCT spots, ORC2 and RRAGC, were still
classifiable from the non-translating spots with almost 100%
accuracy. 2.2% of RRAGC spots were misclassified as noise.
Overall on the test video, the classifier correctly identified 64 out
of 70 spots, demonstrating the potential to label multiple species in
the same cell with a correct tagging scheme and ML labeling.

In addition to the discrete labels generated by the classifier, the
softmax output (shown in Figure 9C, left) provides a quantification
of the classification confidence for each spot. Figure 9C shows the
effect of sorting all classified non-noise spots by their softmax output
and discarding those spots with the lowest confidence for
classification. By discarding 50% of the spots with the lowest
confidences yields a dramatic improvement in accuracy for both
the green channel (from 81% to 92%) and blue channels (from 90%
to 98%). In other words, although perfect classification may not be
achievable, one can focus on confidently identifiedmRNA to analyze
their behaviors, e.g., to determine how different mRNA types
respond to subsequent cellular signals, drugs, or stress
perturbations. It is important to note, our architecture is small
but no softmax calibration was used; a better metric of confidence
could potentially be obtained by using a softmax calibration in
future works.

FIGURE 8
Accuracy of classifier when trained with incorrect parameter assumptions. Accuracy versus the actual rates ke and ki when the model is exclusively
trained on three specific, but possibly incorrect, sets of these parameters (A) (ki =0.02 s−1, ke =10.89 aa/s), Average accuracy = 52.4% (B) (ki =0.09 s−1,
ke =3.11 aa/s), Average accuracy = 70.1% (C) (ki =0.07 s−1, ke =6.44 aa/s), Average accuracy = 70.2%.

TABLE 6 Multiplexing simulation parameters.

Comparison case Variable range Constants

Green Channel (4 spots)

mRNA length (without tag) * Frame interval: 5 s

* RRAGC (1200 NT) * Frames: 64

* LONRF2 (2265 NT) * ki: 0.06 s−1

* MAP3K6 (3867 NT) * ke: 5.33 aa · s−1
* DOCK8 (6000 NT) D: 0.925 μm2/s

SNR: 3.7–15.2

Blue Channel (3 spots)

mRNA length (without tag) * Frame interval: 5 s

* ORC (1734 NT) * Frames: 64

* TRIM33 (3333 NT) * ki: 0.06 s−1

* PHIP (5466 NT) * ke: 5.33 aa · s−1
D: 0.925 μm2/s

SNR: 5.2–14.9
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4 Conclusion and future work

Temporally- or spatially-resolved activation or repression
of translation provides for a potent mechanism by which cells
could rapidly alter their protein content in response to cellular
signals (Sonenberg and Hinnebusch, 2009; Fabian et al., 2010;
Hershey et al., 2012; Peer et al., 2019; Zhao et al., 2019). Recent
advances in Nascent Chain Tracking (NCT) experiments has
made it possible to observe this regulation at the level of single
mRNA molecules in living cells (Lyon et al., 2019; Moon et al.,
2019; Koch et al., 2020; Cialek et al., 2022; Kobayashi and
Singer, 2022). However, limitations on the number of
distinct fluorophores prevents current NCT experiments
from exploring more than one or two different mRNA
species at a time.

In this work, we use computational simulations to propose a
solution to circumvent this limitation. Specifically, we provide a
pipeline (Figure 1) to combine mechanistic models (including
detailed simulation of nascent protein elongation and corrupted
by fluorescence background and camera noise) with machine
learning to classify mRNA species based on their fluctuating
fluorescence intensity signals in NCT experiments. We show that
multiple mRNAs labeled with identical fluorescent tags could be
distinguished provided that the mRNAs have some variation in their
intensity distributions or fluctuation frequency content, e.g., due to
different lengths (Figures 5A, 6A) or different translation
parameters (Figures 5B–D). We also demonstrate how our
computational pipeline could help to guide the design of
experiments to make it easier to access these features and
distinguish between different types of translating mRNA.

FIGURE 9
Simulated multiplexing of seven different mRNA species in a single cell. Ten mRNAs each of RRAGC, LONRF2, MAP3K6, and DOCK8 with identical
were simulated in the green channel, and ten mRNAs each of ORC2, TRIM33, and PHIP were simulated in the blue channel with our pipeline, and all with
identical tag designs and parameters. Our architecture was modified for multiclass labeling, and a model was trained for the green and blue channel for
artificial labeling of the example video (A) Example frame from video classification with seven different mRNA transcript types. Incorrectly labeled
spots are marked with an X (6/70 spots). Crops of example spots are show to the left (B) Confusion matrices for the green and blue channels when tested
on 50 cells containing 10 spots of each mRNA (C) Accuracy of the classifier versus the fraction of low-confidence spots that is discarded. If one only
considers the 50% most confident spots, then accuracy rises to 93.4% and 98.9% for the blue and green channels, respectively.
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Specifically, by changing multiple biophysical parameters or
experimental design variables–e.g., changing tag design
(Figure 7), mRNA lengths (Figure 5A), ribosomal elongation and
initiation rates (Figures 5B–D), or the length and temporal
resolution of NCT movies (Figure 4)—we explored which
realistic designs of NCT experiments would provide insight for
classification, and which would not allow for NCT multiplexing.

Our realistic simulations show that ML labeling accuracy
higher than 80% can be achieved under reasonable NCT
experimental settings (Figures 2–9). Longer videos with
appropriately-chosen frame intervals would lead to a better
classification of NCT signals, albeit with diminishing returns
(Figures 4, 6). A more strategic approach shows that selectively
tagging pairs of mRNA species to achieve the greatest difference
in expected intensity or frequency content achieves higher
classification with a minimal number of frames (Figure 9).
We also demonstrated that different tagging strategies
(Figure 7) can help to separate hard to classify mRNA
species, with tag design options ranging from simply adding
more tag epitopes to increase one mRNA’s intensity, to
relocating or dividing the tag region between the 5′ and 3′
end of the CDS to alter the frequency content. Using these
strategies, additional fluorophore colors can be held in reserve
for mRNAs that are too similar in their lengths or dynamics,
and we demonstrate that our multiplexing pipeline could
distinguish seven different mRNAs at greater than 90%
accuracy when using only two different fluorescent tag colors
and only one per gene (Figure 9). Additional mRNA could be
considered by combining multiple colors on the same mRNA
(e.g., mRNA with red and green could easily be distinguished
from those with red or green alone). Based on these promising
results of our detailed simulations, we envision that the next-
generation of NCT experiments will be able to track and
differentiate multiple identically-tagged translating mRNA
within the same cells (especially if these use the identified
experiment designs for tag positions, gene lengths, and video
frame intervals).

A limitation of our proposed use of simulations to train
classifiers for experimental data, is that creating realistic
simulations requires prior knowledge of system parameters.
Some of these parameters are known in advance (e.g., relative
mRNA lengths and codon usage), but others need to be
estimated from literature values or preliminary experiments.
In many cases, initial control experiments would be needed to
ensure that NCT constructs are working for individual mRNA,
and these parameters could be estimated for individual mRNA
before attempting multiplexing experiments. In other cases, the
important rates (elongation and initiation) may remain similar
for different mRNA provided they are analyzed in the same cell
types. For example, in Aguilera et al. (2019), three mRNA of
different lengths were analyzed and elongation was found to be
constant ke = 10.6 ± 0.72 s−1 while ki was similar among different
mRNA, ki ∈ {0.022 ± 0.004, 0.05 ± 0.01, 0.066 ± 0.019}s−1. To
evaluate the potential to transfer our model-based findings to
real experiments where parameters are only partially known, we
verified that models learned from one set of mechanistic
parameters could correctly classify mRNA when tested on
data that are generated using different parameters guesses

(Figure 8). This fact that classification accuracy remains high
despite inexact knowledge of the model parameters offers hope
that classifiers learned using approximate models could work on
data from real experiments, without a need for collecting
excessive training data. Even in the case where initiation
rates are highly variable for different mRNA (e.g., for
different regulatory elements in the 3′ or 5’ UTRs), there
remains some hope to classify mRNA. In this case, with
sufficiently long videos, nascent protein fluctuation
frequencies could be used to identify mRNA if the lengths
are sufficiently different (e.g., Figure 5D, Figure 6D,
Supplementary Figure S4). However, if videos are too short,
then one may still be able to differentiate between spots of
different types based on their intensity distributions, but
without additional information about initiation rates (e.g., by
collecting a handful of longer videos to assign labels to each
group of mRNA), it would be impossible to determine which
mRNAs are which type, and additional experiments (e.g., direct
mRNA labeling using Fluorescence in situ Hybridization to
quantify ribosomal load or spatial correlations (Kwon, 2013;
Cui et al., 2016; Burke et al., 2017) may be required.

Although, for the sake of brevity, this paper does not explore
all mechanisms that can be analyzed by the rSNAPsim and
rSNAPed computational pipeline (e.g., effects of tracking,
photo-bleaching, variable probe-biding rates, ribosome
pausing, etc.), future work could expand on these capabilities
along with further exploration of different machine learning
approaches (e.g., different ML architectures or different types
of classifiers) or inclusion of additional features (e.g., including
mRNA diffusion rates, cell position information, fluorophore
bleaching rates, etc.). Similarly, although the current manuscript
has focused exclusively on supervised learning techniques that
require known ground truth (e.g., labels in simulated data), one
could potentially improve the application to real data through the
addition of unsupervised machine learning or transfer learning
approaches. For example, the simulation-based pipeline
proposed here could be used to design tags and experimental
conditions, while unsupervised approaches may be applied to
differentiate spots in subsequent experiments. Finally, beyond
the goal of multiplexing, we believe that our general approach to
combine detailed mechanistic models, realistic simulations of
microscopy and image analyses effects, and machine learning
classifiers could help to design improved experiments that are
more suited to other biological questions (e.g., to differentiate
between competing hypotheses for translation mechanisms
rather than to differentiate different mRNA species as
explored here).
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