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Astrocytes are the major glial cell type in the central nervous system (CNS). Initially
regarded as supportive cells, it is now recognized that this highly heterogeneous cell
population is an indispensable modulator of brain development and function.
Astrocytes secrete neuroactive molecules that regulate synapse formation and
maturation. They also express hundreds of G protein-coupled receptors (GPCRs)
that, once activated by neurotransmitters, trigger intracellular signalling pathways that
can trigger the release of gliotransmitters which, in turn, modulate synaptic
transmission and neuroplasticity. Considering this, it is not surprising that astrocytic
dysfunction, leading to synaptic impairment, is consistently described as a factor in
brain diseases, whether they emerge early or late in life due to genetic or
environmental factors. Here, we provide an overview of the literature showing that
activation of genetically engineeredGPCRs, known as Designer Receptors Exclusively
Activated by Designer Drugs (DREADDs), to specifically modulate astrocyte activity
partiallymimics endogenous signalling pathways in astrocytes and improves neuronal
function and behavior in normal animals and disease models. Therefore, we propose
that expressing these genetically engineered GPCRs in astrocytes could be a
promising strategy to explore (new) signalling pathways which can be used to
manage brain disorders. The precise molecular, functional and behavioral effects
of this type of manipulation, however, differ depending on the DREADD receptor
used, targeted brain region and timing of the intervention, between healthy and
disease conditions. This is likely a reflection of regional and disease/disease
progression-associated astrocyte heterogeneity. Therefore, a thorough
investigation of the effects of such astrocyte manipulation(s) must be conducted
considering the specific cellular and molecular environment characteristic of each
disease and disease stage before this has therapeutic applicability.
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Introduction

The central nervous system (CNS) is a highly diverse cellular environment, where
neurons are surrounded by a multitude of cell types, including astrocytes, microglia,
oligodendrocytes, and ependymal cells, which are collectively known as glial cells. For
many years, brain function and behavioral output were thought to depend exclusively on
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neuronal circuit activity, while glial cells were merely regarded as
supportive cells. However, it is now recognized that glial cells
actively communicate with neurons and modulate neuronal activity.

Among glial cells, astrocytes are the most abundant and are
known to be indispensable for correct brain function, as they actively
participate in synapse formation, plasticity and function, as well as
controlling blood-brain barrier permeability and blood flow,
providing metabolic support to neurons and modulating
neuroinflammation (Sofroniew and Vinters, 2009). Indeed,
astrocytes possess a highly branched, “star-shaped” morphology,
enabling them to contact thousands to millions of synapses via
peripheral astrocytic processes (Semyanov and Verkhratsky, 2021;
Holt, 2023; Salmon et al., 2023). The discovery that astrocytes and
neurons communicate with one another at the synapse to modulate
synaptic transmission led to the concept of the tripartite synapse
(Parpura et al., 1994; Pasti et al., 1997; Bezzi et al., 1998; Newman
and Zahs, 1998; Araque et al., 1999).

Upon release from the neuronal pre-synaptic element,
neurotransmitters activate neurotransmitter receptors expressed
by astrocytes, including G protein-coupled receptors (GPCRs). A
rise in astrocytic intracellular Ca2+ typically follows, which can then
lead to the subsequent (local) release of gliotransmitters and other
neuroactive molecules capable of modulating synaptic activity and
plasticity (Perea et al., 2009). Importantly, astrocytes can also
communicate with each other via gap junctions. This enables
locally induced Ca2+ signals to propagate to neighbouring
astrocytes, allowing these cells to also coordinate the activity of
otherwise distant synapses (Giaume et al., 2021).

Given the wide array and range of astrocytic functions, particularly
at the tripartite synapse, it is not surprising that astrocytic dysfunction
has long been implicated in the pathogenesis of several CNS diseases,
including neurodevelopmental, neuropsychiatric and neurodegenerative
diseases, making these cells attractive therapeutic targets. In this review,
we will first provide a general overview of the involvement of astrocytes
in synapse formation, activity and plasticity in development and
adulthood. Next, we will shed light on how chemogenetics, a
technique using genetically engineered GPCRs to modulate astrocytic
activity, induces astrocytic Ca2+ signalling and gliotransmitter release,
mimicking, to a certain degree, endogenous signalling pathways. Finally,
we will finish by discussing how this technique might reveal new
molecular pathways that can be exploited therapeutically in the future.

Astrocytes control neuronal circuit
development

The generation of fully functional neuronal circuits capable of
receiving, integrating, and responding to a wide variety of intrinsic
and extrinsic stimuli largely depends on the establishment of proper
synaptic connections. Synaptogenesis begins when the terminal
bouton of a neuron comes into close contact with tiny
protrusions, known as spines, on the dendrites of another
neuron. Both the shape and size of spines are vital to ensuring
adequate synaptic transmission. Thinner spines are consideredmore
unstable and are associated with a more immature or silent state, as
they often lack the post-synaptic machinery necessary for synaptic
transmission. Once physical contact has been established, spines can
undergo maturation. During this process, the spine head enlarges,

spines acquire a post-synaptic density (PSD) and neurotransmitter
receptors accumulate in the post-synaptic membrane, forming
larger mushroom-like spines, and leading to increased synaptic
potency (Yoshihara et al., 2009; Xu et al., 2020). During post-
natal brain development, critical periods are pivotal to uniquely
shaping the CNS. During these periods of heightened experience-
dependent circuit remodeling, stable synapses are formed at a high
rate. Experience acts by strengthening the relevant ones, which are
eventually integrated into the circuit. On the other hand, redundant
spines weaken over time, due to lack of relevant stimulation, and are
eventually eliminated. This maturation process changes both the
cell-cell connections and functional output of an excitatory network
producing a more stable and mature circuit. Astrocytes have been
identified as key regulators of critical period closure, ensuring proper
brain wiring (Ackerman et al., 2021; Ribot et al., 2021). In adulthood,
synapses are much more stable but synaptic remodelling and plasticity
still occur to enable circuit adaptations to new experiences, driving
learning and memory formation, and recovery from CNS injury and
disease (Pascual-Leone et al., 2005; Hübener and Bonhoeffer, 2014).
Therefore, synaptic assembly and circuit refinement must be tightly
regulated as aberrant synapse formation is thought to contribute, for
example, to the emergence of neurodevelopmental diseases
(Washbourne, 2015).

Synaptogenesis greatly increases following astrocyte
differentiation (Freeman, 2010) and the expansion in astrocyte
numbers that occurs during the first post-natal week (Ge et al.,
2012). Furthermore, synaptogenesis also appears concomitant to
astrocyte structural maturation (Clavreul et al., 2019). Both
astrocyte-secreted molecules and astrocyte-expressed cell
adhesion proteins appear to be important factors in the process
(Figure 1A). While progress has been made based on studies
focusing on factors mediating excitatory synaptogenesis, it is
likely that many other factors are still to be identified. In
contrast, inhibitory synapse formation is not yet well understood
(Um, 2017). Synapse formation can generally be regarded as a two-
stage process. First, structural synapse formation takes place which
is then followed by functional synapse maturation.

To induce the structural assembly of glutamatergic synapses,
astrocytes secrete the pro-synaptogenic factors thrombospondin
1 and 2 (TSP1 and TSP2) (Christopherson et al., 2005) and
hevin (Figure 1A) (Kucukdereli et al., 2011; Risher et al., 2014;
Singh et al., 2016). TSP1 and TSP2 act by binding the neuronal
receptor α2δ-1 (Eroglu et al., 2009), while hevin promotes synapse
assembly by bridging neuronal neurexin-1α (Nrx1α) and
neuroligin-1B (NL1B) (Singh et al., 2016). These synapses usually
possess synaptic vesicles, active release sites and PSD. However, they
are functionally inactive because, even though they possess post-
synaptic N-methyl-D-aspartate glutamate receptors (NMDAR),
they lack α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
glutamate receptors (AMPAR) and the release of synaptic vesicles is
suboptimal (Christopherson et al., 2005).

To produce functionally mature synapses, astrocytes then
secrete factors, such as the heparan sulfate proteoglycans glypican
4 and glypican 6 (Gpc4 and Gpc6), which increase the expression of
the GluA1 subunit of AMPAR at the post-synaptic terminal
(Figure 1A) (Allen et al., 2012). Additionally, astrocyte-secreted
Chordin-like 1 (Chrdl1) has been shown to increase the levels of
GluA2-containing AMPAR to the synapse, leading to Ca2+
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impermeability of this ionotropic receptor and contributing to the
maturation of excitatory glutamatergic synapses (Brill and
Huguenard, 2008; Blanco-Suarez et al., 2018). Astrocytic tumor
necrosis factor-alpha (TNF-α) can also recruit AMPAR to excitatory
synapses, while decreasing GABAA receptor density at inhibitory
synapses, thus regulating overall neuronal circuit activity (Beattie
et al., 2002; Stellwagen et al., 2005; Stellwagen and Malenka, 2006).
Astrocyte-derived cholesterol is also crucial for proper synaptic
maturation by regulating pre-synaptic vesicle exocytosis
(Figure 1A). These effects have been described both in vitro and
in vivo (Mauch et al., 2001; Pfrieger, 2003; van Deijk et al., 2017). For
instance, in the hippocampus of mice with reduced cholesterol
production, the total vesicle pool and the number of synaptic
vesicles ready for release at the pre-synapse are reduced, which is
accompanied by a reduction in the levels of SNAP-25, a protein
necessary for vesicle fusion (van Deijk et al., 2017).

In addition to the factors which have a positive impact on
synaptogenesis, astrocytes can also release secreted protein acidic
and rich in cysteine (SPARC), which is an antagonist of hevin

(Figure 1A). Thus, SPARC negatively affects synapse development
by counteracting hevin-mediated synaptogenesis, likely by
competitively interacting with the same neuronal proteins as
hevin (Kucukdereli et al., 2011). Furthermore, SPARC has been
shown to prevent the overaccumulation of AMPAR receptors at the
excitatory post-synaptic membrane by destabilizing β3-integrin
complexes (Jones et al., 2011), which are important regulators of
AMPAR stability at the synapse (Cingolani et al., 2008).

Synapse development and stability are further controlled by
astrocyte-neuron adhesion proteins (Figure 1A), which have been
extensively reviewed (Tan and Eroglu, 2021). For instance, cultured
embryonic retinal ganglion cells seem to require direct contact with
astrocytes to form mature synapses, suggesting coordinated actions
between secreted and contact-mediated signals in driving
synaptogenesis (Barker et al., 2008). One of the most common
examples of contact-mediated synaptogenesis is the onemediated by
γ-protocadherins. This family of cell adhesion proteins is expressed
at the tripartite synapse by neurons and astrocytes alike (Phillips
et al., 2003; Garrett and Weiner, 2009) and has been shown to be

FIGURE 1
Astrocytes control synapse formation and plasticity (figure represents a general synapse). (A) Synaptogenesis. ① During early development,
astrocytes secrete pro-synaptogenic factors thrombospondin 1 and 2 (TSP1 and TSP2) and hevin. TSP1 and TSP2 interact with the neuronal receptor α2δ-
1, while hevin bridges neuronal neurexin-1α (NRX1α) and neuroligin-1B (NL1B), inducing structural synapse formation. These factors induce the formation
of immature synapses containing synaptic vesicles, post-synaptic density (PSD) and NMDARs, but lacking AMPARs.② Astrocytes can also secrete a
hevin antagonist, SPARC, which inhibits hevin-induced synaptogenesis, controlling the rate of new synapse formation.③ Astrocyte-secreted molecules,
such as glypican 4 and 6 (Gpc4 and Gpc6), contribute to synapse maturation by recruiting AMPARs to the post-synaptic membrane (red dotted arrow).
④ Astrocyte-secreted cholesterol is also crucial during synaptic maturation as it regulates pre-synaptic vesicle exocytosis. ⑤ Astrocyte-neuron cell
adhesion molecules (CAM), like protocadherins, provide stability and promote synaptic development via contact-mediated signalling. (B) Synaptic
transmission and plasticity. ① Once released, neurotransmitters stimulate mainly ionotropic receptors at the post-synaptic neuron to propagate/
suppress synaptic transmission. Following this, specialized transporters, like GLT-1/GLAST, take up excess neurotransmitter, such as glutamate, thus
preventing excitotoxicity.② Neurotransmitters released at the synapse also bind and activate astrocytic metabotropic neurotransmitter receptors, such
as mGluR and purinergic P2 receptors, which commonly induces astrocytic Ca2+ levels to rise.③ Synaptically-evoked Ca2+ increases usually contribute,
at least in part, to gliotransmitter release (glutamate, ATP, D-serine, GABA). These gliotransmitters interact with neuronal receptors at the pre- and post-
synaptic elements, regulating synaptic activity and affecting neurotransmitter release.
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essential for excitatory and inhibitory synapse formation in vitro and
in vivo (Garrett and Weiner, 2009). Astrocyte development and,
consequently, synaptogenesis are also controlled by the interaction
of astrocytic neuroligins (NL) with neuronal neurexins (Nrx):
knockdown of astrocytic NL2 decreases excitatory synapse
formation and function while promoting inhibitory synaptic
function (Stogsdill et al., 2017). These dynamics are likely very
complex as astrocyte-neuron co-cultures only fully mature when
both cell types are from the same brain area, implying a degree of
regional specialization in astrocyte-neuronal interactions (Morel
et al., 2017).

Synaptic pruning is also an essential part of neuronal circuit
formation. Astrocytes can balance out their synaptogenic properties
by modulating synapse elimination, thus preventing excessive
accumulation of superfluous synapses. Astrocytes are phagocytic
cells and express the receptors MEGF10 and MERTK. These
receptors recognize phosphatidylserines at the surface of target
synapses as opsonic signals, leading to their degradation (Chung
et al., 2013; Scott-Hewitt et al., 2020). Furthermore, astrocyte-
microglia crosstalk also contributes to synaptic pruning. For
example, astrocytic IL-33 has been shown to induce microglia-
mediated synaptic pruning, although the downstream
mechanisms that trigger the microglial response are still unclear
(Vainchtein et al., 2018).

It is likely that not all astrocytes have the same secretory
phenotype, as they have been described as a rather heterogeneous
cell population (Ben Haim and Rowitch, 2017; Khakh and Deneen,
2019; Batiuk et al., 2020). Astrocytic factors have specialized
functions to ensure correct circuit maturation and different
factors seem to be necessary for the formation and maturation of
specific subtypes of synapses. Therefore, astrocytes in different (sub)
regions of the brain could be specialized in secreting specific factors
which are crucial for synapse formation in that region. For example,
astrocyte-secreted hevin appears to be crucial for thalamocortical
excitatory synapse formation (Risher et al., 2014). Chrdl1 expression
is enriched particularly in upper cortical layers and in striatal
astrocytes, indicating that its actions may be restricted to these
brain areas (Blanco-Suarez et al., 2018). Astrocytes originating from
the dorsal or ventral spinal cord have different gene expression
profiles and both seem to be essential to synaptogenesis (Tsai et al.,
2012; Molofsky et al., 2014). For example, the elimination of ventral
astrocytes expressing Sema3a compromises motor and sensory
neuron circuit formation (Molofsky et al., 2014). Hence,
synaptogenesis appears to require a complex interplay of
astrocytic molecules and signals that must be tightly coordinated
to control circuit formation and refinement in vivo, which is far from
being completely understood (Holt, 2023). Phagocytic capacity may
also vary between astrocyte populations and brain regions. More
detailed knowledge about these aspects of astrocyte physiology and
function will be necessary to be able to phenocopy or boost astrocyte
function as a therapy for brain disease in the future.

Astrocyte-neuron interactions regulate
synaptic transmission and plasticity

Functional, mature synapses continuously transfer information
between neurons via the release of neurotransmitters, neuropeptides

and neuromodulators. The remarkable discovery that astrocytes are
also active participants in synaptic transmission, responding to and
controlling neuronal excitability and synaptic plasticity through
various mechanisms established the concept of the tripartite
synapse (Araque et al., 1999) (Figure 1B).

Astrocytes express a wide variety of neurotransmitter
transporters, including glutamate transporters, such as the
glutamate transporter 1 (GLT-1) and glutamate/aspartate
transporter (GLAST) (Figure 1B), and GABA transporters, such
as GAT1 and GAT3, which take up their respective
neurotransmitters from the synaptic cleft and extrasynaptic space
following synaptic transmission. This restricts neurotransmitter
action, preventing excitotoxicity which would lead to synaptic
dysfunction (Ishibashi et al., 2019; Mahmoud et al., 2019).

Astrocytes also express a wide array of neurotransmitter receptors
(Figure 1B). Neurotransmitters thus not only act by stimulating or
inhibiting the pre- and post-synaptic neuronal elements but also control
astrocytic activity. Most astrocytic neurotransmitter receptors consist of
GPCRs, including metabotropic glutamate receptors (mGluR),
purinergic receptors (P2Y), and the GABAB receptor (Liu et al.,
2021). Activation of these receptors typically triggers Ca2+ signals in
astrocytes via the phospholipase C (PLC)-IP3 pathway. Briefly, upon
activation by their ligand, many GPCRs, such as Gq-coupled mGluRs,
stimulate PLC to form IP3 which then induces Ca2+ release from the
endoplasmic reticulum via activation of IP3 receptors (IP3R) (Volterra
et al., 2014; Shigetomi et al., 2016). Depending on their nature and
intensity, Ca2+ signals can then propagate to neighbouring cells via gap
junctions, thus highlighting the complexity of Ca2+ signals in astrocytes.

Astrocytes seem to discriminate activity originating not only
from different brain regions but also from different neuronal
subtypes within the same region. As revealed by astrocytic Ca2+

imaging, hippocampal astrocytes from the stratum oriens of the
CA1 respond to cholinergic but not glutamatergic inputs originating
in the alveus (Araque et al., 2002), whereas the same astrocytes
respond to glutamate if the signal originates from the Schaffer
collateral (Perea and Araque, 2005). In the barrel cortex,
astrocytes in layer 2/3 increase intracellular Ca2+ levels in
response to glutamatergic stimuli from layer 4, but not from
layer 2/3 (Schipke et al., 2008). A single astrocyte simultaneously
contacts thousands of synapses, which may be excitatory or
inhibitory, making it highly likely that astrocyte processes
associated with different types of synapses express different
receptors (Holt, 2023). Hence, astrocytes can respond to
neuronal activity in a highly intricate way that is cell-, region-,
and pathway-specific.

Astrocytes are thought to respond to neuronal activity by releasing
small neuroactive molecules (gliotransmitters), including glutamate,
GABA, D-serine, and ATP, which can in turn modulate synaptic
activity (Figure 1B). A variety of mechanisms for gliotransmitter
release have been proposed. Vesicular gliotransmitter release has been
widely proposed and is thought to be controlled, at least in part, by
synaptically-evoked increases in intracellular astrocyte Ca2+ (Perea et al.,
2009). However, alternativemechanisms have also been proposed, not all
of which are Ca2+-dependent, such as diffusion through conductance
pores opened following P2X7 activation by ATP and swelling-activated
anion channels, or even diffusion through gap junction hemichannels
(Hamilton and Attwell, 2010). Once released, gliotransmitters can
contribute to regulate neuronal excitability and synaptic plasticity by
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inducing long-term potentiation (LTP) or long-term depression (LTD).
LTP results in synaptic strengthening by increasing synaptic responses,
while LTD weakens synapses due to decreasing synaptic responses
(Turrigiano, 2008). In hippocampal dentate granule cells, astrocyte-
released glutamate activates NMDARs in the afferent neurons,
prolonging excitatory synaptic transmission (Jourdain et al., 2007),
and induces AMPAR-mediated spontaneous excitatory synaptic
current in CA1 pyramidal neurons (Fiacco and McCarthy, 2004).
Additionally, astrocytic glutamate can activate pre-synaptic mGluRs,
which enhances NMDAR-mediated currents in CA1 hippocampal
neurons, but inhibits CA3 hippocampal neurons (Grishin et al.,
2004). In addition to glutamate, NMDAR activation also requires
D-serine binding. Astrocyte-released D-serine in CA1 induces
NMDAR-dependent LTP, controlling the synaptic plasticity of
neighboring excitatory synapses (Henneberger et al., 2010).
Furthermore, ATP and its degradation product adenosine interact
with A1 and A2A pre-synaptic receptors, either enhancing or
inhibiting neuronal excitability. In hippocampal CA1, astrocyte
activation via mGluR5 leads to ATP release, activating A2A receptors
and increasing synaptic transmission and LTP (Panatier et al., 2011). On
the other hand, in hippocampal slices, GABAB receptor-mediated
astrocyte activation induces both glutamate and ATP release. An
initial excitatory response is driven by glutamate, followed by the
ATP response which induces synaptic depression (Covelo and
Araque, 2018). These studies provide evidence that gliotransmitters
may facilitate or inhibit neuronal excitability depending on the brain
(sub)region and type of receptors expressed and activated. This might be
further influenced by the temporally segregated co-release of different
gliotransmitters by the same, or even different astrocytes, thus
emphasizing the intricate nature of astrocyte-neuron communication.

Proper synaptic function and plasticity are vital to drive animal
behavior and support complex brain processes. The role of astrocytes
in, for example, memory consolidation has been highlighted by
observations that in IP3R2 knock-out mice, in which Ca2+ signalling
in astrocytes is impaired, synaptic plasticity is compromised (Takata
et al., 2011; Chen et al., 2012; Navarrete et al., 2012). Furthermore,
Halassa and colleagues showed that blockage of astrocyte vesicular
release affects memory formation (Halassa et al., 2009), while Stehberg
and colleagues revealed that administration of a mixture of
gliotransmitters rescued memory loss (Stehberg et al., 2012). Even
though the exact roles astrocytes play in such processes still remain
elusive, these studies point towards a path in which specifically
manipulating astrocytic activity holds promise to allow in-depth
characterization of astrocyte roles, not only in learning and
memory but also in other high-order brain functions and behaviors.

Finally, just like during brain development, synapses in the adult
brain are also subject to ongoing pruning by astrocytes, using similar
molecular machinery to help maintain circuit homeostasis and
facilitate processes like learning and memory formation (Lee
et al., 2021).

Chemogenetic manipulation of
astrocyte activity

Given the significance of astrocytes in synapse formation and
function (including plasticity), there has been a growing interest to
manipulate their activity to modulate neuronal activity and

positively impact CNS health. Chemogenetics is a widely used
technique, based on genetically engineered proteins, which have
been specifically modified to respond to otherwise inert synthetic
molecules, instead of their endogenous ligands. Since GPCRs
comprise the main group of receptors activating astrocytes,
chemogenetics commonly uses engineered GPCRs known as
Designer Receptors Exclusively Activated by Designer Drugs
(DREADDs) (Armbruster et al., 2007).

Target genes, such as DREADDs, can be expressed as transgenes
in genetically manipulated mouse lines, by using vectors [such as
those based on adeno-associated virus (AAV) or lentivirus (LV)]
injected into target brain regions or intravenously (e.g., retro-orbital
and tail injections), or even by resorting to in utero (IUE) or post-
natal (PALE) electroporation. By combining any of these
approaches with astrocyte-specific promoters, expression of the
gene of interest can be restricted to this cell population. When
choosing between one of these methods to study astrocyte function,
one should not only take the goal of the experiment into account but
also the advantages and disadvantages inherent to each approach
(Table 1). Many transgenic mouse lines, mostly tamoxifen-inducible
Cre lines (Cre/ERT2), are particularly suitable to study the impact of
astrocytes on brain-wide function. However, high rates of efficiency
and specificity are sometimes difficult to accomplish since astrocyte
gene expression highly depends on several factors such as
developmental stage and brain region, and genes regarded as
astrocytic markers may also be expressed in other cell types,
including neural progenitor cells (Yu et al., 2020a). The Aldh1l1-
Cre/ERT2 and the Fgfr3-Cre/ERT2 mouse lines are, to date, some of
the mouse lines which have achieved the highest rates of efficiency
and specificity (Young et al., 2010; Srinivasan et al., 2016;
Winchenbach et al., 2016; Yu et al., 2021), while others, such as
the Slc1a3-Cre/ERT2 (Slezak et al., 2007; Srinivasan et al., 2016),
S100β-Cre (Tanaka et al., 2008), andGFAP-Cre/ERT2 (Casper et al.,
2007; Park et al., 2018), have been described to target fewer
astrocytes and to have more off-target effects than the Aldh1l1-
Cre/ERT2 mouse line. Importantly, by crossing GFAP-Cre/
ERT2 mice with Cre-responsive Rosa-CAG-lox-hM3Dq, an
inducible DREADD mouse line was successfully created in which
the DREADD construct (hM3Dq) was specifically expressed in the
soma and processes of Gfap-positive glial cells (Sciolino et al., 2016).
Intravenous injection of AAV-PHP.eB, containing the GfaABC1D
promoter, consistently and specifically targets high amounts of
astrocytes across the entire brain, thus providing a valuable
alternative to the use of transgenic mouse lines (Chan et al.,
2017; Challis et al., 2019). While is it true that brain-wide
specific astrocyte targeting can provide valuable information
about the contribution of these cells to global brain function, the
emerging evidence that astrocytes show inter- and intra-regional
heterogeneity, and appear to be matched to local circuits responsible
for generating particular behaviors, makes it increasingly important
to tackle the role of astrocyte (subpopulations) in distinct brain areas
(Nagai et al., 2021). Given the limited diffusion capacity of certain
AAV and LV vectors (Scheyltjens et al., 2015), region-specific
astrocyte targeting is mostly accomplished by performing
intracranial viral vector injections. Namely, AAV2/5 and AAV2/
9, containing the GfaABC1D promoter, are commonly used as this
has been described to achieve relatively high rates of efficiency
(Nagai et al., 2019: 84%; Yu et al., 2018: 89%) and specificity (Vagner
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et al., 2016; Octeau et al., 2018; Yu et al., 2018; Nagai et al., 2019; Yu
et al., 2021). Similarly, LV, such as the Mokola pseudotyped LV
(Droguerre et al., 2019), can also be used to locally target astrocytes
with the advantage that they can transport more genetic material
than AAVs (Cannon et al., 2011; Droguerre et al., 2019). However,
LVs have been associated with the risk of mutagenesis since they
integrate into the genome. IUE provides yet another alternative to
express genes of interest in brain cells and has been successfully
implemented in several animal models such as mice, rats, ferrets and
cats (Yamashiro et al., 2022; Edwards-Faret et al., 2023). As
astrocytes start developing in the CNS shortly after birth, PALE,
an adaptation of IUE, can be used to specifically target astrocytes
(García-Marqués and López-Mascaraque, 2013; Gee et al., 2015;
Stogsdill et al., 2017; Kittock and Pilaz, 2023). In this technique,
plasmids, upon injection into the parenchyma of newborn mouse
pups (P0-P1), are delivered into the cells due to the action of
electrical impulses which disrupt the cell membrane, allowing the
passage of the DNA. Besides being less damaging, since the
manipulation is performed early in life, and allowing the
transfection of bigger constructs than the viral vector approaches,
by precisely controlling the injection site and/or the position of the

electrodes, both IUE and PALE allow region specific transgene
expression (Yamashiro et al., 2022; Kittock and Pilaz, 2023). IUE
and PALE have been used to express DREADDs in neurons (Hurni
et al., 2017; Muthusamy et al., 2017). Although this has yet to be
accomplished for astrocytes, the positive results obtained for
neurons hold great promise to also take advantage of this
technique to target DREADDs to astrocytes when using the
appropriate promoters. It is interesting to note that the above-
mentioned approaches can also be combined for better results
regarding specificity and expression levels. For instance,
astrocyte-specific Cre lines, such as Aldh1l1-CreERT2, generally
make use of full-length promoters and are, therefore, generally
considered to more faithfully recapitulate the endogenous gene
expression profile. Combining the use of such Cre-lines with
injections of viral vectors (or plasmids) that express DREADDs
in a Cre-inducible manner, allows transgene expression under the
control of strong ubiquitous promoters, such as the cytomegalovirus
(CMV) promoter, which often results in higher expression levels
(although potentially enhanced toxicity cannot be discounted).
Additionally, combining IUE/PALE with the use of DREADDs
could hold the potential to unravel the roles of astrocytes in non-

TABLE 1 Possible strategies for brain-wide and region-specific DREADD targeting. *Indicates specific approaches which have been successfully implemented to
express DREADDs specifically in astrocytes. †Indicates strategies which have been successful in expressing DREADDs specifically in neurons but have yet to be
tested for astrocytes. The remaining approaches have been previously used to (non-specifically) target astrocytes and not in the specific context of DREADD
expression.

Technical
approach

Astrocyte
targeting

Expression system Advantages Limitations

Transgenic mouse lines Brain-wide Constitutive expression: *GFAP-hM3Dq
(Agulhon et al., 2013), S100β-Cre (Tanaka
et al., 2008), GFAP-Cre (Zhuo et al., 2001)

No capacity limitation (bigger
promoters may be used);
Little to no invasiveness.

Promoter-dependent efficiency and/or
specificity;

Possibility of off-target, systemic effects;
Inducible lines require tamoxifen

administration;
Time-consuming and expensive.

Inducible expression: Aldh1l1-Cre/ERT2
(Srinivasan et al., 2016; Winchenbach et
al., 2016; Yu et al., 2021), Fgfr3-Cre/ERT2
(Young et al., 2010), Slc1a3-Cre/ERT2

(Slezak et al., 2007; Srinivasan et al., 2016),
*GFAP-Cre/ERT2 (Casper et al., 2007;

Park et al., 2018) crossed with Rosa-CAG-
lox-hM3Dq (Sciolino et al., 2016)

Intravenous AAV
injections (blood-brain

barrier crossing)

Brain-wide AAV-PHP.eB; GfaABC1D promoter
(Challis et al., 2019; Chan et al., 2017),
scAAV9; chicken β-actin hybrid promoter
(CB) promoter (Foust et al., 2009), and
GfaABC1D promoter (Dashkoff et al.,
2016), AAV-rh10; cytomegalovirus

(CMV) promoter (Tanguy et al., 2015)

High efficiency and specificity;
Low invasiveness.

Limited packaging capacity (AAV ≤5 kb;
small promoters);

Requires high vector load (particularly
AAV9 and AAV-rh10) which may

trigger immune responses;
Possibility of off-target, systemic effects;

Expensive.

Intracranial AAV or LV
microinjections

Region-specific *AAV2/5 and *AAV2/9; GfaABC1D
promoter (Hennes et al., 2020; Nagai et al.,
2019; Octeau et al., 2018; Vagner et al.,
2016; Yu et al., 2018, 2021), Mokola

pseudotyped LV (Droguerre et al., 2019)

Relatively high efficiency and
specificity;

Limited diffusion capacity is
advantageous to restrict vector

expression to astrocytes in the target
region.

Limited packaging capacity (AAV ≤5 kb
and LV ≤10 kb; small promoters);

Invasive;
Limited diffusion capacity is

disadvantageous if the region of interest
is big or if brain-wide labelling is desired;

Expensive.

In utero (IUE) and post-
natal (PALE)
electroporation

Region-specific IUE: †Ubi-hM3Dq-GFP (Hurni et al.,
2017), mGFAP kmyrTdTomato; misPiggy
plasmid system (Edwards-Faret et al.,

2023)

Less damaging since the young brain
is more plastic and recovers better
from insults than the adult brain;
No limitation in transgene size;

Robust expression;
Applicable to many species,

including non-model organisms.

Unsuitable to study proliferating cells
unless in combination with techniques
such as the piggyBac transposon system;

Limited coverage;
Difficult to control the targeted area;
Possibility of cell death due to high-

voltage electrical pulses.

PALE: †pAAV-pSYN-DIO-HA-
hM4D(Gi)-IRES-mCitrine (Muthusamy et
al., 2017), pZac2.1-gfaABC1D-EGFP,
pZac2.1-gfaABC1D-mCherry-CAAX

(Stogsdill et al., 2017)
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model organisms, as well as species with a more complex brain
structure than mice. However, none of the approaches mentioned
above take the matter of intra-regional diversity into account for
which vectors and/or transgenic lines containing promoters for
specific astrocyte subpopulations should be used. Even though
the existence of such vectors and transgenic lines is not yet a
reality, the recent generation of single-cell/nucleus RNA
sequencing data sets might help propel the development of such
tools and even the use of intersectional genetics
(Beckervordersandforth et al., 2010). This will be crucial to
determine the role of specific subpopulations in defined brain
regions (Huang et al., 2020). As described below, to date,
DREADDs have been successfully expressed in astrocytes, under
the control of the GFAP promoter, in both transgenic mouse models
and AAV systems, and it is likely that such techniques can be
modified to use promoters targeting astrocyte subpopulations (Bang
et al., 2016; Shen et al., 2021).

The modified human M3 and M4 muscarinic receptors
coupled to Gq or Gi proteins (hM3Dq and hM4Di,
respectively) are the most frequently used DREADDs. Owing to
two-point mutations in the ligand binding domain, both receptors
can be easily activated upon administration of synthetic
compounds of which the most widely used is clozapine-N-oxide
(CNO) (Armbruster et al., 2007; Wess et al., 2013). Pioneering
studies from Fiacco and colleagues, using transgenic mice
expressing the GPCR A1 (MrgA1) in astrocytes, showed that
stimulation of MrgA1 elicited Ca2+ waves in astrocytes (Fiacco
et al., 2007). However, this did not seem to influence neuronal
excitability and synaptic plasticity. This lack of effect on neuronal
function was met with disappointment by the field and MrgA1-
based studies were generally discontinued in favor of those using
DREADDs expressed in astrocytes, which were shown to modulate
neuronal activity and hence impact animal physiology and
behavior (Bang et al., 2016; Shen et al., 2021).

In GFAP-hM3Dq transgenic mice (Agulhon et al., 2013) and in
mice injected in the visual cortex with AAV-GFAP-hM3Dq (Bonder
and McCarthy, 2014), hM3Dq stimulation with CNO increases
intracellular Ca2+ levels in astrocytes. The same response has also
been described in hM3Dq-activated astrocytes in the hippocampus
(Chai et al., 2017; Adamsky et al., 2018; Durkee et al., 2019), striatum
(Chai et al., 2017), and nucleus accumbens core (Bull et al., 2014;
Corkrum et al., 2020). In contrast, the exact signalling outcome of
hM4Di-mediated astrocyte manipulation seems to be less evident as
some studies have reported increased astrocytic Ca2+ concentrations
(Chai et al., 2017; Durkee et al., 2019; Nagai et al., 2019), while others
have shown a decrease (Yang et al., 2015; Xin et al., 2019), or even no
difference (Nam et al., 2019). These distinct effects have been
described between different brain regions (Chai et al., 2017) but
also within the same region, like the hippocampus (Chai et al., 2017;
Durkee et al., 2019; Kol et al., 2020). Astrocytes are known to be a
molecularly and functionally heterogeneous cell population both
between and within brain regions (Ben Haim and Rowitch, 2017;
Khakh and Deneen, 2019; Pestana et al., 2020; Holt, 2023). Hence,
these different responses could be potentially linked to the activation
of molecularly distinct astrocyte subtypes. Indeed, work by Chai and
colleagues revealed that hM3Dq expression and activation in both
hippocampal and striatal astrocytes produces roughly equivalent
increases in intracellular Ca2+, while the effects of hM4Di on Ca2+

were significantly higher in striatal astrocytes, again pointing to
specific differences in intracellular signalling pathways (Chai et al.,
2017).

Similar to the effects generated by the activation of endogenous
GPCRs, several studies have shown that DREADD-induced Ca2+

increases result in gliotransmitter release from astrocytes, with
subsequent effects on synaptic plasticity and function and,
consequently, in behavior and processes such as learning and
memory formation. hM3Dq-activated astrocytes in the rat
nucleus accumbens core were reported to release glutamate,
which was suggested to impact synaptic plasticity (Bull et al.,
2014; Scofield et al., 2015). Other groups have reported the
release of ATP from hM3Dq-activated astrocytes in the medial
basal hypothalamus (Yang et al., 2015) and the nucleus
accumbens core (Corkrum et al., 2020). Kang et al. showed that
astrocytes in the dorsomedial striatum, activated using hM3Dq,
release ATP which, once metabolized into adenosine, induces
neuronal activity and, consequently, a shift from habitual to goal-
directed seeking behaviors (Kang et al., 2020). Release of ATP from
hM3Dq-activated astrocytes in the amygdala was shown to activate
A1A receptors, inhibiting neuronal activity and reducing fear
behavior (Martin-Fernandez et al., 2017). Moreover, in astrocytes
from the hippocampal CA1, hM3Dq-mediated activation induced
astrocyte secretion of D-serine, which enhanced synaptic plasticity
and memory formation (Adamsky et al., 2018). In an independent
study, Durkee and colleagues found that stimulation of astrocytes
using hM3Dq in the same brain region resulted in glutamate release,
increasing neuronal excitability via NMDAR activation (Durkee et
al., 2019). The effects of hM4Di activation on gliotransmitter release
have been less explored. Evidence suggests that hippocampal
astrocyte activation via hM4Di leads to glutamate release and a
consequent increase in neuronal activity (Durkee et al., 2019; Nam
et al., 2019). Overall, these studies highlight the role of astrocytes in
complex animal behavior and function, while showcasing the
incredible potential of this technique to further expand our
knowledge of astrocyte-neuron interplay during processes such as
memory formation.

Overall, these studies confirm that using Gi- and Gq-DREADDs
to manipulate astrocytes seems to recapitulate, at least to a degree,
their responses to endogenous neurotransmitters, resulting in
neuronal modulation and behavioral effects. Thus, their use
presents a potential entry point for uncovering new molecular
pathways to manage CNS function. However, despite their
incredible potential, it is important to acknowledge that using
DREADDs also comes with its challenges and limitations. For
example, it is unlikely that DREADD activation faithfully
recapitulates all aspects of the highly complex Ca2+ signalling
elicited under standard physiological conditions (Semyanov et al.,
2020). In addition, when using viral vector-based delivery systems,
the genomic titer of the vectors, multiplicity of infection in cells and
relative promoter strength may limit DREADD expression levels.
These factors could account, at least in part, for the distinct effects of
DREADD activation observed in different studies. Furthermore, it
has been reported that systemically administered CNO does not
easily penetrate the blood-brain barrier and back-metabolizes into
clozapine (Jann et al., 1994; Gomez et al., 2017). Since clozapine itself
is a muscarinic agonist, it can activate endogenous receptors,
potentially leading to off-target effects, as it has been observed in
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rats, mice and humans (Jann et al., 1994; MacLaren et al., 2016;
Gomez et al., 2017; Bærentzen et al., 2019). Considering these issues,
an effort has been made to develop new chemical compounds, such
as Compound 21 (C21) and perlapine (Chen et al., 2015; Thompson
et al., 2018), JHU37152 and JHU37160 (Bonaventura et al., 2019),
and deschloroclozapine (Nagai et al., 2020; Nentwig et al., 2022).
These molecules showcase high affinity and selectivity for
DREADDs and, so far, minimal off-target effects have been
identified. However, these novel compounds are still poorly
characterized, and therefore, despite its obvious limitations, CNO

remains the most commonly used compound for DREADD
activation.

Astrocytes as valid targets for CNS
disease treatment

Neuronal circuit activity is easily disrupted as a consequence of
synaptic dysfunction, a common hallmark of several neurological
disorders, ranging from neurodevelopmental to neurodegenerative.

FIGURE 2
Targeting astrocyte activity in CNS disease (figure represents a general synapse). ① In several brain diseases, the surface expression of glutamate
transporters, such as GLT-1 and GLAST, is significantly decreased. This compromises glutamate uptake from the synaptic cleft, leading to excitotoxicity
and neuronal death.②Most neurodevelopmental diseases show decreased spine density and, in some cases, astrocyte-derived thrombospondin (TSP1)
secretion was shown to be decreased. Since astrocyte stimulation via hM4Di has been shown to induce elevations in intracellular Ca2+ as well as
TSP1 release in the dorsal striatum, this represents a potential approach to promote structural synapse formation in patients with neurodevelopmental
diseases, but beneficial behavioral outcome is still to be established. ③ Neuroinflammation is a common hallmark of neurodegenerative diseases and
astrocytes are known to secrete pro-inflammatory molecules which contribute to inflammation propagation. Interestingly, hM4Di-mediated astrocyte
activation in the CA1 was reported to suppress inflammation, resulting in an improvement in cognitive function.④ Selective hM4Di stimulation in striatal
astrocytes was also found to phenocopy GPCR activation by increasing Ca2+ signalling, rescuing astrocytic functional impairments and synaptic
dysfunction associatedwith Huntington’s disease.⑤ Selective activation of hM3Dqwas shown to increase Ca2+ levels in astrocytes in the cingulate cortex
and hippocampus. Increased Ca2+ in cortical astrocytes rescued neuronal activity and protected against seizures and day/night hyperactivity associated
with early Alzheimer’s disease. Additionally, the increased Ca2+ levels driven by hM4Di activation in the hippocampus are thought to lead to D-serine
release and improvedmemory formation. Solid arrows indicate established/tested effects, while dashed lines represent circumstantial/hypothetical links.
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Astrocyte dysfunction has also been reported in many CNS
disorders over the years and is thought to contribute to disease
mechanisms. Therefore, manipulating astrocytic activity and
function at an early stage could hold potential for the
development of novel approaches to decrease the severity and
progression of the disease (Figure 2). It is interesting to note
that categories of disorders present phenotypic commonalities.
While the strategy to manage, for example, neurodevelopmental
diseases could mainly focus on promoting astrocyte-mediated
synaptogenesis, for other disorders one could prioritize re-
establishing homeostatic astrocyte-neuron signalling and
controlling chronic inflammation.

Neurodevelopmental diseases

Neurodevelopmental disorders comprise a heterogeneous group
of diseases deriving from impaired nervous system development.
They are commonly associated with alterations in neuronal spine
density and structure and synaptic function. Astrocyte dysfunction
is often present and is commonly shown by decreased secretion of
pro-synaptogenic factors and alterations in neurotransmitter
clearance, affecting synaptic transmission. These phenotypes are
observed in diseases such as Fragile-X and Down syndrome
(Caldwell et al., 2022).

Fragile-X syndrome (FXS) patients possess an expansion in the
trinucleotide CGG of the FMR1 gene resulting in autistic traits, such
as intellectual disability and social anxiety, abnormal behavior and
high susceptibility to seizures (Penagarikano et al., 2007; Yudkin
et al., 2014). The FMR protein (FMRP) is involved in spine
maturation. Therefore, FXS patients typically display impaired
synaptic development, with a high density of thin, immature
spines and, consequently, defective synaptic activity (Rudelli
et al., 1985; Hinton et al., 1991). In astrocyte-specific Fmr1
knock-out mice, the expression of GLT-1 is decreased leading to
impairment of glutamate reuptake and excitotoxicity (Figure 2)
(Higashimori et al., 2016). Fmr1 knockdown in cultured
hippocampal neurons increases mGluR1/5-mediated signalling
which drives the internalization of AMPARs, an important
mechanism in mGluR-mediated LTD (Nakamoto et al., 2007).
Enhanced mGluR-mediated LTD is observed in multiple brain
regions of patients with FXS, such as the hippocampus, amygdala
and cerebellum, leading to epileptic episodes (Chuang et al., 2005),
increased anxiety (Suvrathan et al., 2010), and motor deficits
(Koekkoek et al., 2005), respectively. Therefore, it would be of
interest to direct future work towards unravelling whether
potentiating astrocyte secretion of factors such as Gpc4 and
Gpc6 could help with the recruitment of AMPARs back to
synapses as a means of restoring neuronal activity.

Down syndrome (DS), also known as trisomy of chromosome
21, is the most common genetic form of mental disability
(Antonarakis et al., 2020). Similar to FXS, in DS patients and
mouse models of DS, spine density and structure are severely
altered, compromising neuronal and synaptic plasticity,
particularly in the cortex and hippocampus (Marin-Padilla, 1972;
Benavides-Piccione et al., 2004). TSP1 levels are significantly
decreased in cultured astrocytes from DS patients. In mixed
cultures of DS-derived astrocytes and wild-type hippocampal

neurons, this leads to perturbations in the development of
dendritic spines, which were rescued by the addition of
recombinant TSP1 to the culture medium (Garcia et al., 2010).

Given the common defects in spine and synaptic development
observed in FXS and DS, it would be logical that targeting astrocyte
function in order to promote the secretion of synaptogenic
molecules in early development could be a potential way to
alleviate disease phenotype. A study by Nagai and colleagues
recently showed that, in the dorsal striatum, astrocyte activation
using hM4Di in vivo stimulates the release of TSP1 by astrocytes
(Figure 2) and increases excitatory synapse formation and the firing
rate of medium spiny neurons (MSN) (Nagai et al., 2019). However,
this increased TSP1 also led to behavioral abnormalities, including
hyperactivity and disrupted attention. Despite this apparent
contraindication, we would argue that it should be investigated
whether TSP1 release is also stimulated by hM4Di-mediated
astrocyte activation in other brain regions, such as the
hippocampus, and what the exact functional and behavioral
consequences of such manipulation would be. Exploring this is
crucial to support or refute the idea of astrocytic TSP1 release as a
therapeutical option for pathologies affecting different brain areas,
since the effects of hM4Di manipulation could differ due to regional
astrocyte heterogeneity. Additionally, research should further focus
on determining whether DREADD-mediated astrocyte activation
can also induce the release of other factors like Gpc4, Gpc6 and
Chrdl1 to promote functional synapse maturation.

Neurodegenerative diseases

Alzheimer’s disease (AD) is the most common
neurodegenerative disease and patients clinically present cognitive
decline and progressive dementia with loss of long-term memory.
AD is primarily characterized by the accumulation of Aβ plaques
and hyperphosphorylated tau (Long and Holtzman, 2019). Over the
years, several studies have highlighted the importance of astrocyte
(dys)function throughout the course of AD pathology. A
comparison of single-nucleus RNA-seq data sets from the
prefrontal cortex of patients with no- and early-AD pathology,
aged around 87 years old, has shown that most transcriptomic
changes already occur before the development of pathological
hallmarks (Mathys et al., 2019). In the APPSwe/PS1dE9 mouse
model, astrocytes display altered expression of genes associated with
synaptic regulation from 4months onward (Pan et al., 2020). In fact,
a recent study by Shah and colleagues demonstrated decreased
astrocytic Ca2+ signalling in the cingulate cortex of AppNL-G-F

mice aged 6–12 weeks, reflecting disrupted network activity in
this brain area before any detectable Aβ plaque formation, just as
in human AD patients (Shah et al., 2022). At the later stages of AD,
reactive astrocytes emerge and secrete IL-1β, and TNF-α, among
other pro-inflammatory cytokines (Osborn et al., 2016). Single-cell/
nucleus RNA sequencing studies on entorhinal and prefrontal
cortical astrocytes from AD patients, as well as on cortical
astrocytes from 5XFAD and APPSwe/PS1dE9 mouse models,
have revealed a high diversity of reactive astrocytes, not only
associated with different brain regions but also with different
stages of disease progression, highlighting the complexity of
disease-associated astrocyte heterogeneity (Orre et al., 2014;
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Grubman et al., 2019; Mathys et al., 2019; Zhou et al., 2020). In
addition, females were found to show higher transcriptional
susceptibility to AD pathology, suggesting a gender-based
astrocyte disease response (Mathys et al., 2019). Contrary to what
was recently observed for the pre-symptomatic AD stage (Shah et al.,
2022), Ca2+ signalling appears increased in astrocytes at late disease
stages (6–9 months old) in the APPSwe/PS1dE9 mouse model
(Kuchibhotla et al., 2009; Lines et al., 2022), and this has been
linked to increased astrocyte reactivity (Shigetomi et al., 2019).
Increased Ca2+ signalling typically enhances the release of
gliotransmitters, such as glutamate (Perea et al., 2009).
Additionally, GLT-1 expression is decreased in the cortex (Scott
et al., 2011), inferior parietal lobe (Lauderback et al., 2001), and
hippocampus and gyrus frontalis medialis (Jacob et al., 2007) of
human patients. This decrease in GLT-1 was also observed in the
cortex and hippocampus of 8- and 18-month-old AβPP23 mice
(Schallier et al., 2011), and is thought to underlie the neuronal
hyperactivity seen in this mouse model and AD in general. hM3Dq-
mediated astrocyte activation rescued astrocytic Ca2+ signalling in
the cingulate cortex of pre-symptomatic AppNL-G-F mice and,
consequently, neuronal activity and functional connectivity of
brain circuits. This also prevented typical symptoms presenting
at the early stages of AD, like seizures and day/night
hyperactivity, emphasizing that astrocytes are likely major players
in early AD (Figure 2) (Shah et al., 2022). On the other hand, when,
in the same study, astrocytes from control animals were similarly
activated through hM3Dq, the increase in Ca2+ signalling was much
more pronounced and induced neuronal hyperactivity (Shah et al.,
2022). DREADD activation of healthy and disease-associated
astrocytes thus causes opposing effects on neuronal activity,
producing distinct functional and behavioral outcomes. This
implies that the use of astrocyte activation therapeutically in the
clinic will have to be done cautiously and will likely needmatching to
reactivity status (see below).

From work in normal mice, DREADD-mediated astrocyte
manipulation leading to ATP and D-serine release, of potential
relevance to the AD field, has been reported. Astrocyte activation
in the hippocampus, using hM4Di, decreases Ca2+ signalling and
astrocyte-secreted ATP, compromising long-term, but not short-
term, memory (Kol et al., 2020). hM3Dq-mediated stimulation of
hippocampal astrocytes induces Ca2+ waves, leading to D-serine
release from astrocytes, which facilitates memory formation
(Adamsky et al., 2018) (Figure 2). Given the positive impact
of these DREADD manipulations on memory formation and
retention, we further propose investigating the functional and
behavioral outcomes of similar astrocyte-specific, DREADD-
mediated manipulations in the specific context of AD.
Furthermore, understanding the dynamics of how astrocytic
phenotypes adapt throughout pathology progression and
testing how these astrocyte populations respond to DREADD
activation will be crucial in allowing their specific targeting to
obtain the best possible therapeutic outcome. Additionally, this
will likely require the simultaneous development of novel
biomarker assays that allow accurate assessment of the
temporal progression of the disease.

Huntington’s disease (HD) is caused by an extension of the
CAG repeat in the huntingtin gene, leading to a wide variety of
motor, psychiatric and cognitive symptoms. Mutant huntingtin

forms aggregates and leads to astrocyte dysfunction and
neurodegeneration, particularly in the cortex and the striatum
(Bates et al., 2015; Ghosh and Tabrizi, 2018). Gene expression
studies on human and mouse HD samples have focused on
unravelling the diversity of reactive astrocytes in HD (Liddelow
et al., 2017; Diaz-Castro et al., 2019; Al-Dalahmah et al., 2020).
For instance, a study conducted on striatal astrocytes from pre-
clinical HD mouse models and patients found that these astrocytes
commonly show reduced expression of genes mostly related to GPCR,
Ca2+ and glutamate signalling (Diaz-Castro et al., 2019). The
importance of GPCR signalling in HD pathology has been recently
highlighted by the demonstration that in vivo stimulation of striatal
astrocytes using hM4Di was able to rescue astrocytic function,
including astrocyte-mediated synaptogenesis, and synaptic and
behavioral phenotypes characteristic of HD pathology (Yu et al.,
2020b). hM3Dq-mediated astrocyte stimulation in the striatum of
normal mice evoked increases in astrocytic Ca2+ (Chai et al., 2017).
Thus, this could also be a valid approach to further explore the effects
of modulating Ca2+ signalling inHD astrocytes, just as in AD, to reveal
novel ways of managing such diseases (Figure 2).

Multiple sclerosis (MS) is a chronic inflammatory disease
characterized by axonal demyelination leading to motor deficits
(Filippi et al., 2018). In MS, astrocytes show complex dynamics,
which are central to the disease’s progression. Although the
elimination of reactive astrocytes at early stages in a mouse
model of MS worsens neuroinflammation and disease severity
(Liedtke et al., 1998; Toft-Hansen et al., 2011), if such depletion
is restricted to advanced, chronic phases of MS, disease pathology is
improved (Mayo et al., 2014). Analysis of astrocyte diversity in MS
has identified a neurotoxic astrocyte subtype characterized by
complement component 3 expression (Liddelow et al., 2017), as
well as an anti-inflammatory astrocyte subtype, which seems to limit
pathology (Sanmarco et al., 2021). Together, this suggests that some
astrocytes, likely with an anti-inflammatory phenotype, might be
important in the initial stages of the disease but, in the long term,
neurotoxic subtypes might take over, aggravating disease pathology.
Therefore, it appears that neuroinflammation should be handled in a
temporal- and/or astrocyte subtype-specific manner. A recent study
by Kim et al. has revealed that hM4Di-mediated astrocyte
stimulation, in the hippocampal CA1 region, is capable of
suppressing LPS-induced neuroinflammation, suggesting that
hM4Di-activation engages anti-inflammatory mechanisms (Kim
et al., 2021) (Figure 2). Exploring how DREADDs modulate
neuroinflammation might identify anti-inflammatory pathways
which can be exploited therapeutically to manage MS, and
perhaps other neurodegenerative diseases characterized by a large
inflammatory component. Using DREADDs to achieve this is a
particularly attractive option, since receptor expression could
potentially be restricted to neurotoxic astrocytes, through the use
of astrocyte subtype-specific promoters. Even though these
promoters are not available yet, characterization of astrocyte
heterogeneity in MS might pave the way to implement such a
targeted strategy, thus revealing how DREADDs differentially
affect different subtypes of reactive astrocytes. As DREADD
activation can also be temporally controlled this further provides
the opportunity of exploring DREADD-mediated effects at specific
disease stages, which will be particularly important in chronic
(relapsing) conditions.

Frontiers in Cell and Developmental Biology frontiersin.org10

Pereira et al. 10.3389/fcell.2023.1193130

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1193130


Other neurological conditions

Besides intrinsic factors, such as genetic mutations,
imbalanced CNS function can be induced by external factors,
like drug abuse, which also disrupt homeostasis and compromise
synaptic transmission. It is important to note that even in
scenarios like addiction, in which astrocytic function does not
appear fully compromised, modulating astrocyte activity via
DREADD stimulation can present beneficial effects for
neuronal function and circuit homeostasis.

Addiction relates to a loss of control driving consumption of
certain substances, such as alcohol or drugs. It appears such behavior
is elicited by imbalances in glutamatergic signalling, mainly in the
prefrontal cortex and striatum (Kalivas, 2009; Stefanik et al., 2013).
For example, in animal models, basal levels of extracellular
glutamate are decreased in the nucleus accumbens following
cocaine exposure, reducing mGluR2/3 stimulation (Baker et al.,
2003; Moussawi and Kalivas, 2010; Reissner and Kalivas, 2010).
However, during drug-seeking or reinstatement behavior, rats
display increased synaptic activity in the connections between the
prefrontal cortex and nucleus accumbens, leading to high levels of
glutamate release (Scofield and Kalivas, 2014). This is compounded
by the fact that prior exposure of rats to cocaine negatively impacts
levels of GLT-1 expression in nucleus accumbens astrocytes, thus
reducing extracellular glutamate uptake, and leading to excessive
accumulation of glutamate at the synapse. When combined with a
reduced basal level of signalling, this acts to ‘hyperactivate’ the
system, and it is this enhanced level of glutamatergic signalling
which has been proposed to increase susceptibility to continuous
relapses (Kalivas, 2009). Crucially, in this respect, a study by Scofield
and colleagues, conducted in mice, demonstrated that hM3Dq
astrocyte activation in the nucleus accumbens, before the start of
a reinstatement period, elicits astrocytic glutamate release. This re-
establishes glutamate homeostasis previously disrupted by exposure
to cocaine and restores mGluR2/3 tone, acting to inhibit cocaine-
seeking relapse (Scofield et al., 2015) and highlighting the possibility
of using astrocyte-based strategies to treat addiction.

Sensory loss can develop because of an injury or age-related
pathology to sensory organs, such as the retina in the eyes. Partial or
complete loss of a particular sense deprives the brain region(s) that
were involved in processing the lost sense of their inputs, thus
compromising neuronal activity. However, it is now recognized that
these brain areas do not become silent zones. Instead, they are
reactivated and become responsive to stimuli from the spared senses
(Pascual-Leone et al., 2005; Hahamy and Makin, 2019). Evidence of
this is observed, for example, in blind patients. Following vision loss,
visual cortical areas become actively involved in discriminating
somatosensory stimuli during Braille reading (Sadato et al., 1996;
Leo et al., 2012). Considering the close association between
astrocytes and synapses, it is not surprising that they appear
involved in driving the required neuroplasticity through various
mechanisms. We have recently demonstrated that hM4Di-mediated
astrocyte activation in the visual cortex is capable of boosting such
neuronal reactivation following sudden partial vision loss in adult
mice (Hennes et al., 2020). The exact mechanisms underlying these
effects, however, remain unclear. Exploring the downstream effects
of hM4Di-mediated astrocyte activation in this monocular
deprivation model might bring new insights into mechanisms of

neuroplasticity, supporting the idea that DREADD-based astrocyte
manipulation may have great potential for therapy development to
treat patients with late-onset sensory loss.

Concluding remarks

Altogether, these studies highlight the central role of astrocyte
dysfunction, and consequent synaptic dysfunction, in several CNS
pathologies and thus the essential contribution of astrocytes to
normal circuit development and function. Given the importance
of GPCR signalling for astrocyte activity, we propose that expressing
genetically engineered GPCRs in astrocytes could be a promising
strategy to identify relevant signalling pathways that could
ameliorate brain dysfunction occurring after injury or throughout
disease. The potential application of DREADDs across the spectrum
of conditions lies in the range of downstream effects triggered upon
astrocyte stimulation, which most notably includes the release of
distinct neuroactive molecules that differentially modulate
synaptogenesis and neuronal activity. The positive impact of
astrocyte manipulation using DREADDs on synaptic
transmission, cognitive function and behavior, mainly by eliciting
astrocytic Ca2+ waves and increasing the release of TSP1, ATP,
D-serine or glutamate, has been demonstrated by several groups.
Even though this holds potential to manage brain disease, direct
evidence of DREADD-mediated astrocyte activation leading to the
improvement of disease pathology is still scarce.

Most CNS pathologies share common features like loss of spine
density, impaired glutamate clearance and synaptic transmission,
and neuroinflammation. Still, the causative factor(s) for these
diseases differ widely. Genetic mutations, the cellular and
molecular environment characteristic of each disease, as well as
the brain regions and specific neuronal circuits affected, differ
between diseases. Therefore, manipulating astrocyte activity in
these different contexts may very well lead to different functional
consequences, which could either improve or worsen the disease
state. Thus, future research should focus on assessing the effects of
astrocyte activity modulation in each specific disease, and probably
also needs to acknowledge the issue of disease time-course (see
below). Furthermore, astrocyte heterogeneity is likely a contributing
factor in determining the specific outcome of DREADD
manipulation. The complexity of this topic increases even more
when considering that new astrocyte subtypes characteristic for each
particular disease, and even disease stage-specific astrocytes, usually
arise. Identifying and differentiating the molecular profile of such
disease-associated astrocytes may allow the design of astrocyte
subtype-specific promoters to target DREADD vectors to
maleficent astrocyte subpopulations. We also propose that
conducting sequencing studies on DREADD-activated astrocytes
could be highly relevant to fully understand the effects of this type of
stimulation on the molecular fingerprint of the cells. This could
bring insights into whether astrocytes respond by boosting
endogenous signalling pathways, or by triggering new ones,
generating insights into potential signalling pathways that can be
exploited therapeutically. Another key aspect to take into
consideration is that mouse and human astrocytes are
morphologically, transcriptionally, and functionally different
(Oberheim et al., 2006; Li et al., 2021). Using, for example,
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human cerebral organoids (Dezonne et al., 2017) would be a
valuable strategy to test how human astrocytes are affected by
DREADDs and help in the transition from the bench to the clinic.

It is interesting to note that very few studies so far have
demonstrated inhibition of astrocytic Ca2+ waves following
DREADD activation. Most studies also report an increase in
TSP1 or gliotransmitter release, particularly glutamate, upon
DREADD-mediated astrocyte stimulation. However, some
pathologies display increased TSP1 release (Krencik et al., 2015),
enhanced Ca2+ signalling in astrocytes or glutamate accumulation at
the synapse, thus suggesting that use of the existent DREADD receptors
might not be a good strategy to unravel possible ways to manage such
diseases, due to undesirable, or even toxic, effects. For instance, excessive
TSP1 release might induce the overproduction of new synapses, which
may further disrupt neuronal circuits, while excessive glutamate release
can lead to excitotoxicity. It is also important to point out that Ca2+ is
likely not the only secondmessenger influenced byDREADDs. Towhat
extent DREADDs are also acting on alternative, Ca2+-independent
signalling pathways affecting, for example, cAMP levels remains
unclear. Exploring the impact of DREADD-evoked astrocyte
activation on other signalling pathways, all of which may impact
synapse formation and function, most likely depends on the
development of new and more sensitive tools. This will hopefully
create a comprehensive understanding of the biological effects of
DREADD activation on cells, leading to a deeper mechanistic
understanding of cell function and insights into disease, which will
ultimately allow the development of ‘next-generation’ therapeutics.
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