
Parkinson’s disease, epilepsy,
and amyotrophic lateral
sclerosis—emerging role of AMPA
and kainate subtypes of ionotropic
glutamate receptors

Marina N. Vukolova1, Laura Y. Yen2,3, Margarita I. Khmyz4,
Alexander I. Sobolevsky2 and Maria V. Yelshanskaya2*
1Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University (Sechenov
University), Moscow, Russia, 2Department of Biochemistry and Molecular Biophysics, Columbia
University, New York, NY, United States, 3Cellular and Molecular Physiology and Biophysics Graduate
Program, Columbia University, New York, NY, United States, 4N. V. Sklifosovsky Institute of Clinical
Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow,
Russia

Ionotropic glutamate receptors (iGluRs) mediate the majority of excitatory
neurotransmission and are implicated in various neurological disorders. In this
review, we discuss the role of the two fastest iGluRs subtypes, namely, α-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainate receptors, in
the pathogenesis and treatment of Parkinson’s disease, epilepsy, and amyotrophic
lateral sclerosis. Although both AMPA and kainate receptors represent promising
therapeutic targets for the treatment of these diseases, many of their antagonists
show adverse side effects. Further studies of factors affecting the selective subunit
expression and trafficking of AMPA and kainate receptors, and a reasonable
approach to their regulation by the recently identified novel compounds
remain promising directions for pharmacological research.
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1 Introduction

The chemical messenger glutamate mediates most excitatory neurotransmission in the
mammalian central nervous system (CNS). Although the concentration of glutamate is
strictly regulated in physiological conditions, its elevated levels in the synaptic cleft are the
principal cause of neuronal death upon stroke and traumatic brain injury, as well as in
neurodegenerative conditions (Roisen et al., 1982; Buchan et al., 1993; Couratier et al., 1993).
Exposure of neuronal culture to excessive concentrations of glutamate results in rapid cell
death (Choi et al., 1988; Olney, 1994) that can be prevented by blocking ionotropic glutamate
receptors (iGluRs). iGluRs are cation-permeable glutamate-gated ion channels located
predominantly in postsynaptic neuronal membranes (Figure 1). They play a key role in
synaptic transmission in the CNS and are involved in synaptic plasticity and processes
underlying learning and memory (Lynch, 2006). It is, therefore, not surprising that their
dysregulation is associated with numerous pathophysiological conditions (Liu and Zukin,
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2007; Traynelis et al., 2010; Paoletti et al., 2013; Parsons and
Raymond, 2014; Hansen et al., 2021).

iGluRs are divided into four functional classes: 1) α-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors
(GluA1-4 subunits), 2) kainate receptors (GluK1-5 subunits), 3)
N-methyl-d-aspartate (NMDA) receptors (GluN1, GluN2A-D,
and GluN3A-B subunits), and 4) GluD receptors, also known as δ
receptors (GluD1 and GluD2 subunits). iGluRs were originally
named based on their specific activators (Figure 2). AMPA and

kainate receptors coassemble with different auxiliary subunits,
such as the transmembrane AMPA receptor regulatory proteins
(TARPs), cysteine-knot AMPA receptor modulating proteins
(CKAMPs), neuropilin- and tolloid-like (Neto) proteins, and
KRIP6 (a protein from the BTB/Kelch family) that display
differential distribution throughout CNS and cause changes in
receptor function and sensitivity to modulators (Figure 1)
(Laezza et al., 2007; Gardinier et al., 2016; Kato et al., 2016;
Maher et al., 2016; Twomey et al., 2019; Yu et al., 2020; Cull-

FIGURE 1
Glutamatergic synapse. Presynaptic and postsynaptic neuronal terminals are shown at the top and bottom in the center (yellow), respectively, and
glial cells on the left and right (light green). Neurotransmitter glutamate released from the presynaptic terminus is illustrated by bright green circles. AMPA,
NMDA, and kainate iGluRs in the postsynaptic membrane and glutamate transporters (EAAT1/2) in glial cells are illustrated by the corresponding
molecular models in surface representation. Auxiliary subunits, TARP and CNIH, of the AMPA receptor are represented in dark green and purple,
respectively, and Neto of the kainate receptor is represented in dark blue. The principal subunits of iGluRs are represented in light blue and beige, and
glutamate transporters are represented in light blue, beige, and light green.

FIGURE 2
Chemical structures of iGluR agonists. Chemical structures of neurotransmitter glutamate and selective agonists AMPA (α-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid), kainate, and NMDA (N-methyl-d-aspartate).
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Candy and Farrant, 2021; Hansen et al., 2021; Yelshanskaya and
Sobolevsky, 2022).

It is generally accepted that neurodegeneration correlates
negatively with synaptic plasticity, which is driven by iGluR
function. Since the role of iGluRs in neurodegeneration is a very
broad topic, we will only discuss the mechanisms of glutamatergic
system dysregulation in the neurogenerative conditions of
Parkinson’s disease (PD), epilepsy, and amyotrophic lateral
sclerosis (ALS), particularly focusing on non-NMDA receptors, as
this topic aligns most with the interests of the authors of this review.
We try to be cautious in not oversimplifying the role of iGluRs as
they represent a fraction of the larger dynamic ensemble of neuronal
receptors involved in synaptic plasticity, which are continuously
regulated by new protein biogenesis and trafficking between
synaptic and extrasynaptic pools.

2 Parkinson’s disease

PD is the second most common progressive neurodegenerative
disorder after Alzheimer’s disease. PD affects 1%–3% of individuals
age 65 years or older (Dorsey et al., 2018), and in 3%–5% of cases,
individuals can display symptoms previously, before the age of 40
(Golbe, 1991). The estimated number of people with PD in 1990 was
2.5 million, which has more than double and reached 6.2 million by
2015 and is expected to double again and reach 12.9 million by 2040
(Elbaz et al., 2016; Dorsey and Bloem, 2018). PD has been known to
mankind since ancient times. In the Indian medical system of
Ayurveda (5000 BC), it was called kampavata (“kampa” means
tremor in Sanskrit). PD symptoms were also described in the
Chinese medical text “Nei-Jing” (500 BC). In Western medicine,
the disease was named after Doctor James Parkinson, whose “Essay
on the Shaking Palsy” (1817) has long been considered the
foundational text about PD (Hurwitz, 2014; Maiti et al., 2017).
PD is associated with substantial disability and negative impact on
the quality of life, causing characteristic motor symptoms of tremor,
bradykinesia, and postural instability (Dorsey et al., 2007). These
symptoms are coupled to the loss or degeneration of dopaminergic
(dopamine-producing) neurons and development of Lewy Bodies (a
pathologic hallmark) in the substantia nigra region of the brain and
their axonal projections to the striatum (Maiti et al., 2017). The loss
of neurons is followed by the death of astrocytes, which then
increases the amount and activation of microglia in the substantia
nigra pars compacta (SNpc) (Jankovic, 2008). Clinical symptoms do
not appear immediately; they became apparent at the point when
approximately half of the cells are destroyed and the disease has
already progressed to an advanced stage (Cheng et al., 2011).

Although the causes and driving forces of PD are not well
understood, several disease risk factors have been linked to the
degeneration of the dopaminergic neurons, including genetics,
obesity, and neuroinflammation caused by various environment
factors (i.e., exposure to industrial chemicals, pesticides like
rotenone, herbicide paraquat, and heavy metals), gut health
(Tanner et al., 2011; Bjorklund et al., 2018; Fan et al., 2020; De
Miranda et al., 2022), or a combination of them. Thus, recent
experiments on mice suggested a synergy between the diet
(lectins ingestion), gut health, and environmental toxins in the
development of PD (Anselmi et al., 2018).

Currently, there is no cure for PD; the main treatment is
symptomatic, and pharmacological interventions have various
limitations and side effects. The development of effective
preventive or protective therapies is limited by our knowledge of
the causes and mechanisms by which neurons die in PD. Which
components of neurotransmission that are known to be involved in
the pathogenesis of PD play a primary or secondary role in
neurodegeneration is not yet well understood because imbalances
in the dopamine-releasing system cause further disturbances and
imbalances of other components, i.e., acetylcholine/dopamine/
glutamate neurotransmission. Although glutamatergic signaling
increases and stimulates the release of dopamine through
surviving dopaminergic neurons in the SNpc as a compensatory
mechanism, increasing glutamate concentrations and excessive
activation of glutamate receptors could be a “critical strike” to
dopaminergic neurons in PD patients as well (Wang et al., 2020).
The approved PD treatments include the use of dopamine receptor
agonists (for example, L-DOPA), dopamimetic drugs to relieve the
symptoms of impaired motor function (Lutsenko et al., 2003), and
deep brain stimulation techniques (Malek, 2019). Although these
forms of treatment may partially ameliorate the motor dysfunctions
of PD patients, they do not slow the disease progression. Moreover,
prolonged therapy frequently leads to the development of motor
complications, known as L-DOPA-induced dyskinesia (LID), and
dementia. In turn, motor dysfunction is linked to impaired AMPA
receptor plasticity (Jurado, 2017; Zhang et al., 2019c; Zhang and
Bramham, 2020). Indeed, compared to healthy individuals, synapses
of PD patients with motor disturbances accumulate excessive
glutamate (Mironova et al., 2018). It is known that elevated
oxidative stress causes mutations in glutamate transporters and
thus leads to elevated glutamate concentrations in the synaptic
cleft (Hoye et al., 2008). The resulting failure to quickly clear
synaptic glutamate triggers repetitive action potentials, an
increase in calcium influx, and endoplasmic reticulum (ER) and
mitochondrial stress due to the overwhelmed ability to calcium
storage (Becker et al., 2017). In addition, the upregulation of AMPA
receptors in the lateral putamen was observed in advanced PD
patients experiencing LID when compared to patients without
motor complications (Calon et al., 2003). Accordingly, there is an
enormous need to design therapeutics to stop the progression of PD
(Zhang and Bramham, 2020; O’Neill et al., 2004; Hughes et al., 1992).

Early detection of PD is crucial for effective neurodegenerative
disease interventions. Correspondingly, many researchers focus on
identifying genetic factors that increase the risk of disease.
Mutations in at least 20 genes have been recognized as causes of
familial parkinsonism, each providing a snapshot into the molecular
basis of neurodegeneration. Over 90 genetic risk loci for the more
common sporadic form of PD have already been identified
(Blauwendraat et al., 2020). Although it is more challenging to
unravel the precise biological processes disrupted in these genetic
variants, the disease-associated genes begin to coalesce into common
pathways, including the dysregulation of mitochondrial
homeostasis, impaired cell death machinery, inflammatory
signaling, intracellular trafficking, and endosomal–lysosomal
dysfunction (Tolosa et al., 2021). Genetic predisposition for the
early onset of PD was determined for patients with mutations in one
of the dominant genes, namely, SNCA, LRRK2, GBA, and VPS35
or recessive genes, namely, Parkin, Pink1, andDJ1 (Post et al., 2020).
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Effective strategies for the treatment of PD include normalizing
glutamate homeostasis, reducing oxidative stress, and attenuating
glial activation (Martin-Moreno et al., 2011; Fernandez-Ruiz et al.,
2013; Bhunia et al., 2022). During PD, the mitochondrial Ca2+-
buffering system in substantia nigra neurons was shown to be
impaired and led to Ca2+-induced excitotoxicity (Hoye et al.,
2008; Hurley et al., 2013). One of the strategies in the treatment
of PD is limiting the excessive influx of Ca2+ into neurons, including
the direct blocking of iGluRs (O’Neill andWitkin, 2007; Jayakar and
Dikshit, 2004; Calabrese et al., 2017). In primates, a decrease in LID
was observed due to the NMDA receptor channel block (Zuddas
et al., 1992; Papa and Chase, 1996). Although NMDA receptor
antagonists showed a positive effect against LID both in mice and
primates, clinical trials have not yet achieved the desired effects in
humans (Duty, 2012). In contrast to NMDA receptors, which are
usually inactive at the resting membrane potential due to the
channel block by Mg2+ (Mayer et al., 1984; Nowak et al., 1984;
Sobolevsky and Yelshansky, 2000), AMPA and kainate receptors are
not blocked by extracellular cations and some of them (depending
on subunit composition) allow Ca2+ entry into the cell upon
activation. AMPA and kainate receptors are typically expressed
as heterotetramers, and those assemblies that contain edited
GluA2 (for AMPA receptors) or GluK1/2 (for kainate receptors)
subunits are calcium-impermeable, while other combinations are
calcium-permeable. Due to their high permeability to Ca2+ (and as
well to Zn2+) ions, the latter becomes the important target for
pharmaceutical intervention (Hansen et al., 2021) (Tables 1, 2).
The antagonists of calcium-permeable AMPA receptors were shown
to slow the development of LID and reduce the progression of
dyskinesia (Kobylecki et al., 2013). It was also shown that the
increase in permeability of the substantia nigra neuronal
membranes to extracellular zinc leads to the death of
nigrostriatal dopaminergic neurons (Tamano et al., 2018). In vivo
experiments on rats showed that the injection of the agonist AMPA
into the area of spiny projection neurons caused a rapid increase in
the intracellular Zn2+ ions and loss of nigrostriatal dopaminergic
neurons weeks later. This increase was blocked by the coinjection of
intracellular Zn2+ chelators ZnAF-2DA and TPEN, suggesting that
the AMPA-induced movement disorder is also a result of
intracellular Zn2+ dysregulation (Tamano et al., 2018). Therefore,
the regulation of Ca2+- and Zn2+-permeable GluR2-lacking AMPA
receptors appears to be particularly important for the treatment
of PD.

In the PD model of mice lacking 6-hydroxy dopamine (6-OHDA),
treated with neurotoxin 6-hydroxydopamine (6-OHDA), which causes
the destruction of nigrostriatal dopaminergic neurons (Simola et al.,
2007), it was shown that the L-DOPA treatment caused hyperactivity of
AMPA receptors. This hyperactivity was possibly due to the alternative
splicing of GluA2 or serine phosphorylation of GluA1, which are
known to induce a broad range of changes in the AMPA receptor
function (Kobylecki et al., 2010; Silverdale et al., 2010). These findings
reinforce the role of Ca2+-permeable AMPA receptors in LID and
emphasize their potential to serve as therapeutic targets in treating PD-
related dyskinesia.

Despite extensive efforts in the development of AMPA receptor
antagonists, they alone have not been shown effective in the animal
models of PD. For instance, while the high-affinity AMPA receptor
antagonist quinoxalinedione NBQX (Figure 3) was found to protect

neurons from damage (Ossowska, 1994; Jayakar and Dikshit, 2004),
low solubility at physiological pH combined with fast renal excretion
caused its crystallization in the kidneys at therapeutic doses
(Klockgether et al., 1991; Stauch Slusher et al., 1995; Catarzi
et al., 2007). However, when NBQX was used in combination
with the inhibitors of dopamine and γ-aminobutyric acid
(GABA) receptors, the dyskinesia symptoms improved. Indeed,
the synergistic effects of buprenorphine hydrochloride (Hospira),
6-OHDA hydrobromide, and methyl ester L-DOPA hydrochloride
confirmed the involvement of dopamine, GABA, and glutamate in
the development of dyskinesia (Lindenbach et al., 2016),
highlighting the complexity of this multisystem disorder.
Similarly, the application of the channel blocker 1-naphthyl
acetyl spermine trihydrochloride (NASPM), a synthetic analog of
Joro spider toxin (Figure 3), which selectively blocks the Ca2+-
permeable AMPA/kainate receptors, to the lateral habenula
region had an antidepressant effect in mice with injured
substantia nigra (Zhang et al., 2019b). This antidepressant effect
was also accompanied with an increase in concentrations of
dopamine and serotonin in the medial prefrontal cortex. It
appears that future development of more potent and more
soluble AMPA receptor blockers shows potential to create an
effective treatment of PD. This is in stark contrast to AMPA
receptor antagonists, which, at high therapeutic doses along with
the positive effect on dyskinesia, also produce CNS depression with
negative effects on neuronal plasticity.

Positive allosteric modulators (PAMs), including nootropic
pyrrolidone compounds like aniracetam, oxiracetam, and
piracetam, and benzothiazoles like cyclothiazide and diazoxide
(Figure 3), which slow deactivation and reduce desensitization of
both Ca2+-permeable and Ca2+-impermeable AMPA receptors, are
known to have neuroprotective and neurotrophic effects, helping in
disorders characterized by a decline in cognitive functions, such as
PD (Partin, 2015). PD is defined as a movement disorder, but it is
also characterized by a variety non-motor symptoms (NMS) in
virtually all patients, including hyposmia, constipation, urinary
dysfunction, orthostatic hypotension, memory loss, depression,
pain, and sleep disturbances (Tolosa et al., 2021). Several AMPA
receptor PAMs are known to improve neuronal plasticity.
Biarylpropyl sulfonamide ligands, namely, LY404187 and
LY503430, protected the substantia nigra from damage and
strengthened synaptic transmission. LY503430 demonstrated a
neuroprotective effect in mice with PD (Murray et al., 2003).
Low concentrations of this compound selectively increased the
glutamate-dependent flow of calcium ions into the cells via
subunits GluA1, GluA3, or GluA4, containing AMPA receptors.
The neurotrophic effect of LY503430 was in part due to the
stimulation of neurotrophic factors BDNF and GAP-4316
production (Zhang et al., 2019a; O’Neill and Witkin, 2007;
O’Neill et al., 2005; Murray et al., 2003). The disadvantage of
PAMs is that only a small number of them can penetrate the
blood–brain barrier.

Alternative pharmacological agents include phytocannabidiol
(CBD), an active compound of the Cannabis sativa plant
(marijuana), which showed neuroprotective effects in mouse
models of several neurodegenerative diseases, including PD
(Hampson et al., 1998; Hampson et al., 2000; Lastres-Becker
et al., 2005; Garcia et al., 2011; Ruiz-Valdepenas et al., 2011;
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TABLE 1 AMPA and Kainate receptor antagonists in the treatment of patients with Parkinson’s disease, Epilepsy, ALS.

Antagonist Structure Receptor Disease Patients Dose,
mg

Effect Secondary
outcome

First
authors/
year

Perampanel AMPA+KA Parkinson’s
disease

With a diagnosis of
idiopathic PD, who were on
optimized L-dopa therapy

0.5, 1, 2 Was well tolerated
and safe, but failed
to achieve
statistical
significance

ADE Eggert et al.
(2010)

With levodopa-treated 2, 4 Failed to
significantly
improve motor
symptoms versus
placebo

No effect on the
duration or
disability of
levodopa-induced
dyskinesia

Lees et al.
(2012)

With a diagnosis of
idiopathic PD, who were on
optimized L-dopa therapy

4 Was generally well
tolerated, was not
superior to
placebo on any
efficacy end point

ADE Rascol et al.
(2012)

Epilepsy With partial seizures despite
receiving

2, 4, 8, 12 Reduced partial
seizure frequency
and improved
rates

ADE Steinhoff et al.
(2013)

In status epilepticus (SE),
refractory SE (RSE), super-
refractory SE (SRSE)

2, 4, 8, 12,
16, 24,
32, 36

The efficacy in the
treatment of RSE,
SRSE

ADE Lim et al.
(2021)

With temporal lobe and
focal epilepsy

2 - 12 No significant
difference

ADE Mammi et al.
(2022)

ALS Sporadic or familial
possible/probable/
definite ALS

2, 8 Its poor
tolerability

ADE Hotait et al.
(2021)

Clinically definite ALS 4, 8 Effects the
physiology of the
upper motor
neurons

ADE Oskarsson et al.
(2021)

Clinically definite ALS 4, 8 Significant decline
in ALSFRS-R
score and
worsening of the
bulbar subscore

Disease
progression, ADE

Aizawa et al.
(2022)

Talampanel
(GYKI537773,
LY300164)

AMPA Epilepsy With intractable epilepsy 35, 75 No evidence that
talampanel
increased or
decreased seizure
frequency or
changed the type
of seizure

ADE Langan et al.
(2003)

With refractory partial
seizures

25, 50,
60, 75

Reduction in
reducing seizure
frequency - caused
a dose-dependent
increase in resting
and active motor
thresholds
without effects on
intra-cortical
inhibition or
facilitation

ADE Bialer et al.
(2002), Bialer
et al. (2004),
Bialer et al.
(2007)

ALS With definite or
probable ALS

20, 50 Decline in muscle
strength and
ALSFRS

ADE Pascuzzi et al.
(2010)

(Continued on following page)
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Pacher et al., 2020). The beneficial effects of CBD observed in the
preclinical models of multiple sclerosis (Elliott et al., 2018), PD, and
AD can be attributed to the attenuated oxidative/nitrative stress,
excitotoxicity, and microglial activation. CBD also significantly
reduced AMPA receptor-mediated excitatory postsynaptic
currents (EPSCs) and the amplitude and frequency of miniature
EPSCs (mEPSCs) in hippocampal neurons, likely affecting the
progression of neurodegenerative disorders. Treatment with CBD
did not improve motor function or general symptoms in the clinical
studies of PD patients but showed improvement in their quality of
life and sleep, likely due to a psychotic effect (Peres et al., 2018).
Furthermore, CBD was shown to inhibit currents through
recombinant GluA1 receptors with an IC50 value of 22.5 µM and
significantly accelerated the deactivation of AMPA receptors
composed of GluA1 and GluA2 subunits (Patra et al., 2019).
Interestingly, CBD slowed recovery from desensitization for Ca2+-
permeable GluA1 but not Ca2+-impermeable GluA2 receptors.
These effects of CBD on receptor kinetics were even more
prominent when AMPA receptors were coexpressed with the
auxiliary subunit TARP γ8, which is highly expressed in the
hippocampus. It is known that hippocampal damage is a
common feature among neurodegenerative dementias (Moodley
and Chan, 2014). The inhibitory effect on AMPA receptors
depended on the CBD interaction with the N-terminal domain
(NTD) of GluA1/GluA2 and was completely eliminated by NTD
deletion (Yu et al., 2020).

Another compound found in the C. sativa plant,
Tetrahydrocannabinol (THC), has been shown to reduce NMDA,
AMPA, and kainate receptor-mediated neurotoxicity (Hampson
et al., 2000). An endogenous cannabinoid receptor agonist with
similar pharmacological effects as THC is anandamide (AEA, the

major psychoactive component of marijuana) that directly inhibits
currents through homomeric GluA1 and GluA3 receptors at rather
high concentrations, with IC50 values of 161 and 143 μM,
respectively, and heteromeric GluA1/3 and GluA2/3 receptors,
with the similar IC50 values of 148 and 241 μM, respectively
(Akinshola et al., 1999a; Akinshola et al., 1999b). One limitation
to using AEA is that it also activates TRPV1 channels, which are
highly permeable to Ca2+ and can contribute to neuronal Ca2+

overload (Naziroglu, 2015). Another interesting example is the
phytocannabinoid delta 9-tetrahydrocannabivarin (D9-THCV),
which undergoes testing in preclinical models of PD (Garcia
et al., 2011). There could also be clinical advantages in
administering D9-THCV together with CBD as this might lead
to symptomatic relief (due to D9-THCV blockade of CB1) and
neuroprotection (due to the antioxidant and anti-inflammatory
properties of both CBD and D9-THCV). The main difficulty in
assessing the drug efficiency is the different time scales of animal and
clinical studies. In all animal studies, the effect of drug is monitored
shortly after manipulations that induce PD-like symptoms, while in
clinical practices, PD is diagnosed 10 years after neurodegeneration
has started. Currently, CBD can be considered a preventive agent,
without a definitive target, as it affects many enzymes and ion
channels, including iGluRs (Peres et al., 2018).

Kainate receptors participate in the regulation of dopaminergic
neuron firing frequency, and the expression of the GluK2 subunit is
increased in parkinQ311X mouse (a PD model of human parkin-
induced toxicity) (Maraschi et al., 2014). Accumulation of GluK2 in
the plasma membrane of PD neurons has been shown to be due to
slowed GluK2 turnover caused by the loss of parkin protein
(ubiquitin E3 ligase that breaks down unnecessary proteins by
tagging the damaged and excess proteins with a molecule called

TABLE 1 (Continued) AMPA and Kainate receptor antagonists in the treatment of patients with Parkinson’s disease, Epilepsy, ALS.

Antagonist Structure Receptor Disease Patients Dose,
mg

Effect Secondary
outcome

First
authors/
year

NS1209 AMPA Epilepsy With convulsive or non-
convulsive RSE

4, 75 No statistically
significant
difference found

ADE Sabers et al.
(2013)

Selurampanel
(BGG492)

AMPA+KA Epilepsy With photosensitive
epilepsy

15, 50,
100

Reduction of the
SPR, complete
suppression of
the PPR

ADE Faught (2014)

With epilepsy and a
generalized epileptiform
electroencephalography
response to intermittent
photic stimulation

50, 100 Reduction of SPR
range of at least
three steps

ADE Kasteleijn-
Nolst Trenitet
et al. (2015)

With partial-onset seizures 100, 150 Reduction in total
partial seizure
frequency

ADE Elger et al.
(2017)

Abbreviations: ADE, adverse drug events; Perampanel, 5’-(2-cyanophenyl)-1’-phenyl-2,3’-bipyridinyl-6’(1H)-one; Talampanel (GYKI537773 and LY300164), (8R)-7-Acetyl-5-(4-

aminophenyl)-8,9-dihydro-8-methyl-7H-1,3-dioxolo[4,5-h][2,3]benzodiazepine; NS1209, (RS)-NS 1209, 2-[[[5-[4-[(Dimethylamino)sulfonyl]phenyl]-1,2,6,7,8,9-hexahydro-8-methyl-2-oxo-

3H-pyrrolo[3,2-h]isoquinolin-3-ylidene]amino]oxy]-4-hydroxybutanoic acid; Selurampanel (BGG492), N-[7-Isopropyl-6-(2-methylpyrazol-3-yl)-2,4-dioxo-1H-quinazolin-3-yl]

methanesulfonamide; ALS, Amyotrophic lateral sclerosis; ALSFRS-R, Amyotrophic lateral sclerosis functional rating scale revised; SPR, the standardized PPR range; PPR, the photoparoxysmal

response.
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TABLE 2 The role of AMPA and Kainate receptor antagonists in model animals of Parkinson’s disease, Epilepsy, ALS.

Antagonist Structure Receptor Disease Model disease Effect First
authors/
year

Perampanel AMPA+KA Parkinson’s
disease

C57BL/6J male mice, mouse
primary hippocampal
neurons, an α-synuclein
preformed fibril-injected
mouse model

Inhibited the neuronal
uptake of α-syn PFFs via
macropinocytosis and
decreased the development
of α-synuclein pathology in
primary neurons

Ueda et al.
(2021)

Epilepsy Kindled rat, audiogenic,
MES- and scMet-induced
mouse seizure models

Demonstrated potent
anticonvulsant activity in
these seizure models

Bialer et al.
(2010)

Primary cortical neurons,
male Wistar rat, mouse
seizure models: audiogenic;
6 Hz-, MES- and PTZ-
induced seizures

-Inhibited 6 Hz-induced,
AMPA-induced increases
in [Ca2+]i
-Protective effects against
audiogenic, MES-induced,
and PTZ-induced seizures

Hanada et al.
(2011)

Male ddY mice and
Sprague-Dawley rats,
mouse AMPA-induced
seizure model

Potent activity in vitro
AMPA-induced Ca2+

influx assay and in vivo
AMPA-induced seizure
model

Hibi et al.
(2012)

Whole-cell voltage-clamp
recording in cultured rat
hippocampal neurons

-Concentration-dependent
inhibition of AMPA
receptor currents evoked
by AMPA and KA
-The extent of block of
non-desensitizing KA-
evoked currents
-Does not influence AMPA
receptor desensitization

Chen et al.
(2014)

Male Sprague-Dawley rats,
SE induction, Morris water
maze

-Reduced GluA1
expression and regulated
GluA1 phosphorylations
by multiple signaling
molecules
-Increased pCAMKII,
pPKA ratios, and elevated
pJNK and pPP2B ratios
-Increased pERK1/2 ratio
in epileptic animals

Kim et al.
(2019)

Neonatal male and female
C57BL/6 mice, cell culture
and transfection

-Inhibited both
recombinant and neuronal
KA, also heteromeric
GluK1/GluK5 and GluK2/
GluK5 KA
-Inhibited mouse neuronal
KARs containing GluK5
subunits and Neto proteins
in nociceptive dorsal root
ganglia neurons and
hippocampal mossy
fiber–CA3 pyramidal
neuron synapses

Taniguchi
et al. (2022)

ALS Homozygous (ADAR2flox/
flox/ VAChT-Cre.Fast;
AR2) and heterozygous
(ADAR2flox/+/ VAChT-
Cre. Fast; AR2H)
conditional ADAR2
knockout mice

Prevented the death of
motor neurons and
improves of motor
dysfunction by long-term
administration

Akamatsu
et al. (2016)

(Continued on following page)
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TABLE 2 (Continued) The role of AMPA and Kainate receptor antagonists in model animals of Parkinson’s disease, Epilepsy, ALS.

Antagonist Structure Receptor Disease Model disease Effect First
authors/
year

Talampanel
(GYKI537773 and
LY300164)

AMPA Parkinson’s
disease

Adult cynomolgus (Macaca
fascicularis) monkeys,
MPTP model

-Decreased L-dopa-
induced dyskinesia
-Potentiated the motor
activating effects of low-
dose L-dopa, increasing
motor activity

Konitsiotis
et al. (2000)

ALS Cell cultures of motor
neurons and glial cells

-Dose-dependently
inhibited the KA-induced
motor neuron death
-Blocked the KA-induced
Co -uptake in motor
neurons

Van Den
Bosch et al.
(2000)

Hemizygous transgenic
mice, expressing mutant
human SOD1 with a G93A
substitution, a C57BL/
6JOlaHsd mice

Reduced elevated calcium
level, but not restored,
when the treatment was
started presymptomatically

Paizs et al.
(2011), Patai
et al. (2017)

Epilepsy Wistar breeder rats, kainic
acid-induced seizures

Delayed the
commencement of tonic
extension, but not status-
induced by kainic acid

Dhir and
Chavda
(2016)

NS1209 AMPA Epilepsy Male Harlan
Sprague—Dawley
(amygdala stimulation
model), wistar rat (kainate
model)

-Effectively discontinued
electrically induced SE
-Blocked the KA-induced
SE
-Neuroprotective effect
against SE-induced
hippocampal
neurodegeneration

Pitkänen
et al. (2007)

Selurampanel
(BGG-492)

AMPA+KA Epilepsy Mice, the MES seizure
model

Excellent potency against
maximal electroshock
seizure (MES)-induced
generalized tonic–clonic
seizures

Orain et al.
(2016)

UBP 310 KA: GluK1,
GluK2,
AMPA:
GluA2

Parkinson’s
disease

C57BL/6 or GluK1−/−,
GluK2−/−, or GluK3−/− male
mice, unilateral 6-OHDA
lesioning, acute MPTP
mouse model of PD

-Did not attenuate cell loss
in the midbrain induced by
6-OHDA toxicity
-Increased survival
dopaminergic and total
neuron population in the
substantia nigra but not in
striatum in the acute
MPTP mouse model

Stayte et al.
(2020)

Epilepsy C57BL/6 wild-type and
GluK1 and GluK3 knockout
mice, male Wistar rat,
electrophysiological
recordings, TLE model

-Blocked postsynaptic KA
at hippocampal mossy fiber
(MF) CA3 synapses and in
aberrant MF synapses in
the epileptic hippocampus
-Strongly reduced isolated
KA-EPSCs recorded in
DGCs of chronic epileptic
rats, but fully spares AMPA
EPSCs

Pinheiro
et al. (2013)

Male Wistar rat,
hippocampal neuron-glial
cell cultures, [Ca2+]i
imaging, whole-cell
recordings

Decreased in the amplitude
of the 1st AP in PDSs and
the amplitude of the
oscillations of [Ca2+]i
occurring alongside the
PDS cluster generation

Laryushkin
et al. (2023)

(Continued on following page)
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TABLE 2 (Continued) The role of AMPA and Kainate receptor antagonists in model animals of Parkinson’s disease, Epilepsy, ALS.

Antagonist Structure Receptor Disease Model disease Effect First
authors/
year

Tezampanel
(LY293558)

AMPA+KA Parkinson’s
disease

Male Sprague-Dawley rats,
chronic L-dopa treatment,
6-OHDA lesions

Reversed the reduction in
the duration of L-dopa
response

Marin et al.
(2001)

Male Sprague-Dawley rats,
6-OHDA lesions

Reversed the increased
overexpression of PPE
mRNA induced by L-dopa
treatment

Perier et al.
(2002)

Epilepsy Male National Institutes of
Health (NIH) Swiss mice,
The kindling model (limbic
Epilepsy)

Produced a dose-
dependent suppression of
the rate of development of
behavioral kindled seizure
activity and reduced the
duration of the
stimulation-induced
electrographic
afterdischarge

Rogawski
et al. (2001)

Male NSATM (CF#1®)
mice, electroshock seizures,
the 6-Hz test, the MES
seizure model

Dose-dependent
protection

Barton et al.
(2003)

NBQX AMPA+KA Parkinson’s
disease

Male Sprague-Dawley rats,
ascorbic acid or 6-OHDA
behavioral tests

-Inhibited most aVTA
dopaminergic neurons and
DRN serotonergic neurons
-Excited most pVTA
dopaminergic neurons and
MRN serotonergic neurons
in the SNc sham and SNc
lesion groups

Zhang et al.
(2019a)

C57BL/6J male mice, mouse
primary hippocampal
neurons, an α-synuclein
preformed fibril-injected
mouse model

Inhibited the neuronal
uptake of α-syn PFFs via
macropinocytosis and
decreased the development
of α-synuclein pathology in
primary neurons

Ueda et al.
(2021)

Epilepsy Male NSATM (CF#1®)
mice, electroshock seizures,
the 6-Hz test, the MES
seizure model

Dose-dependent
protection

Barton et al.
(2003)

Long-Evans rats
experienced hypoxia-
induced neonatal seizures

Attenuates later-life
epileptic seizures and
autistic-like social deficits
following neonatal seizures

Lippman-
Bell et al.
(2013)

Mouse model of mesial
temporal lobe epilepsy

No effect on development
or frequency of seizures
was found in comparison
to vehicle controls

Twele et al.
(2015)

Wistar rat hippocampal
neuron-glial cell cultures,
[Ca2+]i imaging, whole-cell
voltage-clamp recordings

Completely suppresses
bicuculline-induced
paroxysmal activity

Laryushkin
et al. (2023)

ALS Wistar rat motor neuron
cell cultures, transgenic
SOD1 G93A mutant mice
for familial ALS, [Ca2+]i
imaging, perforated patch
clamp recordings

-Blocked KA-induced
currents and concomitant
changes in [Ca2+]i,
-Prevented the KA-
induced motor neuron
death,
-Prolonged survival G93A
mutant mice

Van Damme
et al. (2003)

(Continued on following page)
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TABLE 2 (Continued) The role of AMPA and Kainate receptor antagonists in model animals of Parkinson’s disease, Epilepsy, ALS.

Antagonist Structure Receptor Disease Model disease Effect First
authors/
year

GYKI 53784
(LY303070)

AMPA Epilepsy Vitro and vivo models of
AMPARs-mediated
excitotoxicity

A powerful
neuroprotective agent,
does not block the
activation of KA

Ruel et al.
(2002)

GYKI 52466 AMPA+KA Epilepsy Sprague-Dawley rat
hippocampal neuron cell
cultures, whole-cell voltage-
clamp recordings

The block was voltage
independent

Donevan
and
Rogawski
(1993)

Male National Institutes of
Health (NIH) Swiss mice,
The kindling model (limbic
epilepsy)

Produced a dose-
dependent suppression of
the rate of development of
behavioral kindled seizure
activity and reduced the
duration of the
stimulation-induced
electrographic
afterdischarge

Rogawski
et al. (2001)

Male NSATM (CF#1®)
mice, electroshock seizures,
the 6-Hz test, the MES
seizure model

Dose-dependent
protection

Barton et al.
(2003)

The genetic absence
epilepsy model of WAG/Rij
rats

-A fast dose-dependent
increase in the number and
cumulative duration of
SWD
-Strong ataxia and
immobility, decrease of
active wakefulness and
increase in deep slow wave
sleep

Jakus et al.
(2004)

GYKI 53 655 (LY300168
hydrochloride)

AMPA Epilepsy Male NSATM (CF#1®)
mice, electroshock seizures,
the 6-Hz test, the MES
seizure model

Dose-dependent
protection

Barton et al.
(2003)

LY377770 KA: GluK1,5 Epilepsy Male NSATM (CF#1®)
mice, electroshock seizures,
the 6-Hz test, the MES
seizure model

Dose-dependent
protection

Barton et al.
(2003)

Human HEK293 cells,
hippocampal slices
obtained from Wistar rats,
electrophysiology
recordings

Blocked epileptiform
activity in hippocampal
slices and seizures in vivo
induced by pilocarpine or
electrical stimulation

Smolders et
al. (2002)

(Continued on following page)
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ubiquitin), which interacts with the C-terminal tail of GluK2 and is
able to ubiquitinate it (Maraschi et al., 2014). Thus, the chronic
administration of the kainate receptor antagonist, UBP310,
prevented the loss of dopaminergic neurons and increased the
survival of the total neuron population in the substantia nigra in
the acute MPTP mouse model of PD (Stayte et al., 2020). UBP310 is
a 4,000-fold more potent antagonist at kainate vs. AMPA receptors
and is ineffective at NMDA and metabotropic glutamate receptors

(Dolman et al., 2007; Regoni et al., 2020), making kainate receptors a
perspective novel target for neuroprotective therapy.

Microglia and astrocytes were also shown to contribute to
neuroinflammation, which can be beneficial short-term by
promoting tissue repair and becomes detrimental when sustained
(Kwon and Koh, 2020). Various anti-inflammatory treatments, such
as using dexamethasone, ibuprofen, amantadine, minocycline,
pituitary adenylate cyclase-activating peptide, and vasoactive

TABLE 2 (Continued) The role of AMPA and Kainate receptor antagonists in model animals of Parkinson’s disease, Epilepsy, ALS.

Antagonist Structure Receptor Disease Model disease Effect First
authors/
year

GYKI 53405
(LY 293606)

AMPA Epilepsy The genetic absence
epilepsy model of WAG/Rij
rats

Failed to affect any
measure of SWD and
vigilance

Jakus et al.
(2004)

GYKI53655 (LY300168
hydrochloride)

GluK3,
Native KA,
AMPA

ALS Putative spinal motor
neurons (mouse embryos),
the patch-clamp technique

Completely blocked the
KA-induced currents

Albo et al.
(2004)

CNQX AMPA+KA ALS Cell cultures of motor
neurons and glial cells

Blocked the motor neuron
death

Van Den
Bosch et al.
(2000)

RPR 119990 AMPA ALS Transgenic mouse model of
familial amyotrophic lateral
sclerosis (SOD1-G93A)

-Displaced [3H]AMPA
from rat cortex membranes
-Potent anticonvulsant in
the supramaximal
electroshock
-Prolong survival mice

Canton et al.
(2001)

29-fluoro (29-F)
modified RNA aptamers
FN58

AMPA, KA,
and NMDA

ALS Male Homozygous the
ADAR2flox/flox/ VAChT-
Cre.Fast (AR2) knockout
mice, a model of
sporadic ALS

Reduced the progression of
motor dysfunction,
normalized TDP-43
mislocalization, and
prevented death of motor
neurons

Akamatsu
et al. (2022)

ACET GluK1
(GluR5) KA

Epilepsy Wistar rat hippocampal
slices cell cultures

Significantly delayed
developmental
synchronization of the
hippocampal CA3 network
and generation of IEA

Atanasova
et al. (2023)

Abbreviations: UBP310, (S)-1-(2-Amino-2-carboxyethyl)-3-(2-carboxy-thiophene-3-yl-methyl)-5-methylpyrimidine-2,4-dione; Tezampanel (LY293558), (3S,4aR,6R,8aR)-6-[2-(1H-1,2,3,4-

tetrazol-5-yl)ethyl]-decahydroisoquinoline-3-carboxylic acid; Perampanel, 5’-(2-cyanophenyl)-1’-phenyl-2,3’-bipyridinyl-6’(1H)-one; Talampanel (GYKI537773 and LY300164), (8R)-7-

Acetyl-5-(4-aminophenyl)-8,9-dihydro-8-methyl-7H-1,3-dioxolo[4,5-h][2,3]benzodiazepine; NBQX - 2,3-Dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide; GYKI53784

(LY303070), 1-(4-aminophenyl)-4-methyl-7,8-methylenedioxy4,5-dihydro-3-methylcarbamoyl-2,3-benzodiazepine; GYKI52466, 1-(4-Aminophenyl)-4-methyl-7,8-methylenedioxy-5H-2,3-

benzodiazepine hydrochloride; GYKI53655 (LY300168 hydrochloride), 5-(4-Aminophenyl)-N,8-dimethyl-8,9-dihydro-7H-[1,3]dioxolo[4,5-h][2,3]benzodiazepine-7-carboxamide;

LY377770 - (3S,4aR,6S,8aR)-6-(((1H-tetrazol-5-ylmethyl)oxy)methyl)- 1,2,3,4,4a,5,6,7,8,8a-decahydroisoquinoline-3-carboxylic acid; selurampanel (BGG492), N-[7-Isopropyl-6-(2-

methylpyrazol-3-yl)-2,4-dioxo-1H-quinazolin-3-yl]methanesulfonamide; GYKI53405 (LY 293606), (7-acetyl-5-(4-aminophenyl)-8-methyl-8,9-dihydro-7H-1,3-dioxolo[4,5-b][2,3]

benzodiazepine); CNQX, 6-Cyano-7-nitroquinoxaline-2,3-dione; RPR 119990, 9-carboxymethyl-4-oxo-5H,10H-imidazo[1,2-a]indeno[1,2-e]pyrazin-2-phosphonic acid; FN1040, 29-fluoro

(29-F) modified RNA aptamers; FN58, 29-fluoro (29-F) modified RNA aptamers; ACET, (S)-1-(2-Amino-2-carboxyethyl)-3-(2 -carboxy-5-phenylthiophene-3-yl-methyl)-5-

methylpyrimidine-2,4-dione; ADE, adverse drug events; 1st AP, first action potential; MES, maximal electroshock seizures; PTZ, Pentylenetetrazol Induced Seizure; SN, substantia nigra.
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intestinal peptide, have been shown to prevent the dopaminergic
neuron cell death in animal models. Astrocytes also protect motor
neurons from excitotoxic damage via the release of an unidentified
soluble factor(s) that induces motor neurons to upregulate the
glutamate receptor subunit GluA2 (Rosenblum and Trotti, 2017).
The incorporation of GluA2 subunits into glutamate receptors
reduces their calcium permeability, providing protection from
excitotoxicity by decreasing the influx of calcium into neurons.

In summary, the modulation of AMPA and kainate receptors
(when thoroughly tuned to achieve specific goals) appears to be an
effective strategy in both inhibiting the progression of PD and
restoring CNS degeneration (O’Neill et al., 2004).

3 Epilepsy

Epilepsy is a chronic brain disorder characterized by the
recurrence of unprovoked seizures caused by abnormal, highly
synchronized firing of neurons within a restricted brain region,
brain hemisphere, or generalized to the entire brain (Moshe et al.,
2015). Seizures occur when clusters of neurons transmit irregular
signals. During seizure, many neurons fire (signal) simultaneously at
a faster than normal rate, as many as 500 times per second. This
surge of excessive and synchronized electrical activity results in
involuntary movements, spasms, sensations, emotions, and
behaviors, and may cause a loss of consciousness. The word
“epilepsy” comes from a Greek word meaning “to seize” or “to
attack.” Ancient Greeks believed that the origin of epilepsy is the
brain, and it is a divine contribution and a sign of ingenuity. There
are several types of epilepsy, and the onset of seizures can be a result
of different factors, including prior illnesses, brain injury, abnormal
brain development, and, more specifically, autoimmune attack on
glutamate receptors (Alexopoulos et al., 2011; Lancaster et al., 2011).
However, in many cases, the causes of epilepsy are unknown. For
many patients with epilepsy, seizures can be controlled by
monotherapy at optimized dosages. Antiepileptic drugs restrain
the neuronal activity through various mechanisms, including
block of sodium channels or TRPV1, inhibition of excitatory
neurotransmission (mainly glutamatergic), or facilitating
inhibitory neurotransmission, specifically GABAergic or activated
by gamma aminobutyric acid. Their clinical use, however, is limited
by side effects. In addition, approximately one-third of patients with
refractory epilepsies and other complicated cases, which do not
respond to monotherapy, remain untreated (Asth et al., 2021).
Therefore, alternative treatment strategies are urgently needed.

Microdialysis and magnetic resonance spectroscopy (MRS)
studies showed increased levels of extracellular glutamate in
patients with epilepsy (Sarlo and Holton, 2021). Kindling model,
an experimental animal model for partial epilepsies, showed both a
decrease in GABAergic inhibition and an increase in glutamatergic
excitation. These processes are thought to be critically involved in
cellular mechanisms underlying the initiation (epileptogenesis) and
spread of epileptic seizures that lead to chronic epilepsy (Rogawski
et al., 1995). GABA is the major inhibitory neurotransmitter in the
brain, which works in balance with the major excitatory
neurotransmitter glutamate in healthy individuals. In
pharmacological experiments, agonists of iGluRs were shown to
be involved in the initiation of seizures and their propagation

(Loscher et al., 1999). For example, the infusion of AMPA,
kainate, (RS)-2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl)
propanoic acid (ATPA), or NMDA elicited involuntary muscle
contractions (clonus) and passive partial muscle contractions
(tonus) in rodents. Kainate, which acts as a non-desensitizing
agonist of AMPA receptors, has been widely used in animal
models to induce epilepsy (Kandratavicius et al., 2014). The
marine toxin domoic acid, a kainic acid analog from algae or
algae-eating fishes, when ingested caused intoxication in humans.
Intoxicated patients experienced drug-resistant status epilepticus
and developed temporal lobe epilepsy within one year. The
consequences of domoic acid intoxication in humans are,
therefore, very similar to the kainate-induced status epilepticus in
rodents (Ramsdell and Gulland, 2014). These results suggested that
the overactivation of AMPA receptors can elicit temporal lobe
epilepsy, which is also consistent with a relatively dense
expression of AMPA receptors in the hippocampus. There is
preclinical and clinical evidence that AMPA receptor antagonists
inhibit seizures (Rogawski, 2013; Barker-Haliski and White, 2015).
One such AMPA receptor antagonists, perampanel, was approved
for the treatment of different forms of epilepsy (Bialer et al., 2010;
Hibi et al., 2012; Chen et al., 2014). Perampanel (Figure 3) is a
negative allosteric modulator (NAM) that inhibits AMPA receptors
with high selectivity by stabilizing their closed state and thereby
preventing the opening of the ion channel (Yelshanskaya et al.,
2016). It also blocks kainate receptors, but with lower affinity
(Yelshanskaya et al., 2016; Taniguchi et al., 2022; Gangwar et al.,
2023), and shows little selectivity when acting on different AMPA
receptor subtypes (Hanada et al., 2014). In 2012, perampanel was
approved as an adjunctive treatment of partial-onset seizures and, in
2015, as a treatment of the primary generalized tonic-clonic seizures
in patients 12 years and older (Greenwood and Valdes, 2016).
Investigations on the use of perampanel for treatment of other
types of seizure disorders are ongoing (Potschka and Trinka, 2019).
The antiseizure efficacy of perampanel is dose-dependent, and at
high doses, this drug can cause side effects like dizziness,
somnolence, headache, fatigue, nausea, and vertigo (Greenwood
and Valdes, 2016). The competitive antagonist BGG492
(selurampanel) was advanced into clinical trials by Novartis in
2015 for the treatment of epilepsy. It has also been studied as an
acute treatment of migraine and is found to produce some pain relief
but with a relatively high rate of side effects. The most common
adverse effects are disorders of the nervous system (dizziness, mostly
mild to moderate in severity) and gastrointestinal tract (Faught,
2014; Gomez-Mancilla et al., 2014). Similar to quinoxalinediones,
BGG492 inhibits both AMPA and kainate receptors.

Dietary strategies can provide seizure control in patients who do not
respond to antiseizure drugs (Sills et al., 1986; Martin-McGill et al.,
2020; Leitner et al., 2023). There are several types of dietary therapies, all
of which are high in fat, to some extent restricted in carbohydrates, and
associated with ketosis. Medium-chain triglycerides (MCTs), which are
highly abundant in ketogenic diet, including decanoic acid, have long
been known to have an acute anticonvulsant effect in animal models
(Chang et al., 2016). Interestingly, in the Indian medical system of
Ayurveda, epilepsy was treated with ghee, which is about 50%
composed of saturated fat (palmitic and oleic acids). Chang et al.
(2016) demonstrated that direct inhibition of excitatory
neurotransmission by decanoic acid at therapeutically relevant
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concentrations is a result of non-competitive antagonism of AMPA
receptors that likely underlies the antiseizure effects. This inhibitory
effect was hypothesized to occur via binding of decanoic acid to sites on
the transmembrane M3 helix of the GluA2 AMPA receptor
transmembrane domain, distinct from the binding sites of
perampanel (Chang et al., 2016). The synergistic effects of
perampanel and decanoic acid inhibition of AMPA receptors
through different binding sites were demonstrated in an ex vivo
model of seizure activity and by inhibiting seizure-induced activity
in the human brain slices (Augustin et al., 2018), and may represent a
prospective antiepileptic strategy. A novel family of fatty acids, branched
derivatives of octanoic acid (OA) related to theMCT ketogenic diet, was
also identified as a possible treatment of epilepsy (Chang et al., 2015).
An OA derivative with the strongest antiepileptic effects, trans 4-
butylcyclohexane carboxylic acid (4-BCCA), was shown to inhibit
AMPA receptors with low affinity, acting via transmembrane
domain binding sites, distinct from perampanel and ion channel
blockers (Figure 3) (Yelshanskaya et al., 2022).

CBD, an active compound of marijuana, significantly prolonged
the seizure latency and reduced the severity of thermally induced

seizures in a mouse hyperthermia-induced seizure model (Patra
et al., 2019), partly due to its effect on AMPA receptors (description
in the PD section). CBD has been recently approved in the
United States and the European Union as an add-on antiepileptic
drug (epidiolex) for the treatment of patients affected by refractory
epilepsy, such as Dravet and Lennox–Gastaut syndrome (Pagano
et al., 2022), and caused resurgence of interest in pharmacology of
cannabinoids in general and phytocannabinoids in particular.

Kainate receptors represent another key class of glutamate receptors
that may play an important role in the pathophysiology of epilepsy. It
has been shown that these receptors, especially GluK4, are upregulated
in the astrocytes of the hippocampus and surrounding cortex during
status epilepticus (SE), associated with seizures that last more than
5 min and occur with high frequency (Gibbons et al., 2013; Vargas et al.,
2013). Although the functional role of kainate receptors in seizures
remains to be determined, selective targeting of astrocytic processes that
contribute to glutamate release represents a novel therapeutic strategy
for the treatment of epilepsy (Gibbons et al., 2013). More recently,
several studies suggested that the presynaptic kainate receptors work
cooperatively with the cannabinoid receptors to control the release of

FIGURE 3
Sites of AMPA receptor pharmacological regulation. (A) Structure of the GluA2 AMPA receptor (PDB ID: 6DM1) in ribbon representation, viewed
parallel to themembrane, with A and C subunits represented in light blue, and B and D subunits represented in beige, and the layers of the amino-terminal
domain (ATD), the ligand-binding domain (LBD), and the transmembrane domain (TMD) labeled. Small-molecule regulators are shown in sticks (green).
(B) Expanded view of the LBD dimer, with the LBD clamshell binding site of agonists like glutamate and competitive antagonists like NBQX, and the
LBD interface binding site of positive allosteric modulators (PAMs) like cyclothiazide (CTZ) being indicated. (C) Expanded view of the TMD, with the
binding sites of negative allosteric modulators (NAMs) perampanel (PMP; PDB ID: 5L1F) and trans-4-butylcyclohexane carboxylic acid (4BCCA, PDB ID:
6XSR), as well as ion channel blockers like 1-naphthyl acetyl spermine (NASPM; PDB ID: 6DM1) being indicated. Only two subunits (A,C) are shown, with
the front and back subunits (B,D) removed for clarity.
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glutamate (Marshall et al., 2018) andGABA (Daw et al., 2010; Lourenco
et al., 2010; Lourenco et al., 2011; Wyeth et al., 2017).

There is evidence for the direct link between AMPA receptor
mutations (GluA2 subtype) and epilepsy, although the
corresponding studies are limited, with the majority of identified
AMPA receptor mutations linked to cognitive impairment and
autism (Salpietro et al., 2019). Genetic changes in the
GluA2 subunit were mapped to different parts of the receptor,
transmembrane, ligand-binding, and N-terminal domains,
suggesting that they produce different effects on the AMPA
receptor function, including changes in trafficking (e.g., by
increasing the surface expression), rigidifying the receptor’s
ligand-binding domains, or altering affinity to glutamate or
natural regulators, thus influencing synaptic plasticity.

One notable event that follows seizures in humans and in mouse
models of epilepsy is the dramatic increase in expression of the
GluA1 flip isoforms. These isoforms not only confer greater
glutamate sensitivity than the flop isoforms but, if present in excess,
tend to form homomeric Ca2+-permeable AMPA receptors. Either of
these features can enhance the excitatory synaptic currents. It has been
reported that a splice-modulating oligonucleotide decreased the
GluA1 expression and showed antiseizure effects, including reduced
postseizure hyperexcitability in neonatalmice (Lykens et al., 2017). Such
targeting of specific AMPA subunit isoforms may have a potential to
alter the expression of AMPA receptor subtypes involved in the disease
states. Likewise, various molecular approaches, including the use of
small interfering peptides (Fosgerau and Hoffmann, 2015), have been
used successfully to target protein–protein interactions and prevent the
endocytosis of AMPA receptors involved in behavioral sensitization
models of drug addiction. Small interfering peptides (GluR2-3Y) have
also been developed to selectively prevent the endocytosis of AMPA
receptors containing GluA2 subunits (Lin et al., 2016). An exciting
future possibility is to further develop such approaches and to target
specific auxiliary subunits that may be involved in the delivery of Ca2+-
permeable AMPA receptors.

4 Amyotrophic lateral sclerosis

ALS, also known as Lou Gehrig’s Disease, is a progressive and
fatal neurodegenerative disease, which predominantly affects motor
neurons that control voluntary muscle movement, including those
located in the spinal cord, brain stem, and motor cortex. Different
clinical symptoms of ALS depend on whether the upper or lower
motor neurons are damaged (Grad et al., 2017). Neuron injury leads
to muscle weakness, progressive paralysis, respiratory failure, and
death within 3–5 years after the disease onset (Kawahara and Kwak,
2005). To date, the exact mechanisms of ALS pathogenesis remain
unknown. Early biochemical studies revealed increased glutamate
levels in the ALS patient’s cerebrospinal fluid (Rothstein et al., 1990;
Shaw et al., 1995). The dysfunction of RNA and protein
homeostasis, which results in glutamate-mediated excitotoxicity,
alongside protein aggregation, mitochondrial dysfunction, and
oxidative stress, is also responsible for the ALS-specific
neurodegeneration (van den Bos et al., 2019; Zhang and
Abdullah, 2013; Taylor et al., 2016). About 10% of ALS cases
are inherited within families, almost always as dominant traits and
frequently with high penetrance.

The first ALS-associated gene, coding for the cytosolic superoxide
dismutase (SOD1), was reported in 1993, with more related genes
discovered since (Rosen et al., 1993). SOD1 encodes the ubiquitously
expressed cytoplasmic superoxide dismutase, which represents a major
cell antioxidant. When misfolded due to mutations, SOD1 leads to the
toxic accumulation of aggregated protein, which is a possible toxic
contributor to ALS (Taylor et al., 2016). Large protein aggregates in
neuronal cells are a hallmark in many neurodegenerative diseases,
including PD andAD.However, recent studies showed that the disease-
causingmutants of SOD1 are not sufficient to drive the disease acting in
motor neurons only and have to act in their glial partners,
oligodendrocytes, and astrocytes as well (Yamanaka et al., 2008;
Wang et al., 2011). The latter cells represent the final layer of the
blood–brain barrier, which supplies nutrients to neurons, buffering
ions, and recycling the neurotransmitter glutamate. Astrocytes limit
neuronal firing by the rapid recovery of synaptic glutamate and release
of factors upregulating GluA2 subunit expression. It was shown that
astrocytes from familiar and sporadic ALS patients are toxic to
cocultured healthy motor neurons (Haidet-Phillips et al., 2011; Re
et al., 2014). Motor neurons seem to exhibit a particular sensitivity to
excitotoxicity: they are large in size (long axons) and have high energy
requirements, relatively low Ca2+-buffering capacity, and contain
molecular chaperones with mitochondrial activity and neurofilament
content involved in excitotoxic sensitivity (Menon et al., 2014).

Riluzole, the only drug to prolong, although modestly, the
survival of ALS patients, is a potent neuroprotective agent with
multimodal effects on neuronal activity. One of the mechanisms of
riluzole action, acceleration of glutamate clearance and prevention
of excessive excitatory neurotransmitter release from presynaptic
terminals, causes an effective reduction in the rate of disease
progression. Riluzole was also shown to interact with voltage-
dependent sodium channels, highlighting its non-specific action
on ligand-gated ion channels (Menon et al., 2014; Dharmadasa and
Kiernan, 2018; Fang et al., 2018; Lazarevic et al., 2018; Tarantino
et al., 2022).

With a higher sensitivity to excitotoxicity, spinal motor neurons
exhibit lower levels of GluA2 subunit expression and consequently
higher levels of Ca2+-permeable AMPA receptors than most neuronal
subgroups (Kawahara and Kwak, 2005). It was suggested that one
possible mechanism of ALS progression is an increased number of
Ca2+-permeable AMPA receptors due to an abnormal increase in
GluA1 and decrease in GluA2 subunit expressions (Kawahara and
Kwak, 2005). In cases of sporadic ALS, there are reduced levels of
adenosine deaminase acting on RNA type 2 enzyme (ADAR2)
expression, which disrupts the efficient Q/R editing of GluA2 pre-
mRNA, also causing increased Ca2+ permeability. The
downregulation of ADAR2 is believed to be caused by the transactive
response DNA-binding protein TDP-43, a transcriptional regulator, and
transport protein that plays an important role in alternative splicing. The
behavior of this protein is themost reliable hallmark of themotor neuron
pathology during ALS, characterized by abnormally insoluble,
mislocalized, hyperphosphorylated, or fragmented TDP-43
(Neumann et al., 2006; Kwong et al., 2008; Chen-Plotkin et al.,
2010). Notably, the pathological forms of TDP-43 downregulate
ADAR2, leading to a failure in Q/R editing of GluA2 pre-mRNA
(Yamashita and Kwak, 2019; Guo and Ma, 2021). The unedited
GluA2 AMPA receptor subunit is, therefore, the potential target
for the ALS drug development. TDP-43 is the critical component
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of macromolecular complexes that generate small non-coding
RNAs (microRNAs) that function in RNA silencing. The loss of
TDP-43 results in the reduced expression of microRNAs in model
systems.

In addition, mutant cultural astrocytes induce changes in
GluA1 and GluA2 AMPA receptor subunit expression on the
surface of motor neurons via the secretion of the tumor necrosis
factor alpha (TNF-α) in the astrocyte condition medium, thus
leading to their increased vulnerability to excitotoxic damage
(Kia et al., 2018). Previous research demonstrated that the
application of exogenous TNF-α to neurons instigated a rapid
insertion of AMPA receptors into the plasma membrane, in
some cases specifically GluA2-lacking Ca2+-permeable AMPA
receptors, thus potentiating glutamate-dependent excitotoxic
damage (Yin et al., 2012). These findings suggest that targeting
the TNF-α-induced AMPA receptor expression might be a novel
direction for the design of neuroprotective drugs (Zhao et al., 2010).

Antiepileptic drugs, such as perampanel, improve the ALS
phenotype but also cause sedation (Akamatsu et al., 2016).
Another AMPA receptor antagonist, talampanel, which was
initially found to be beneficial for the ALS patients in phase II
clinical trials, failed in phase III clinical trials due to low efficacy.
Talampanel has a much shorter half-life in humans (approximately
3–4 h) than perampanel (approximately 105 h) (Pascuzzi et al.,
2010). Based on the experiments in mice, two novel chemically
modified RNA aptamers, which are easily-soluble in water, showing
high potency and selectivity AMPA antagonists, have been recently
introduced as a new treatment of ALS, an alternative to traditional,
small-molecule compounds (Akamatsu et al., 2022). Since RNA
aptamers do not cross the blood–brain barrier, researchers
hypothesized that in vivo, the dose of these aptamers can be
administered as low as possible to achieve the therapeutic efficacy
with minimal or no adverse effects by direct injection into the spinal
cord (Akamatsu et al., 2022). Another AMPA/kainate receptor
antagonist, NBQX, was evaluated in the mouse model of ALS
and found to prevent the kainate-induced motor neuron death
and to prolong the animal survival (Van Damme et al., 2003).
Clinical trials of other small molecules as potential drugs are
ongoing. They include compounds acting on TRP channels, K+

channels, Cl− channels, acetylcholine receptors, Na+ channels,
and metabotropic glutamate receptors (Tarantino et al., 2022).

5 Conclusion

Non-NMDA iGluRs, AMPA and kainate receptors, play an
important role in the pathogenic mechanisms of epilepsy and

neurodegenerative diseases like PD, AD, and ALS. Modulation of
their activity, subunit expression, and trafficking using selective
antagonists appears to be an effective strategy in alleviating the
disease symptoms. However, many of these drugs have negative side
effects and/or solubility/bioavailability problems. A reasonable approach
to new types of therapeutic interventions targeting the expression and
trafficking of non-NMDA receptors, as well as novel types of antagonists
(e.g., RNA aptamers) and small molecules that selectively bind and
regulate Ca2+-permeable AMPA and kainate receptors, will likely
uncover alternative strategies to relieve the burden of both acute and
chronic neurodegeneration and ultimately lead to neuroprotection.
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