
Envisioning a role for nuclear actin
in prophase I spermatocytes

Jana Petrusová*, Jasper Manning and Dominik Filipp*

Laboratory of Immunobiology, Institute of Molecular Genetics of the Czech Academy of Sciences,
Prague, Czechia

Actin is a multi-functional protein that is involved in numerous cellular processes
including cytoskeleton regulation, cell migration, and cellular integrity. In these
processes, actin’s role in respect to its structure, complex mechanical, and
protein-binding properties has been studied primarily in the cytoplasmic and
cellular membrane compartments. However, its role in somatic cell nuclei has
recently become evident where it participates in transcription, chromatin
remodeling, and DNA damage repair. What remains enigmatic is the
involvement of nuclear actin in physiological processes that lead to the
generation of germ cells, in general, and primary spermatocytes, in particular.
Here, we will discuss the possible role and nuclear localization of actin during
meiotic prophase I and its interaction with chromatin remodeling complexes, the
latter being essential for the control of pairing of homologous chromosomes,
cross-over formation, and recombination. It is our hope that this perspective
article will extend the scope of actin’s nuclear function in germ cells undergoing
meiotic division.
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1 Introduction

Actin, a multi-functional protein, is known to be an important player in various cellular
processes and has been shown to be part of cytoskeletal microfilaments and thin filaments
within muscle fibrils (Henderson et al., 2017). It has also been described as an essential
protein within the cytoskeleton that is necessary for cell contraction and mobility during cell
division (Lappalainen, 2016). In the cytoplasm, actin forms a highly versatile and dynamic
filamentous network that is involved in shaping of the cell, distribution of cellular organelles,
cellular motility, and cell adhesion (Humphries et al., 2007; Svitkina, 2018). Although
numerous studies have shown the presence of actin in cell nuclei, only a few have provided
details of its function. However, what has been established is that nuclear actin in somatic
cells is required for transcriptional processes which are initiated by all three RNA
polymerases (Hofmann et al., 2004; Philimonenko et al., 2004; Percipalle, 2013),
chromatin remodeling (Dundr et al., 2007; Baarlink et al., 2017), and DNA damage
repair (Caridi et al., 2018; Schrank et al., 2018). It is of note, that in addition to actin,
interacting partners such as actin-binding proteins (ABPs) and actin-related proteins (Arps)
also reside in the nucleus (Kristo et al., 2016; Virtanen and Vartiainen, 2017).

Structurally, actin is found in one of two forms: monomeric (globular-, G-actin) or
polymeric (filamentous-, F-actin), the latter forming double-stranded helical filaments,
which may assemble into higher-order three-dimensional structures known as bundles
(Lappalainen, 2016). In regards to the structure of actin in the nucleus, several studies have
suggested that it appears either in monomeric or oligomeric form, although other studies
have shown that nuclear actin also exists in a polymeric state (Oma and Harata, 2011;
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Kalendova et al., 2014; Plessner et al., 2015; Plessner and Grosse,
2015; Le et al., 2020; Yamazaki et al., 2020). The shift from an
oligomeric to a polymeric state (and vice versa) is a highly dynamic
process that facilitates the movement of chromosomal loci, and thus
increases the chromosomal mobility of activated gene loci to
transcriptionally permissive areas (Lusic et al., 2013; Baarlink
et al., 2017; Plessner and Grosse, 2019) or double-strand breaks
to sites where they undergo DNA damage repair (Schrank et al.,
2018; Caridi et al., 2019; Schrank and Gautier, 2019). The shortening
and extension of nuclear actin is also important for the positioning
of chromosomes to their territories (Ondrej et al., 2008). While the
positioning of these chromosomes requires a force that occurs by
actin polymerization where actin becomes associated with DNA, the
details of this contractile mechanism is not well understood (Hurst
et al., 2019; Hyrskyluoto and Vartiainen, 2020). Importantly, others
have reported that the binding of monomeric actin to DNA occurs
via its engagement with chromatin remodeling complexes such as
SWI/SNF (SWItch/Sucrose Non-Fermentable), INO80 (INOsitol
requiring 80) and NuA4 (NuA4 histone acetyltransferase
complex). This scenario directly implicates nuclear actin in the

regulation of gene expression (Chuang et al., 2006; Dundr et al.,
2007; Kapoor and Shen, 2014; Baarlink et al., 2017) and DNA
damage repair in somatic nuclei (Belin et al., 2015a; Belin et al.,
2015b; Caridi et al., 2018; Schrank et al., 2018). It is important to
emphasize that chromatin remodeling, which has been primarily
investigated in somatic nuclei, is also a major event in the
progression of meiotic prophase I. However, there is a significant
information gap in regards to the role of actin that occurs during
chromatin remodeling in meiosis.

2 Major events of prophase I

During prophase I of meiosis, condensed chromosomes
locate their homologous pairs, recombine, and redistribute
evenly to daughter cells. This process is facilitated by the
anchoring of chromosomes to the nuclear membrane via the
LINC (LInker of Nucleoskeleton and Cytoskeleton) complex.
This transmembrane complex is comprised of SUN and KASH
proteins which interconnect chromosomes in the inner nuclear

FIGURE 1
The LINC complex is instrumental for meiotic chromosome pairing and nuclear bundle formation. During early prophase I, prior to chromosome
pairing, chromatids are attached to the LINC complex via SUN and KASH proteins which cross the inner and outer nuclear membrane, respectively. This
complex is attached to either cytoplasmic F-actin via nesprin (S. cerevisiae) or tomicrotubules via spindle pole body (S. pombe), or dynein (C. elegans and
M. musculus). The clustering and pairing of chromosomes at the nuclear membrane after depolymerization of cytoskeletal actin results in the
formation of nuclear actin bundles or meiotic triple helices (MTHs) (Takagi et al., 2021; Ma et al., 2022). In other organisms, it is assumed that nuclear actin
exists in monomeric or oligomeric form, which may be associated with phosphorylated lamin (C.elegans) or lamin itself (M.musculus) at the nuclear
periphery.

Frontiers in Cell and Developmental Biology frontiersin.org02

Petrusová et al. 10.3389/fcell.2023.1295452

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1295452


space to the cytoskeleton (see Figure 1 for details). LINC has been
described as the driving force of chromosomal movement at this
stage of meiosis (Trelles-Sticken et al., 2005; Chikashige et al.,
2006; Chikashige et al., 2007; Koszul and Kleckner, 2009; Vogel
et al., 2009; Yoshida et al., 2013; Lee et al., 2015). Meanwhile, in
the nucleus, during the four stages of prophase I, i.e., leptotene,
zygotene, pachytene, and diplotene, processes such as DNA
replication, chromatin condensation, identification of
homologous DNA loci, and formation of double-strand breaks
(DSBs) occur and which are subsequently followed by the
recombination of non-sister chromatids (Kleckner, 1996). In
spite of continuous chromosomal condensation, these events
are supported by the expression of meiosis-specific genes such
as SPO11 (Baudat et al., 2000), MEIOB (Xu et al., 2017),
MSH4 and MSH5 (Kneitz et al., 2000; Snowden et al., 2008),
which are essential for cross-over formation and meiotic
recombination. Successively, replicated chromatin from the
leptotene stage is paired during the zygotene stage via DNA-
to-DNA interactions along with protein-to-protein stabilization
(Lenormand et al., 2016). In the pachytene stage, when
programmed DNA breaks are generated, fully associated and
stabilized bivalents are detected and undergo recombination.
This results in the generation of chiasmata, a specialized
X-like chromatin configuration that develops between non-
sister chromatids (Keeney and Kleckner, 1996; Kleckner, 1996;
Storlazzi et al., 1996). The diplotene stage follows shortly
thereafter, during which the sister chromatids segregate
(Baudat et al., 2013).

It is important to emphasize that events that accompany
prophase I, i.e., DNA replication, chromatin condensation, DSB
formation, and DNA repair are not exclusive to meiosis. These
processes have been studied individually in various somatic cell
types in regards to their physiological requirements in cell cycle, all
of which have demonstrated a role of nuclear actin in the nucleus.
However, the uniqueness of prophase I is that these processes occur
successively in short sequences of highly coordinated and regulated
events. Unfortunately, there has not been a conceptual study which
has addressed the association of nuclear actin with these processes.
To this end, we will present publicly available data which show the
function of nuclear actin in somatic cells and draw some correlation
to analogous processes that are associated with prophase I to create a
model of actin function during meiotic events. We will specifically
review the involvement of actin in prophase I of budding (S.
cerevisiae) and fission yeast (S. pombe), nematode (C. elegans),
and mouse (M. musculus). To avoid repetition of published data,
we will omit from this discussion the process of oogenesis which has
been previously reviewed (Uraji et al., 2018; Mogessie, 2019).

3 Actin in prophase I nuclei

As previously noted, the movement of meiotic chromosomes
that are embedded in the nuclear membrane is controlled by the
LINC complex which is attached to the cytoskeleton. However, it
appears that this “chromosome dance” is also controlled by the
nucleoskeleton which contains nuclear actin. Trelles-Sticken et al.,
2005 described the clustering and pairing of chromosomes at the
nuclear membrane even after depolymerization of the cytoskeletal

actin in budding yeast, a finding that changed the perception of actin
as an exclusive cytoplasmic factor of prophase I progression. As a
result, the authors proposed that nuclear actin perpetuated the
gathering of motile telomeres by compressing chromosome ends
into a limited nuclear region. Nearly16 years later, Takagi et al., 2021
confirmed this clustering by detecting bundles which contained
actin in prophase I nuclei of budding yeast, which were referred to as
nuclear bundles. Interestingly, Ma et al. observed that these nuclear
actin bundles consisted of multiple filaments that formed meiotic
triple helices (MTHs) which are not present in interphase cells
(Figure 1). It was also determined that MTHs are formed in
pachytene I of yeast meiosis as synaptonemal complexes (SCs)
began to appear (Ma et al., 2022).

Although nuclear actin bundles have been detected in meiotic
yeast, there has been no evidence of these structures in the nuclei
of somatic or meiotic cells in metazoans. However, under specific
conditions such as DMSO treatment (Fukui and Katsumaru,
1980), overexpression (Kalendova et al., 2014; Baarlink et al.,
2017), or by detection using an actin chromobody (Baarlink et al.,
2013), bundled actin in the nuclei of somatic cells has been
detected. Nevertheless, the monomeric state is the only form of
actin for which there is some information where a parallel, in
regards to function, between somatic and prophase I nuclei can
be drawn. It has been shown that monomeric actin is an essential
component of chromatin remodeling complexes in metazoans,
however, since information of its role in chromatin associated
events during prophase I was not the primary focus of previous
investigations, we will discuss the involvement of actin in
chromatin remodeling complexes in somatic nuclei and
propose a model of actin involvement in the regulation of
prophase I events.

4 Model of actin involvement in
chromatin remodeling complexes in
prophase I

Chromatin remodeling complexes execute changes in chromatin
architecture that allow access of regulatory proteins to condensed
genomic DNA (Saha et al., 2006; Magana-Acosta and Valadez-
Graham, 2020). Since chromatin remodeling requires the coupling
of several functions such as site-specific targeting, enzymatic and
binding activity, and other modifying co-factors, proteins that are
required for these functions are assembled into large multimeric
chromatin remodeling complexes (Reyes et al., 2021). During
meiosis, chromatin remodeling factors significantly accelerate
nucleosome dynamics which promote rapid meiotic prophase I
progression in an organized manner. The failure to undergo
chromatin remodeling leads to a reduction in the effectivity of
homologous pairing resulting in errors in recombination and
germ-cell apoptosis (Prieto et al., 2005; Colas et al., 2008; Kota
and Feil, 2010).

A unique feature of some of the chromosome remodeling
complexes is the presence of monomeric actin, which is essential
for their proper function. As has been described in somatic
nuclei, monomeric actin in these complexes is always
associated with Arp proteins (Kapoor and Shen, 2014; Klages-
Mundt et al., 2018) or other ABPs (Zheng et al., 2009; Rajakyla
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and Vartiainen, 2014; Kristo et al., 2016) which together form a
DNA binding module. In mammals, 11 Arp proteins have been
described, four of which (Arp 1, 2, 3, and 10) have been shown to
be cytoplasmic and are involved in actin filament nucleation and
cytoskeleton regulation, while four others (Arp 4, 5, 6, and 8) are
located in the nucleus (Ohfuchi et al., 2006; Aoyama et al., 2008;
Kitayama et al., 2009). These nuclear Arps are recruited to
chromatin remodeling complexes, including INO80, SWI/SNF
and NuA4, via binding to a protein that contains a helicase-
SANT-associated (HSA) domain, the sequence variations of
which is specific for a particular Arp in the actin/Arp DNA
binding module (Szerlong et al., 2003). In 2016, Cao et al.
crystallised the actin/Arp module and showed that the actin
inner face along with its barbed end is sequestered, which
therefore masked its interaction with Arp4 and HSA. This
masking prevents nuclear actin from polymerization as well as
inhibits binding to actin regulators such as tropomodulin and
thymosin-β4 or toxins latrunculin and phalloidin which target
actin in the cytoplasm. Thus, this precludes regulation of nuclear
actin by ATP hydrolysis which is required for polymerization
features that together distinguish nuclear actin from its
cytoplasmic counterpart (Cao et al., 2016).

In the following chapters, we will discuss the specific role of
three chromatin remodeling complexes, INO80, SWI/SNF, and
NuA4, all of which contain an actin-associated DNA-binding
module. Importantly, since these complexes have been found
not only in the nuclei of somatic cells but also in the nuclei of
prophase I spermatocytes, we will propose how monomeric
actin in these complexes may contribute to the regulation of
meiotic progression. In addition, we will discuss our recent data
pertaining to the Nucleosome Remodeling and Deacetylase
(NuRD) complex which in addition to actin contain an ABP,
vinculin, which seems to position the spermatoprotesome
within the vicinity of chromatin remodeling complexes.

4.1 Actin recruits INO80 to DNA sites for
active transcription and DNA break repair

The ATP-dependent chromatin remodeler complex, INO80,
binds nucleosome-free regions around promoter and
transcriptional start sites, organizes chromatin architecture by
repositioning nucleosomes (Clapier and Cairns, 2009) and
actively engages in DNA damage repair (Ebbert et al., 1999).
INO80 consists of three ATPase subunits: the core ATPase
subunit and two additional ATPase-containing helicases –

RUVBL1 and RUVBL2, both of which play a role in the
scaffolding of large protein assemblies (Chen et al., 2011). Within
the INO80 complex, actin is associated with two Arp proteins,
Arp4 and Arp8 (Oma and Harata, 2011; Tosi et al., 2013), a
configuration that has been shown to be evolutionarily conserved
from yeast to humans (Cai et al., 2007; Wu et al., 2007).

In somatic cells, actin facilitates the docking and movement of
the INO80 complex at DNA sites and alters the composition of the
nucleosome in an ATP-dependent manner with Arp4 and
Arp8 binding to extranucleosomal DNA (Brahma et al., 2018).
These Arps act as sensors along DNA by allosterically regulating
INO80-mediated nucleosome spacing. Additionally, Arp8 is also

recruited to DSB, initiating the repair process (Osakabe et al., 2014;
Takahashi et al., 2017). Hence, both Arp4 and Arp8 are instrumental
in the modulation and enhancement of nucleosome binding affinity.
It is of note that Arp5 is localized at a distinct part of the complex
and is essential for the coupling of ATP hydrolysis and nucleosome
sliding (Yao et al., 2015; Yao et al., 2016). This arrangement was
supported by Zhang et al., 2019 who recently provided the crystal
structure of the INO80 complex which depicted the binding of the
actin/Arp module to DNA, thus illustrating its presence
independent of the ATPase subunit.

Analogous to DNA damage repair in somatic cells, during
meiosis in both budding yeast and humans, INO80 is recruited to
DSBs for effective DNA end resection and repair (Gospodinov
et al., 2011) during homologous recombination (Osakabe et al.,
2014). In the context of DSBs, Serber et al., 2016 set out to
determine the role of INO80 during prophase I and discovered
that male mice that had been conditionally depleted of
INO80 exhibited impaired synaptonemal complex formation of
prophase I spermatocytes, aberrant cross-over formation, and a
diminished capacity to repair DSBs, resulting in sterility. In
addition, Chakraborty and Magnuson, 2022 showed that
INO80 is a negative regulator of poised chromatin, i.e., it is
required for the regulation of spermatogenic gene expression.
Since in somatic nuclei the actin/Arp module is essential for
INO80 DNA binding, and at the same time INO80 is critical
for prophase I, we propose that the actin/Arp module is important
in prophase I chromatin remodeling (Figure 2).

4.2 Actin/Arp deposits NuA4 on chromatin
loops for efficient homologous
recombination

The NuA4 acetyltransferase complex in somatic nuclei is
involved in chromatin compaction (Lu et al., 2009),
transcriptional regulation (Lindstrom et al., 2006), and DSB
repair (Bird et al., 2002; Downs et al., 2004; Lin et al., 2008;
Torres-Machorro et al., 2015; Cheng et al., 2018). Recently, it has
been shown that NuA4 regulates DNA damage repair by nudging
homologous recombination to proceed over non-homologous end-
joining in somatic nuclei (Harata et al., 1999; Galarneau et al., 2000;
Torres-Machorro et al., 2015). This complex contains an actin/Arp
module which helps NuA4 bind to DNA (Harata et al., 1999;
Galarneau et al., 2000) and influences the docking of the catalytic
domain, Esa1, to the nucleosome (Wang et al., 2018; Zukin et al.,
2022).

Wang et al., 2021 showed that meiosis-specific depletion of
Esa1 resulted in a decrease in chromosome axis length which
consequently lead to a decrease in the number of DSBs,
recombination intermediates, and crossover frequencies.
However, this study did not examine the role of actin/Arp
module in Esa1 loading on DNA, hence, it would be
interesting to determine if in the absence of the actin/Arp
module, there would be a phenotype similar to that observed
in the Esa1 meiotic knock-out. Although this data shed light on
the importance of NuA4 in prophase I progression (Figure 2),
the exact role of the actin/Arp module in this complex remains
to be established.
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FIGURE 2
Model of nuclear actin involvement in chromatin remodeling during the prophase I. Four chromatin remodeling complexes in which actin has been
implicated or proposed to be involved during prophase I. The presented structures and subunit nomenclature of these complexes were adapted from
relevant studies: INO80 (Knoll et al., 2018); NuA4 (Qu et al., 2022); SWI/SNF (Wanior et al., 2021); NuRD (Arvindekar et al., 2022). In this figure, the model
for NuRD complex in meiosis is based on a recent crystallographic study (Arvindekar et al., 2022) and extended to include newly identified subunits
by Petrusova et al., 2022. Vinculin (VCL) associates with the 19 S cap of the spermatoproteasome (blue/pink barrel structure). The question mark which
appears next to VCL, actin, and Arp4 depicts the possible presence of these subunits within the NuRD complex.
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4.3 Actin in SWI/SNF affects chromatin
reorganization

The mammalian SWI/SNF complex, also known as BAF
(Hodges et al., 2016), is a macromolecular assembly that
functions as a gene regulator, influencing changes in chromatin
structure and accessibility (Peterson et al., 1998; Zhao et al., 1998). It
is comprised of either the ATP-ase subunit catalytic subunit
BRG1 or BRM along with core subunits, including β-actin
(Hodges et al., 2016; Wang et al., 2018; Wang et al., 2021).
Importantly, it is the β-actin isoform that maximizes the ATPase
activity of BRG1 (Peterson et al., 1998), and in turn, promotes
chromatin remodeling activity, nucleosome compaction, and
transcriptional regulation (Morris et al., 2014). Mechanistically,
Xie et al., 2018 determined that in the absence of β-actin,
BRG1 is disassociated from chromatin resulting in the
reorganization of chromatin and alteration of the expression of
genes involved in angiogenesis and cytoskeletal organization which
lead to changes in cellular identity. It should be taken into
consideration that the cells used in this study were derived from
mouse embryonic fibroblasts (MEFs) obtained from a β-actin
knockout mouse model that lacked both cytoplasmic and nuclear
actin. The authors provided evidence which demonstrated that the
reintroduction of nuclear-targeted actin into these MEFs restored
some nuclear features and gene expression. From this result, they
concluded that nuclear β-actin can affect the genome-wide
organization of heterochromatin, through BRG1 heterochromatin
binding activity (Xie et al., 2018). Building on this result, Mahmood
et al., 2021 provided a clear link between nuclear β-actin, chromatin
accessibility, and compartment-level changes in genome
organization in the same MEFs. Using advanced technologies
such as ATAC-Seq, HiC-Seq, RNA-Seq, and ChiP-Seq, the
authors showed that the loss of nuclear β-actin induced changes
in the 3D architecture of heterochromatin and euchromatin
compartments, and hence influenced the regulation of genes
involved in development and differentiation (Mahmood et al.,
2021). These findings provided evidence of the crucial role of
nuclear β-actin in the regulation of chromosomal structure.

In mouse germ cells, Wang et al., 2012 showed that the deletion
of BRG1 impaired homologous recombination causing
spermatogenesis arrest at the mid-pachytene stage, ultimately
leading to apoptosis. More specifically, BRG1-depleted
spermatocytes showed dysregulated gene expression patterns and
altered chromatin organization. Additionally, Menon et al., 2019
confirmed that in spermatocytes, BRG1 upregulated the genes
involved in the progression of meiosis and spermatogonial
pluripotency, while genes which were not involved in the meiotic
process were generally downregulated.

To the best of our knowledge, the role of β-actin in prophase I
events has not been addressed. Assuming that the role and
composition of SWI/SNF in somatic cells is similar in germ
cells, then comprehending the role of β-actin in prophase I
would be of great interest. In regards to the mechanisms of
SWI/SNF that take place in somatic and meiotic cells, we posit
that β-actin partners with BGR1, and thus represents a vital part
of chromatin organization during mid-prophase I (Figure 2),
affecting chromatin condensation, gene expression, and
homologous recombination.

4.4 Vinculin, actin and Arp4—potential “new
kids on the block” within the NuRD complex

As previously mentioned, there are more than 30 ABPs that
localize to the nucleus. We recently showed that one such ABP,
vinculin, resides in the nuclei of primary spermatocytes (Petrusova
et al., 2022). So far, vinculin activity has only been studied in the
cytoplasm where it is known to localize to focal adhesions in
adherent somatic cells and facilitates mechanotransduction in
cell-matrix and cell-cell adhesions by transmitting forces between
the cytoskeleton, extracellular matrix as well as cell-to-cell
connections (Goldmann, 2016; Bays and DeMali, 2017). Vinculin
forms a trestle-like structure as a result of its interaction with
approximately 20 other molecules to connect the cell membrane
with the actin cytoskeleton (Jannie et al., 2015). Importantly, it
orchestrates the polymerization of the actin cytoskeleton at the
proximity of the plasma membrane (Bays and DeMali, 2017) and
crosslinks actin filaments to form actin bundles (Janssen et al., 2006;
Shen et al., 2011).

We have recently shown that vinculin is an essential element for
prophase I progression in male mice (Petrusova et al., 2022).
Vinculin accumulates on newly formed homologous chromosome
pairs in both zygotene and pachytene stages, and interestingly, has
been found in greater concentrations on the centromeres of
chromosome tetrads during the pachytene stage. To better
understand the involvement of nuclear vinculin in prophase I
events, we utilized mass spectrometry (MS) to determine if
notable binding partners could be detected during prophase I.
This analysis yielded 38 candidates, two of which, RBBP4 and
RBBP7, have been shown to be components of the NuRD
chromatin associated complex (Xue et al., 1998; Bode et al., 2016;
Bornelov et al., 2018). It is of note, that when the NuRD complex was
functionally disabled in primary spermatocytes, erroneous synapsis
formation, premature chromosomal splitting, and metaphase I
arrest were observed (de Castro et al., 2022). Remarkably, the
same phenotype was identified when vinculin was conditionally
ablated in primary spermatocytes (Petrusova et al., 2022). Therefore,
these overlapping phenotypes may serve as a testament of the
coupling between NuRD and vinculin, the combination of which
may have the common purpose of regulating specific events of
prophase I.

Unexpectedly, we found a number of regulatory subunits
including PSMC (1 through 6) and PSMD (Humphries et al.,
2007; Plessner et al., 2015; Kristo et al., 2016; Lappalainen, 2016;
Henderson et al., 2017; Virtanen and Vartiainen, 2017; Virtanen and
Vartiainen, 2017; Caridi et al., 2018) of the 19S proteasome cap
among vinculin’s interacting partners (Petrusova et al., 2022).
Interestingly, proteasomes, in general, are readily detected in
prophase I nuclei and found in proximity to chromosomes where
they play a pivotal role in the regulation of meiosis (Ahuja et al.,
2017; Rao et al., 2017; Vujin and Zetka, 2017), notably in chromatin
remodeling, transcriptional regulation, and DNA damage repair
(McCann and Tansey, 2014; Zou and Mallampalli, 2014; Vaughan
et al., 2021; Guo, 2022). The coupling of prophase I events with
proteasome function has been shown to be evolutionarily conserved
in organisms such as S. cerevisiae, C. elegans, and the mouse.
Importantly, the proteasome in the nuclei of spermatocytes,
i.e., spermatoproteasome complex, differs from other mammalian
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proteasomes in its catalytic 20 S core subunit mostly due to the
enrichment of its PA200 subunit, which is responsible for binding
and subsequent degradation of acetylated core histones (Qian et al.,
2013). This is likely important for the regulation of and the
continuity from homologous chromosome pairing to the
generation of homologous recombination intermediates (Brown
et al., 2008; Bhagwat et al., 2021) and segregation-competent
cross-overs (Ahuja et al., 2017; Rao et al., 2017). In vinculin
depleted spermatocytes, the spermatoproteasome loses its ability
to localize to chromosomes and disappears from the nucleoplasm
(Petrusova et al., 2022). Therefore, it appears that vinculin may not
be only involved in meiotic chromatin remodeling processes but also
in the positioning of degradation machinery at meiotic
chromosomes to remove proteins that are no longer required.
This may allow the recruitment of other factors needed for the
coordinated and successive sequence of prophase I events.
Interestingly, along with other NuRD partnering subunits, we
also detected the presence of actin and Arp4 with vinculin. Since
the actin/Arp4 module in other chromatin remodeling complexes,
mediates the interaction with DNA, this same function could be
assumed for this module in NuRD complex. Understanding the
intricacies of vinculin and the actin/Arp4 module may provide an
explanation for the binding of the NuRD complex to DNA
(Figure 2).

5 Conclusion and future perspectives

Chromatin remodeling complexes are essential regulators that
exhibit a broad range of functions in cellular processes such as
transcription and DNA metabolism. While the function of these
complexes was initially studied in established cell lines, their role in
prophase I of meiosis have only been recently interrogated. Data
from various mouse models has been particularly informative, since
they have allowed researchers to decipher the function of some of
the components of each remodeling complex, and have also
provided a window into their role in fertility. This not only
implicates nuclear actin as an essential part of chromatin-
remodeling complexes in somatic cell nuclei but also in prophase
I of meiosis. In addition, at least in the case of the NURD complex,
we believe that chromatin remodeling complexes coupled via
vinculin to spermatoproteasomes may represent a mechanism
that is necessary allowing a highly ordered sequence of events of
Prophsae I to proceed quickly and efficiently. Should this coupling
be found to be a common feature for other chromatin remodeling
complexes which participate in Prophase I, it may provide the
experimental framework to study whether the processivity of
Prophase I is regulated in the context of local protein
degradation. While the data generated over the past few years
has been intriguing, more physiologically relevant experiments
are needed to garner a full understanding of the role of these
complexes in gametogenesis.

The presence of nuclear actin in chromatin remodeling
complexes has been shown by MS analysis and crystallography.
Unfortunately, gene-specific ablation approaches are hampered by
the fact that nuclear monomeric actin appears to be ubiquitous in

chromatin remodeling complexes. Thus, the optimum method to
determine the specific role of actin in each complex would be to
mutate the sequences of neigboring subunits with which actin
interacts. However, this would certainly require an understanding
of the steric details of these interactions, given the uniqueness of
each complex. Additionally, to confirm the presence and interaction
of actin, vinculin, and other ABPs with these complexes in prophase
I of meiosis, it would be beneficial to generate high-resolution
microscopic images. The only reported image of nuclear actin
relates to its appearance as submicron length nuclear structures,
however these structures have not observed in or around chromatin-
rich regions. This is likely explained by the fact that actin epitopes
that are recognized by relevant probes that detect actin are
inaccessible as they are located within the chromatin remodeling
complex or masked by other components, therefore, a microscopic
approach may not be optimal. To obtain a clearer picture of this
interaction, the development of newmolecular probes or other high-
performance molecular methods, such as cryo-electron microscopy,
could be instrumental. In summary, understanding the role of
nuclear actin as a common denominator in chromatin
remodeling complexes will provide clarity of the structural and
functional plasticity in meiosis as well as in the cell cycle in general.
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