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Ovarian cancer is a highly heterogeneous disease consisting of at least five
different histological subtypes with varying clinical features, cells of origin,
molecular composition, risk factors, and treatments. While most single-cell
studies have focused on High grade serous ovarian cancer, a comprehensive
landscape of the constituent cell types and their interactions within the tumor
microenvironment are yet to be established in the different ovarian cancer
histotypes. Further characterization of tumor progression, metastasis, and
various histotypes are also needed to connect molecular signatures to
pathological grading for personalized diagnosis and tailored treatment. In this
study, we leveraged high-resolution single-cell RNA sequencing technology to
elucidate the cellular compositions on 21 solid tumor samples collected from
12 patients with six ovarian cancer histotypes and both primary (ovaries) and
metastatic (omentum, rectum) sites. The diverse collection allowed us to
deconstruct the histotypes and tumor site-specific expression patterns of cells
in the tumor, and identify key marker genes and ligand-receptor pairs that are
active in the ovarian tumor microenvironment. Our findings can be used in
improving precision disease stratification and optimizing treatment options.
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1 Introduction

Ovarian cancer is the second most common and most malignant cancer in the female
reproductive tract. Epithelial ovarian cancers (EOC) which account for about 90% of ovarian
malignancies can be further divided into serous, endometrioid, clear cell, and mucinous
histotypes (Matulonis et al., 2016). The risk factors of epithelial ovarian cancer vary by
histotype but generally include age, weight, hormone therapy after menopause, as well as
family history (American Cancer Society, 2020). Previous genomic studies (Network, 2011)
have demonstrated that mutations in TP53 and NF1, and dysfunction of BRCA1 are
involved in the pathogenesis of the serous carcinoma in the ovary (Sangha et al., 2008).
However, only a few studies have investigated the cellular landscape and transcriptomic
profile of ovarian cancer histotypes which can inform targeted therapies. In recent years, the
development of single-cell technology allows researchers to zoom in on the cell-level
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transcriptome of the tumor tissue and provides a better
understanding of the tumor microenvironment (TME).

Single-cell technology has been applied to ovarian cancer previously
on malignant abdominal fluid (ascites) associated with high grade
serous ovarian carcinoma (HGSOC) histotype (Izar et al., 2020) to
resolve the HGSOC landscape and investigate inflammation programs.
The stress associated chemo-resistance in solid tumors from metastatic
sites with HGSOC was investigated together with stroma signaling to
provide insight into chemotherapy resistance (Zhang et al., 2022). A
recent study used scRNA-seq on primary and untreated peritoneal
metastatic sites (Kan et al., 2022) and identified a subset of RGS5+
cancer-associated fibroblasts (CAFs) strongly supporting tumor
metastasis and cancer recurrence in EOC. However, comparisons
across multiple sites and histotypes are yet to be performed. We
previously reported the cellular composition of metastatic ovarian
tumors from the omentum using single-cell RNA sequencing
technology, categorized tumor samples based on T cell infiltration
signatures which were confirmed by immunohistochemistry, and
identified the presence of a GNLY + CD4 T cell population in high
T cell infiltrated samples (Olalekan et al., 2021).

In this current study, we characterized primary and metastatic
tumors of different histotypes from 12 ovarian cancer patients using
Drop-seq, a high-throughput single-cell RNA-seq technique (Evan
et al., 2015). We analyzed the distribution of cell types with the
tumor microenvironment and investigated possible cell-cell
interactions by histotype. Cancer stem cells with increased
expression of IFIT1, IFIT2, IFIT3, and ISG15 were uniquely present

in HGSOC and MMMT tumors. Cancer-associated fibroblast (CAF)
sub-clusters showing high expression of IL6, CCL2, S100A4, PDPN, and
FGF7 were identified in both primary and metastatic samples. Our
previously reported immune cell populations were validated in this
bigger sample collection. Finally, we identified a cluster of IL32+ plasma
B cells that were found exclusively in the primary tumor sites that may
be of prognostic value.

With the inclusion of additional histotypes and tumor sites in our
collection, this study allows us to characterize the differences in cell
compositions between sites and different levels of their T cell
infiltration, build cell or gene signatures to characterize the different
ovarian cancer histotypes, and further investigate the underlying
molecular mechanism in the TME. We further explored cell-to-cell
communication among different cell sub-clusters, using inferred ligand-
receptor (LR) interactions. We note that such interactions are enriched
among epithelial cells and fibroblasts, and that LR interaction signatures
vary across different tumor sites and histotypes.

2 Results

2.1 Establishing cell lineages, molecular
subtypes, and cell-cycle states across
samples

To study the cell composition of ovarian cancers, tumor tissues
resected from 12 ovarian cancer patients undergoing debulking

FIGURE 1
Experiment design and 2D reduced representation of all cells included in the study, annotated by major cell lineage, predicted cancer subtype, and
cell cycle phase. (A) Profiling ovarian cancer tumor samples of different using droplet single cell RNA-seq. (B) All cell types projected on UMAP divided by
Epithelia, Immune, and Stroma subpopulations. (C) Predicted cancer subtype projected on UMAP. (D) Cell cycle assignment projected on UMAP.
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surgery in the ovaries, omentum, and rectum were analyzed
(Figure 1A; Table 1). Briefly, the cohort consisted of seven white,
two Asian, two Black, and one woman of unknown racial origin, and
ranged between 39–77 years in age (mean ~62 years). Most patient
tumors were stage IIIB or above, according to staging by a
pathologist. Solid tumor samples of different histotypes were
collected from primary (ovaries) and metastatic (omentum,
rectum) sites (Table 2) which enabled us to investigate histotype-
and site-specific signatures at single cell level. Tumor samples were
obtained fresh from surgery and processed using Drop-seq (Evan
et al., 2015) within 24 h or fixed in formalin for
immunohistochemistry (IHC). Immune (CD45+) and cancer cells
enriched from a subset of samples were also profiled by Drop-seq to
obtain a better representation of immune cells in our single-cell data.

A total of 26 gene expression matrices were generated from
Drop-seq experiments on 21 ovarian cancer tumors from
12 patients. We identified a total of 38,811 genetic features across
25,326 cells from tumors resected from multiple tissue sites in this
study. The filtered gene expression matrices were integrated using
the anchor-based alignment. Unsupervised clustering analysis
yielded 11 distinct clusters of cells. The resulting clusters were
annotated using Template-based Automated Cell type
Assignment (sc-TACA; Section 4), yielding ten major cell types
including epithelial, endothelial, mesenchymal stem (MSC),
embryonic stem (ESC), fibroblast, macrophage, T, B, and plasma
B cells and a small cluster of 37 cells marked as N1 that shared
markers with astrocytes which we saw in our previous study
(Olalekan et al., 2021) (Figure 1B). Percentages of each cell type
comprising each tumor sample are shown in Supplementary Figure
S1A; Table 2. Due to the small number of N1 cells in any given
sample (<0.1%), we excluded them from further analysis. For
simplicity, the cell types were classified into three compartments:
epithelia, containing epithelial cells and ESC, stroma containing
endothelial cells, MSC and fibroblasts, and immune, containing
macrophages, B and plasma B cells, and T cells (Figure 1B).

Next, we explored the expression of the genes associated with the
four molecular subtypes of ovarian cancer - differentiated,
immunoreactive, mesenchymal, and proliferative - identified from
The Cancer Genome Atlas (TCGA) (Network, 2011) in our dataset.
We were able to assign one of the four molecular subtypes with the
highest TCGA module score to 93.7% of cells; cells with a negative
module score were marked as not assigned (NA) (Olalekan et al.,
2021). When each cell on the dimension reduction of the Uniform
Manifold Approximation and Projection (UMAP) was marked with
the molecular subtype assigned to it (Figure 1C), we noted that the
major cell types and the cellular compartments they belong to
(Figure 1B) match the predominant molecular subtype of ovarian
cancer identified by TCGA. The epithelial cells were distributed
through all four cancer subtypes and comprised 80% of the cells
predicted as differentiated subtype. 73% of cells from the predicted
immunoreactive subtype were immune cells (B cells, T cells, and
macrophages). The mesenchymal subtype, associated with worst
survival (Konecny et al., 2014), consisted of the least epithelial cells
and contained the highest percentage (82%) of stroma cells,
including MSC, fibroblasts, and endothelial cells. The
proliferative subtype contained 56% of cells from the epithelial
cell category; 26.2% of cells from the ESC (about half of the total
ESC population) that also showed unique stem cell features
described later, were of the proliferative subtype. Sample-specific
composition of TCGA subtypes is shown in Supplementary
Figure S1B.

To study the cell cycling effects under the TME, Cell cycle
analysis was performed on the combined dataset to assign a cell-
cycle module score to each cell for the G1/S, G2/M, and
M/G1 phases. Cells that could not be assigned to one of these
phases were marked as “NA”. We noted that the cell cycling patterns
were roughly similar for all cell types (Figure 1D), with the exception
of ESC. A large fraction of cells across all cell types were assigned to
the M/G1 phase (64.3%; Supplementary Figure S1C), as seen
previously (Tay et al., 1991). In contrast, most ESC (>70%) were

TABLE 1 Metadata for ovarian cancer patients included in our study.

Patient Histotype Total/CD45/
Tumor enrich

Pathological stage Age Race Neo-adjuvant

P1 Malignant mixed Müllerian tumor (MMMT) Yes Yes No ypT3c, NX/yIIIC 66 Asian Yes

P2 Clear cell Yes Yes Yes pT3c NX/IIIC 74 White No

P3 Endometrioid with serous features No Yes No pT3b, N0/IIIB 66 White No

P4 Endometrioid and serous features No Yes No pT1a N0/IA 69 White No

P5 Clear cell Yes Yes No pT2B, N0/IIB 77 White No

P6 High grade serous ovarian carcinoma (HGSOC) Yes No No pT3c Nx Mx/IIIc 56 White No

P7 Serous ovarian carcinoma (SOC) Yes Yes Yes ypT3a Nx M1/Ivb 62 White Yes

P8 High grade serous ovarian carcinoma (HGSOC) Yes No No pT3c N0/IIIC 48 UNK No

P9 Low grade serous ovarian carcinoma (LGSOC) Yes No No pT3c, NX, M1b/IVB 39 White No

P10 High grade serous ovarian carcinoma (HGSOC) Yes No No ypT3c N1a/yIIIc 66 Black Yes

P11 High grade serous ovarian carcinoma (HGSOC) Yes No No pT3c Nx/IIIc 46 Asian No

P12 High grade serous ovarian carcinoma (HGSOC) Yes No No pT3c, N1, M1/IIIc 71 Black Yes
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TABLE 2 Total number of cells and breakdown of cellular composition in each sample, color-coded by tumor site (Primary, Meta) and T cell infiltration (Tinf) status.

Sample Drop-seq IHC Category

Patient Sample Site #
cells

Epithelial
cell (%)

ESC
(%)

Endothelial
cell (%)

Fibroblast
(%)

MSC
(%)

Macrophage
(%)

B cell
(%)

Plasma
B cell (%)

T cell
(%)

CK7
(%)

VIM
(%)

CD45
(%)

Stage
Tinf

1 P1-1 Omentum 2,227 59.5 4.5 1.1 22.9 3.6 4.5 0.6 1 2.3 59.2 60 7.9 Meta Low

P1-2 Left Ovary 1,156 66.2 3.7 2.7 21.8 2.6 1.1 0 1 1 68.7 37.5 0.4 Primary
Low

P1-3 Right
Ovary

1,051 76.6 5.3 0.9 10.1 3.4 0.9 0 0.7 2.2 66.6 50.2 6.1 Primary
Low

2 P2-1 Omentum 1,008 54.6 8.1 1 8.7 1.7 10.6 0 2.9 12.3 66.6 79.4 58.9 Meta High

P2-2 Right
Ovary

330 28.2 6.1 0.6 21.8 3.9 6.4 0 10.9 22.1 89.3 70.6 34 Primary
High

3 P3-1 Rectum 345 26.6 2.4 1.7 27.1 20.4 16.4 0.1 0.3 5.1 69.8 37.9 4.4 Meta Low

P3-2 Left Ovary 928 42.3 3.8 3.8 24.9 14.5 9 0 0 1.7 70.7 40.5 0.7 Primary
Low

4 P4-1 Left Ovary 837 37.2 9.2 1.2 9.4 2.5 35.6 0.1 0.6 4.2 76.4 55.3 0.8 Primary
Low

5 P5-1 Right
Ovary

2,554 45.7 11.4 0.4 18.7 2.4 5.6 0 3.7 12.1 84.6 54 17.8 Primary
High

6 P6-1 Omentum 3,357 28.3 6.5 1 22.6 2 9.1 8.8 3.8 17.4 57.5 54.6 17.3 Meta High

P6-2 Left Ovary 2,102 60.7 15.2 1.6 11.5 4.8 2.6 0 0.3 2.6 69.1 34.4 9.8 Primary
Low

7 P7-1 Omentum 3,542 43.7 5.6 4 10.9 1.5 12.1 2.1 7.7 12.5 41.7 69.1 28.5 Meta High

8 P8-1 Right
Ovary

359 70.2 9.6 1.9 5.8 2.1 5.4 0 0.6 4.3 83 39.2 3.3 Primary
Low

P8-2 Left Ovary 467 55.7 7.2 3.9 5.9 6.4 11.7 0 0.6 8.6 85.5 51.2 2.5 Primary
Low

9 P9-1 Omentum 529 32.9 2.8 2.8 19.1 5.1 16.6 0.2 5.7 14.7 38.9 48 4.4 Meta High

P9-2 Omentum 585 35.6 2.1 3.1 40.9 4.4 8 0 3.4 2.6 50.6 49.4 5.4 Meta Low

P9-3 Left Ovary 341 38.7 1.8 0 36.1 10.3 9.4 0 1.2 2.4 84.2 34 2.5 Primary
Low

P9-4 Right
Ovary

378 30.2 1.9 1.9 38.6 9.3 13.8 0 0 4.2 78.1 41.7 2.3 Primary
Low

10 P10-1 Omentum 1,067 27.7 8.1 2.4 34.3 1.6 17.2 1 2.2 5.5 21 59.3 10.7 Meta Low

11 P11-1 Omentum 1,066 56.9 21.2 0.2 2.9 0.4 10.4 0.3 2.5 5.2 57.8 77.9 23.7 Meta Low

12 P12-1 Omentum 1,097 43.3 5.6 4.4 37.4 5.3 1.3 0.5 1 1.2 78.8 44.4 4 Meta Low

The cell types are abbreviated as follows: EP, Epithelial cells; TC, T cells; MA, Macrophages; EN, Endothelial cells; BC, B cells; FB, Fibroblasts; MS, Mesenchymal stem cells; ES, Embryonic stem cells.
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assigned to the G2/M phase where they likely stalled during the cell
cycle (Becker et al., 2006).

2.2 Immune cells and their expression in
ovarian cancer samples

We identified 5,453 cells as immune cells that could be further
split into B cells, plasma B cells, T cells, and macrophages
(Supplementary Figure S2A). We also found a few dendritic cells
and common myeloid progenitor cells (n = 52 and 30, respectively)
that co-clustered with macrophages; these cells were not included in
the downstream analysis due to the low cell counts. When
identifying the subclusters within each cell type, we denote them
as “EP” for epithelial cells, “TC” for T cells, “BC” for B cells, “MA”
for macrophages, “ES” for ESC, “FB” for fibroblasts, “MS” for MSC,
and “EN” for endothelial cells. We used a single digit starting from
0 to index the sub-clusters for each cell type, e.g., EP0 denotes cluster
0 of epithelial cells. An adjusted p-value threshold (adjusted p < 0.05)
was applied to all the gene markers mentioned below for sub-
clusters.

To determine if there were any cells unique to the different
tumor sites, we cross-referenced 5,371 immune cells with our
previous study (Olalekan et al., 2021) of metastatic ovarian
tumors. We identified five subclusters (Figure 2A), consisting of
three clusters of CD4+ cells (TC0, TC3, TC4), and two clusters of
CD8+ (CD8A, logFC >0.7) resident memory T (Trm) cells (TC1 and
TC2). Among these clusters, one subcluster containing
GNLY+CD8+Trm (GNLY, logFC = 1.9) cells (TC2) that was not
observed previously (Olalekan et al., 2021), derived from a subset of
metastatic samples, P5-1, P6-1, P7-1. Three CD19-
PRDM1+JCHAIN + plasma B clusters, BC0, BC2, and BC3, and
one naïve B cluster, BC1 expressing CD19 (logFC = 1.4) were
observed (Figure 2B; Supplementary Figure S2B). The
BC2 subcluster that consisted of CD38-SDC1-
S100A4+IL32+GAPDH+ (logFC >2.1) plasma B cells, has not
been identified previously (Olalekan et al., 2021). The marker
IL32 (logFC = 2.6) was a proliferation marker for malignant
plasma cells in myeloma (Aass et al., 2022). Intriguingly, we find
BC1 to be almost absent in the primary tumor site (ovary). Four
macrophage subclusters (Figure 2C; Supplementary Figure S2B)
were annotated, including a CD14+MSR1+CD163-cluster (MA1)
that were mainly found in samples collected from the primary tumor
site (ovary) and thus not seen in our previous study (Olalekan et al.,
2021).

2.3 Epithelial cells and their expression in
ovarian cancer samples

We detected 11,716 epithelial cells comprising the epithelia, as
the most abundant cell type in our integrated and batch-corrected
dataset. Hierarchical clustering of these cells (resolution = 0.3)
detected four epithelial sub-clusters, EP0-3 (Figure 2D). Dot plots
for some top differentially expressed markers, EPCAM, S100A11,
KIAA1217, MAML2, MECOM, IFIT2/3, and LIPA are shown in
Supplementary Figure S2C. The EP0 sub-cluster comprised 38% of
all epithelial cells and showed a distinctive signature of cytokeratin

genes, KRT19 (logFC = 1), KRT18 (logFC = 0.8), and KRT7 (logFC =
0.6) (Supplementary Table S1A). A recent study on the origin of
ovarian cancer (Hu et al., 2020) connected fallopian tube epithelial
cell subtypes to intra-tumor heterogeneity in serous ovarian cancer
(SOC), and used KRT7 as a marker for secretory epithelial (SE) cells
in the fallopian tube as the cell-of-origin for SOC. Other genes found
upregulated in EP0 (Supplementary Table S1A) were S100A6
(logFC = 0.8) and S100A11 (logFC = 0.7) from the S100 calcium-
binding protein family. The S100 protein family interacts with
cytoskeletal proteins (Schneider et al., 2008), and may promote
metastasis and stimulate angiogenesis. Specifically, the S100A11
gene (Cui et al., 2021) acts as a tumor promoter by
regulating MMP activity and the epithelial-mesenchymal
transition (EMT) process. Another top expressing marker gene,
LGALS3 (logFC = 0.8) is associated with cell migration,
proliferation, adhesion, and cell-cell interaction in tumor cells,
and is implicated in tumor progression and chemo-resistance of
epithelial ovarian cancer (Wang et al., 2019). EP1 cluster
exhibited significant upregulation of genes belonging to the MHC
class II protein family, HLA-DPA1, HLA-DRA, HLA-DPB1, and
HLA-DRB1 (logFC >1), was associated with the KRT17 sub-cluster
of secretory epithelial cells in the fallopian tube epithelia (Kim et al.,
2012) as well as high expression of ribosomal proteins such as RPLP1
(logFC = 0.8) and RPS6 (logFC = 0.8). EP2 subcluster highly
expressed markers of SOS1 (logFC = 0.7), MAPK8 (logFC = 0.8),
and PIK3CB (logFC = 0.6) where those markers were found in
enriched chromatin pathways, growth factor signaling pathways,
such as platelet-derived growth factor (PDGF), nerve growth factor
(NGF), epidermal growth factor receptor (EGFR), platelet-derived
growth factor receptor Beta (PDGFRB), and angiopoietin like
protein 8 (ANGPTL8) regulatory pathways. Protein families with
ankyrin-repeat proteins ANK (logFC >0.3) and zinc finger proteins
associated with cancer progression (Scurr et al., 2008; Jen andWang,
2016) were upregulated in EP2. EP3 showed a unique signature of
interferon-stimulated genes IFIT1-3 (logFC >2.5), IFITM1-3
(logFC >0.6), and ISG15 (logFC = 2.5), previously characterized
as markers of cancer stem cells (CSC) (Behera et al., 2020). Detailed
marker information is provided in Supplementary Table S1A.

We also detected 1,925 embryonic stem cells (ESC) in our
combined dataset that showed moderate expression of ESC
markers, STAT3 and CTNNB1 (Supplementary Figure S2D).
Further clustering of ESC yielded 4 sub-clusters (Figure 2E):
ES0 exhibited markers of the immunoreactive molecular subtype,
such as RGS1 (Hu et al., 2021) (logFC = 1.9), CD3E (Barber et al.,
1989) (logFC = 0.6), and CD3G (Barber et al., 1989) (logFC = 0.8);
also see Supplementary Table S1C. We found cancer stem cell gene,
CD24 (Li et al., 2017) (logFC = 0.9), and therapy resistant genes,
CD46 (logFC = 0.3) and CD55 (Zhou et al., 2008) (logFC = 0.4)
expressed in ES1, ES2, and ES3 combined, compared to ES0, and
cancer stem cell marker, CD59 (Chen et al., 2017) to be the highest in
ES1 (logFC = 0.4, Supplementary Figure S2D). Analysis of cell cycle
activity (Figure 1D) assigned 73% of the ESC to the G2/M and 22.5%
to the G1/S phases. The prevalence of cells arresting in the G2/M
phase has been previously associated with cancer cell proliferation,
mutation of TP53 and KARS, T cell infiltration, and cancer
metastasis (Oshi et al., 2020a; Oshi et al., 2020b; Jung et al.,
2021). Moreover, the expression of CDKN1A and senescence
gene FN1 with the lack of expression of PCNA can trigger the
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G2 arrest or the stress-induced premature senescence (SIPS) found
in a previous cancer study (Mirzayans et al., 2012) (Supplementary
Figure S2D). Meanwhile the shortened G1 phase regulated by TP53
can lead to DNA damage, and subsequently affect the S phase with
malfunctioned G1/S checkpoint (Viner-Breuer et al., 2019). Low
number of cells in MG1 (<5%) may indicate the ESC to be post-
mitotic. Specifically, genes expressed in ES1 are enriched for cell
cycle functions and G2/M transition (Supplementary Table S1D).
Increased gene expression required for G2/M transition and
indicative expression for DNA damage response, such as CCNA2,
CCNB1, CCNB2, CDK1, CKAP5, DCTN3, and TUBB4B can support
the malfunction of P53 (Taylor and Stark, 2001) (Supplementary
Figure S2D).

2.4 Stromal cells and their expression in
ovarian cancer samples

The stroma compartment contained three major subsets:
fibroblasts, MSC and endothelial cells. Hierarchical clustering of
4,772 fibroblasts (resolution = 0.5) yielded six sub-clusters
(Figure 2F) where five of them contain markers for cancer-

associated fibroblasts (CAF). The CAF-like clusters involved
multiple molecular mechanisms associated with tumor
progression, angiogenesis via vascular endothelial growth factor
A (VEGFA) production, and coordination of immune function
through chemokine and cytokine (Kalluri, 2016) production.
FB0 and FB1 showed comparatively high expression of
myofibroblast markers, ACTA2 (logFC = 1.0) and MYL9 (Liu
et al., 2019) (logFC = 0.7). CAF associated markers, MMP11,
MMP2, FAP, THY1, IFI6, IFI27 (Puram et al., 2017) (logFC >0.3)
were highly expressed in FB0 (Supplementary Figure S2E;
Supplementary Table S2A). In contrast, we did not find any
CAF-related expression in FB1. FB2 showed upregulation of NF-
kappa B signaling pathway genes, NFKBIA, NFKB1, and NFKBIZ
(logFC >0.4), VEGFA-VEGFR2 signaling pathway gene, VEGFA
(logFC = 0.3), chemokine receptor genes, IL6 (logFC = 1.7) and
CCL2 (logFC = 1.7), transmembrane glycoprotein genes, PDPN
(Neri et al., 2015) (logFC = 0.1), and genes associated with cancer
metastasis, IER3 (Ye et al., 2018) (logFC = 0.6), SGK1 (Sang et al.,
2021) (logFC = 1), and SERPINE2 (Yang et al., 2018) (logFC = 0.5).
Genes overexpressed in FB3 subcluster were enriched for
angiogenesis, integrin signaling, and related to extracellular
matrix remodeling, including FGF7 (logFC = 1.2) and S100A4

FIGURE 2
Cellular sub-types in the Immune, Epithelia, and Stroma. (A–C) Subclusters of major immune cell types: T cells, B cells, and macrophages,
respectively. (D,E) Subcluster annotation for epithelial and embryonic stem cells (ESC), respectively. (F–H) Subcluster annotation for major cell-types in
the stroma: fibroblasts, mesenchymal stem cells, and endothelial cells, respectively.
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(logFC = 0.9). The FB4 subcluster exhibited elevated expressions of
growth factor binding genes, IGFBP4 (logFC = 0.8), TGFBR3
(logFC = 0.8), and top markers APOLD1 (logFC = 0.3) and
PLXND1 (logFC = 0.3) for angiogenesis and blood vessel
development (Supplementary Tables S2A, 2B). FB5 showed
upregulated genes highly enriched in immune crosstalk and
cytokine/interferon signaling pathways. Particularly, interferon
inducible genes, such as IFI6, IFI27, IFI44, IFI44L, IFIH1, and
IFIT1-3 (logFC >1.5) were highly expressed in FB5 the subcluster
that might be due to the inflammatory crosstalk in the TME
(Provance and Lewis-Wambi, 2019) (Supplementary Tables S2A,
2B). Taken together, all fibroblast subclusters exhibited CAF
features, with the exception of FB1.

The progenitors of the stroma sub-population,
951 mesenchymal stem cells (MSC) were detected in our data
that could be clustered into 4 sub-clusters (Figure 2G). The
majority of the MSC (MS0-3) expressed MSC markers, MCAM
and THY1 (Figure 2G; Supplementary Figure S2F). A small subset of
MSC (MS3) also expressed cycling markers MKI67 (logFC = 2.1)
and PCNA (logFC = 1.9) that was not seen in the other clusters
(Supplementary Figure S2F).

Finally, a distinct population of 472 endothelial cells was found
in the stromal compartment. Two sub-clusters, EN0 and EN1, both
expressing endothelial markers, ENG, S100A6, and CD34
(Middleton et al., 2005; Bao et al., 2012; Liu et al., 2014) were
found (Figure 2H). EN0 showed higher expression of ACKR1
(logFC = 1.2), carcinoma-associated genes RACK1 (Berns et al.,
2000) (logFC = 0.7) and CD74 (Maharshak et al., 2010) (logFC = 0.8)
(Supplementary Figure S2G; Supplementary Table S3A). ACKR1 is
associated with ligand transcytosis (Salazar and Zabel, 2019) and
serves as a non-specific and promiscuous receptor for several
inflammatory chemokines when expressed in endothelial cells
(Peiper et al., 1995; Lee et al., 2003; Middleton et al., 2005).
Genes upregulated in EN1 are related to angiogenesis and blood
vessel morphogenesis in tumor metastasis (Supplementary
Table S3B).

2.5 Cellular composition by ovarian cancer
histotypes and tumor sites

We conducted further analysis on our tumor samples to
examine cell types described above (Figure 1B; Supplementary
Table S4A), cancer histotypes (Figure 3B; Table 1), and T cell
infiltration into tumors (Figure 3A; Supplementary Figure S2A;
Table 2). Based on pathology grading, the samples in this study
belong to six ovarian cancer histotypes: serous ovarian carcinoma
(SOC), high grade serous ovarian carcinoma (HGSOC), low grade
serous ovarian carcinoma (LGSOC), clear cell, endometrioid with
serous features, and malignant mixed Müllerian tumors (MMMT).
Figure 3B shows the heatmap of cell type compositions combined
across all samples, grouped by cancer histotypes. We noted the
highest fraction of epithelial cells in MMMT and the highest fraction
of MSC in endometrioid samples. Expression of previously
established immunohistochemical markers (Köbel et al., 2016;
Peres et al., 2018) WT1, NAPSA, and PGR for histotype
classification were checked on EP and ES cell lineages. We
confirmed higher expression of WT1 in HGSOC, and NAPSA in

clear cell histotypes compared to the remaining histotypes, and the
presence of PGR expression in endometrioid histotype with serous
features (Figure 3C). Due to the limitation of 3’ scRNA-seq assays,
we were not able to assess the abnormality for TP53 to differentiate
HGSOC and LGSOC. Therefore, the over-expression pattern for
marker CDKN2A was used to identify HGSOC. The expression of
TP53 exhibited low prevalence across all histotypes (Figure 3C;
Supplementary Figure S3C). The expression levels of additional
markers (Sakata et al., 2017; Peres et al., 2018; Leskela et al., 2019)
VIM and ARID1A were used to distinguish other histotypes. The
EMT repressors, zinc finger E-Box binding homeobox 1 and 2,
(ZEB2, ZEB1) (Sakata et al., 2017; Leskela et al., 2019) related to
endometrial carcinosarcoma, a mix of (epithelial) carcinoma, and
(mesenchymal) sarcoma, were used to distinguish endometrioid and
MMMT histotypes. In epithelial and ES cells, we observed
WT1+CDKN2A + for HGSOC, and WT1+CDKN2A-VIM + for
LGSOC (Figure 3C). Among the other histotypes, we find SOC to be
WT1+CDKN2A + VIM+, clear cell to be WT1-NAPSA+,
endometrioid to be WT1-NAPSA-PGR + ZEB2+ARID1A+, and
MMMT to be WT1+VIM + ZEB1+ in our limited sample space
(Figure 3C).

We project the histotype-specific GWAS (genome wide
association study) markers (Lengyel et al., 2022) from HGSOC,
LGSOC, clear cell, Endometrioid, and Mucinous histotypes on both
epithelial and stromal lineages using averaged expression values in
the dot plot (Supplementary Figure S3D). The HGSOC specific
markers were more commonly detected in HGSOC samples
compared to the other histotypes (Supplementary Figure S3D,
rectangle in the HGSOC panel); the LGSOC specific markers
were exclusive to the LGSOC samples (Supplementary Figure
S3D, rectangle in the LGSOC panel); more HGSOC and less
LGSOC specific markers were detected in the SOC sample
(Supplementary Figure S3D, rectangle boxes in the SOC panel).
The expressions of clear cell-specific markers were not exclusive or
elevated in the clear cell samples (Supplementary Figure S3D,
rectangle in the clear cell panel), while the expression of
endometrioid specific markers were not exclusive but elevated in
the endometrioid samples (Supplementary Figure S3D, rectangle in
the endometrioid panel). The MMMT samples exhibited a mixed
signal from all markers from different histotypes’ GWAS genes as
well as the borderline GWAS markers samples (Supplementary
Figure S3D, rectangles in the MMMT panel).

The secretory and ciliated epithelial markers, and hallmark
epithelial markers collected in a previous study (Lengyel et al.,
2022) were projected to HGSOC, LGSOC, and SOC samples. The
ciliated epithelial marker CAPS was only expressed in EP0. The
secretory epithelial marker PAX8 was detected across the
epithelial (EP and ES) lineage in HGSOC and SOC but absent
in EP1 and all ES cells in LGSOC samples (Supplementary Figure
S3E, orange rectangle). The markers for cell cycle (CDK4) and
MHC II cluster (HLA-DQA1, HLA-DPA1) were absent in
HGSOC (Supplementary Figure S3E, green rectangle). The
markers for cytokeratin, KRT23 and epithelial stem cell, CD44
were only found in LGSOC’s EP and ES subpopulation
respectively (Supplementary Figure S3E, purple rectangle). On
the contrary, the markers for chromatin remodeling and pan-
epithelial were lower expressed in LGSOC (Supplementary
Figure S3E, blue rectangle).

Frontiers in Cell and Developmental Biology frontiersin.org07

Xie et al. 10.3389/fcell.2023.1297219

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1297219


Tumors from the ovaries were considered primary tumor
sites while the tumors from the omentum and rectum were
categorized as metastatic (Table 2). We categorized each
sample based on the level of T cell infiltration (TInf) (Olalekan
et al., 2021), and whether its tumor site was primary or
metastatic, thus grouping our samples into 4 categories:
Metastatic High (TInf), Metastatic Low, Primary High, and
Primary Low. We found no significant differences in the
composition of major cell lineages between primary and
metastatic sites. However, at the sub-cellular level, the ratios
of FB4, FB2, MA3, and MA2 were higher in metastatic sites, while
EP2 showed an opposite pattern (Supplementary Tables S4B, C).
T-tests performed on the ratios of different cell lineages showed

significantly higher fractions of TC and BC in the high TInf group,
and MS was lower in TInf (Supplementary Table S4B). Zooming
in, the TC0 and BC3 appear to drive these differences, while
higher MS2 correlated with low T cell infiltration (Figure 3A;
Supplementary Table S4C). The percentages of each immune cell
type in these four categories are shown in Supplementary Figure
S2A (bottom panel). We found FB sub-clusters, FB0, FB2, FB4,
and FB5 expressing CAF markers to be enriched in samples
classified as Metastatic Low (Supplementary Figure S3B), along
with CSC (EP3 sub-cluster, Supplementary Figure S3B).

Overall, the cell sub-type fractions from the same main cell types
were correlated with each other. For example, the fractions of
subclusters by sample in EP, ES, and CAF sub types- FB0, FB2,

FIGURE 3
Cell composition by tumor site, T cell infiltration, and histotypes; fractions of immune, stromal, and epithelial cells are explored using
immunohistochemistry. (A) Heatmap of major cell type composition (left) and sub cell type (right) for all patient samples. The column z-scores are
calculated from cellular compositional percentages within each sample; the rows are split by site and T cell infiltration status. (B) Heatmap of cell type
subclusters composition percentage for all patient samples. The values are column z-scores normalizing the percentage and the rows are split by
histotypes. (C) Dot plot of histotype markers expression in epithelial (EP) and embryonic stem (ES) cells. The expression in the dot plot is the averaged
scaled log normalized TP10k value.
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FB3, FB4, and FB5 were similar to each other and thus clustered
together (Figure 3B, rectangles). Interestingly, the only non-CAF
subcluster of fibroblast, FB1 clustered with MSC (Figure 3B,
rectangle).

Due to the limited number of samples available for all histotypes,
we were unable to calculate the statistical significance of the cell
cluster compositions. Nevertheless, several intriguing observations
merit attention. The EP0 cluster was observed in all histotypes
(Supplementary Table S4A). The fractions of EP1, EP2, and
EP3 cells were higher in MMMT compared to the other
histotypes, while the fraction of cells in ES1, ES2, and ES3 were
higher in HGSOC (Supplementary Figure S3A). For clear cell
histotype, the percentage of cells in TC0, BC2, and BC3 were
higher than in other histotypes. The endometrioid histotype
showed a high fraction of MSC, MA1, and FB1. The percentage
of certain macrophage and T cell subtypes in LGSOC (MA0, MA2,
and TC1) was higher than in other histotypes. The SOC sample of
undetermined pathology grade appeared more similar to HGSOC
from the primary site than LGSOC in terms of cell type composition
(Supplementary Figure S3A). In the SOC sample, the human
leukocyte antigen (HLA) genes have higher average expression
compared to HGSOC samples. BC2 derived from tumors with
high T cell infiltration and were identified primarily in clear cell
and SOC histotypes (Supplementary Figures S3A, B).

Immunohistochemical staining of vimentin (VIM), CD45, and
cytokeratin-7 (CK7) was also performed on tumor tissues from
metastatic (Supplementary Figure S3F) and primary
(Supplementary Figure S3G) tumors belonging to different
ovarian cancer histotypes to investigate the fractions of the major
cell lineages in these tumors. We correlated the percentage of each
cellular subset in our combined dataset from 18 samples to the IHC
results; three samples from patients P3 and P4 that were enriched for
CD45+ cells alone for Drop-seq were excluded from this analysis.
The percentage that stained for CD45 was well correlated (Pearson
correlation = 0.51 and a significant 0.03 p-value estimation,
Supplementary Figure S3H, left panel) with the immune
population (MA, TC, and BC). The correlations between area
staining for CD45 (IHC), and the percentage of T cells, B cells,
and macrophages out of all cells are 0.59, 0.53, and 0.17 (not
significant), respectively.

The stroma population was estimated using the union of FB, MS,
and EN cells in Drop-seq data. The Pearson product-moment
correlation with the percentage of cells that stained for vimentin
was negative (−0.45, Supplementary Figure S3H, middle panel) with
a non-significant p-value and may be caused by the epithelial cells
undergoing EMT (we observed a consistently smaller percentage of
the stromal subpopulation compared to the VIM-stained
percentage). The CK7 percentage was positively correlated
(Pearson’s correlation of 0.24, Supplementary Figure S3H, right
panel) with the epithelia (EP and ES cells), however not significantly
(p-value = 0.34). Out of the 18 samples, only 3 samples had more
than 30% difference between the stained CK7 and annotated
epithelial sub-population.

As seen previously (Olalekan et al., 2021), we noted significant
differences in the abundance of T cells between samples reported by
Drop-seq. The T cell percentages in Drop-seq data showed the
highest correlation with CD45 staining in IHC. Due to the
correlation between T cells in tumors and cancer outcome

(Olalekan et al., 2021), we categorized a sample as having high
T cell infiltration (Tinf) if the percentage of T cells was greater than
10%, and low Tinf if less than 10% in the sample as per Drop-seq data
(Supplementary Figure S2A; Table 2).

2.6 Inferring cellular interactions in the
tumor microenvironment using ligand-
receptor analysis

To understand the patient-specific TME, we predicted the
ligand-receptor interactions among the cell sub-clusters, using
CellPhoneDB (Efremova et al., 2020) and additional cancer-
specific ligand-receptor (LR) pairs that were curated from
previous studies (see Section 4). We found that FB, EP, ES, and
MS cells were highly activated for ligand-receptor (LR) interactions
(Figure 4A). The higher abundance of FB and EP cells in the TME
and high numbers of putative LR interactions identified within and
between EP, FB, and immune cells in our data allowed us to further
dissect histotype- or site-specific LR repertoires. Accordingly, we
selected the following lineage pairs: epithelial-to-fibroblast,
immune-to-epithelial, and immune-to-fibroblast. Clusters with
less than 50 cells were excluded from the downstream LR analysis.

We first examined the resulting cancer-specific LR interactions
in epithelial-to-fibroblasts. To identify LR interactions common to
each histotype, we integrated interactions from all samples grouped
by their histotypes. Histotype-specific LR signatures across
epithelial-to-fibroblasts were identified (Supplementary Figure
S4A). HGSOC displayed higher interactions of receptors ITGB1
in epithelial cells (to COL1A2, MDK, and VEGFA in fibroblasts), as
well as FGFR1 in epithelial cells (to FGF12 and FGF18 in fibroblasts).
LGSOC histotype had higher LR signatures for ITGA5_ADAM17,
MET_SEMA5A, LAMB1_ITGA2, LAMC1_ITGB4, and VEGFA_
NRP2. Receptor FGFR1 was also highly expressed in epithelial
cells in LGSOC, though the ligand it enriched for was FGF9.
Clear cell histotype has unique signatures of CCL2_CCR3, SILT2_
SDC1, BMP2_BMPR2, and FBN1_ITGA5. The endometrioid
histotype displayed receptor FGFR3 in fibroblast, and ligands
HSP90AA1 and FGF12 in epithelial cells. MMMT histotype
showed ligand IGF2 in epithelial cells and receptors INSR,
IGF1R, and IGF2R in fibroblasts. Histotype with SOC features
(patient P7 only) shared some LR signatures with HGSOC and
LGSOC while having distinct combinations of IGF1_IGF1R, SLIT2_
ROBO1, and EFNA5_EPHB6 (Supplementary Figure S4A).

For cancer associated LR interactions from the immune-to-
epithelial (Supplementary Figure S4B), the HGSOC patients had
higher ITGA4_MDK and BTLA (to VTCN1 and TNFRSF14).
LGSOC was enriched for THBS1 (interacting with CD47, ITGA3,
ITGA6), and ITGB1 (interacting with LAMC2, ADAM17, and
TGFBR2). The SOC histotype predicted CD44 binding to VIM
and FN1. Clear cell histotype had signatures of CCL5_CCR3,
ITGA4_VCAN, CD44_SPP1, KLRD_HLA-E, and IL2RB_IL15.
Endometrioid histotype had distinct signatures, such as C1QB_
LRP1, and TNF_LTBR. The LR pairs for MMMT histotypes were
MMP9_LRP1, LRP1 (to PSAP, SERPING1, and A2M), COL2A1_
DDR1 and ITGB1_COL2A (Supplementary Figure S4B).

The cancer-associated LR interactions in immune-to-fibroblast
subset (Supplementary Figure S4C) identified high number of CD44
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and VIM receptors interacting with COL1A1 and ITGB1_COL1A2
for the HGSOC histotype. LGSOC has higher AREG_EGFR, INSR_
NAMPT, EREG, and HBEGF to EGFR, TFGB1_TFGBR3
interactions, and shared ITGA4_THBS1 interaction signatures
with HGSOC. SOC shared ITGB1 (to THBS2 and LAMB1)
interactions with HGSOC. Signatures of ITGA6 interactions with
THBS2 and LAMB1 were higher in SOC histotype alone. DDR2_
COL1A1, IGF2R_IGF, VEGFB_NRP1, and PDGFA_PDFGRA were
exclusively present in the MMMT histotype. Endometrioid
histotype also had unique signatures, such as CD44_LAMC3,
PTPRC_CD22, and FN1 (with ITGA8 and ITGA9). The KLRD1_
HLA-E and ITGB7_VCAM1 were found in the clear cell histotype
(Supplementary Figure S4C).

For samples with abundant immune subpopulations, it is
feasible for us to break down the immune cells into those
compartments with sufficient number of cells captured. The

original CellPhoneDB database was used to capture commonly
occurring LRs that may not be specific to cancer in immune cell
subpopulations. We ranked samples by the number of LR
interactions (Figure 4B) and selected four samples with high LR
interactions for comparison: P1-1 (metastatic, low TInf), P6-1, P7-1
(metastatic, high TInf), and P5-1 (primary, high TInf). In particular,
we examined LR interactions of T cells with fibroblasts
(Supplementary Figure S5A) and ESC (Supplementary Figure
S5B). We observed common signals for TIGIT in T cells and
NECTIN2 in fibroblasts and ESC; TIGIT contains ITIM motifs in
its cytoplasmic tail that binds to NECTIN2 and triggers inhibitory
signals (Deuss et al., 2017). This ligand-receptor signal was lower in
P5-1 (Supplementary Figures S5A, B), which came from the primary
tumor site. Similarly, the IL7R_IL7 pair was observed in all four
samples for fibroblast (Supplementary Figure S5A), with the lowest
signal in P5-1 (IL7R_IL7 was observed in P1-1 and P6-1 for ESCs,

FIGURE 4
Ligand-receptor (LR) interactions predicted by CellPhoneDB using a customized cancer database. (A) Total number of interactions between all cell
subtypes. (B) Counts of significant Ligand-receptor pairs for all cell type subclusters stratified by sample, the columns are grouped by the cell lineage of
the first interactor.
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see Supplementary Figure S5B). This ligand-receptor pair has been
correlated with immune cell infiltration in the TME (Wang et al.,
2022). The ligand FASLG in T cells to receptors FAS, TNFRSF10A,
and TNFRSF1B in fibroblast interaction pairs were detected in all
samples (P5-1, 6-1, and 7-1) but not in P1-1 (Supplementary Figure
S5A). Their interaction leads to apoptosis of thymocytes that fail to
rearrange correctly their T cell receptor (TCR) genes and activation-
induced cell death responsible for the peripheral deletion of
activated T cells (Volpe et al., 2016). For fibroblast interactions,
the LGALS9_CD44/r was enriched in both fibroblasts and ESC in
P6-1 and P7-1, which are metastatic, with high Tinf (Supplementary
Figures S5A, B). The LGALS9_CD44 pair appeared on ESC from all
samples except P6-1 (Supplementary Figure S5B). Gal-9 has direct
cytotoxic effects, binds to CD44 expressed on cancer cells to limit
cancer metastasis, and enhances the stability and function of
adaptive regulatory T cells (Wu et al., 2014; Ustyanovska
Avtenyuk et al., 2021). Different interactions associated with
immune regulation in tumors (Li et al., 2021) were also found:
CD74 interactions with APP or COPA were found in samples P5-1
and P6-1, while HLA-C_FAM3C interaction was enriched in
samples P1-1 and P7-1 (Supplementary Figures S5A, B). CD2_
CD58 interactions between T cells and ESC were noted in all
four samples (Supplementary Figure S5B), and between T cells
and fibroblasts in P6-1 and P7-1 (Supplementary Figure S5A).
NOTCH2 interactions (Galic et al., 2013; Jia et al., 2019) (with
JAG2 and DLL3) were seen in fibroblasts in P1-1 (Supplementary
Figure S5A).

We also detected intriguing patterns of certain integrin
complex-collagen binding pairs (Zeltz and Gullberg, 2016) on
fibroblasts enriched in specific samples (Supplementary Figure
S5C): integrin complex A2B1 appeared in P6-1 only; enhanced
expression of α2β1 integrins may influence spheroid
disaggregation and proteolysis responsible for the peritoneal
dissemination of ovarian carcinoma (Shield et al., 2007). A1B1
was intriguingly absent in P1-1; instead, integrins A10B1 and
A11B1, appear in P1-1 alone. Integrin α11β162 was previously
seen overexpressed in NSCLC, especially in CAFs (Zhu et al.,
2007; Navab et al., 2011). The CD40LG_A5B1 pair was seen for
fibroblasts in P1-1, P6-1, and P7-1 (Supplementary Figure S5A).
Integrin α5β1 plays an important role in tumor progression (Hou
et al., 2020). In addition, strong A4B1 interactions with FN1,
VCAM1 and other ligands (Baiula et al., 2019) are seen with
fibroblasts in P5-1, P6-1, and P7-1 (Supplementary Figure S5A),
and ESC in P6-1 (Supplementary Figure S5B); A4B1 receptors have
been proposed to target therapy in inflammatory disorders and
cancer (Baiula et al., 2019).

These results suggest that different patient samples may have
unique LR signatures that are associated with specific cell types,
which may be used to target therapy.

3 Discussion

Ovarian cancer is a collection of different carcinomas that
manifest as different histotypes, each with different cellular
compositions and pathogenic mechanisms. Analysis of the TME
in different ovarian cancer histotypes at the single-cell resolution
can potentially connect the different histotypes with their unique

cellular and molecular signatures, understand disease etiology, and
help guide therapy. With this aim in mind, we ran Drop-seq on
21 tumor samples from 12 patients and across 6 histotypes of
ovarian cancer. We detected three major cell compartments:
epithelia (epithelial cells and ESC), stroma (fibroblast,
endothelial cells, and MSC), and immune (T, B, plasma B,
macrophage) by integrating all single-cell experiments. The four
ovarian cancer subtypes using the TCGA gene expression signature
revealed highly correlated cell types: the immunoreactive subtype
showed a higher correlation with immune cells, while the
mesenchymal subtype correlated most with stroma cells and
least with epithelial cells. The differentiated and proliferative
subtypes both consisted of epithelia but with low and high
percentages of ESC, respectively. This suggests that the
molecular subtypes classified by TCGA may be driven by the
cell type compositions of the tumor samples. Because each
tumor sample showed a unique cellular makeup that differed
between primary and metastatic sites, it follows that the
dominant molecular subtype of a tumor sample is specific to its
site of origin, rather than being patient-specific, e.g., patients,
P6 and P8, while sharing the HGSOC histotype, have different
TCGA subtypes.

For most cell types, we found that the cell cycle phases G1/S,
G2/M, and M/G1 were consistently distributed with a higher
percentage of the M/G1 phase, with the exception of ESC,
where over 70% of the ESC belonged to the G2/M phase.
Tumors with high G2/M gene activity have been associated with
metastasis and worse outcomes in patients with particular subtypes
of breast and pancreatic cancers (Oshi et al., 2020a; Oshi et al.,
2020b). The role of p53 in G2/M related cell-cycle arrest in
response to DNA damage has been studied extensively (Agarwal
et al., 1995; Concin et al., 2003; Müller et al., 2020).

We found five different subtypes of cancer-associated
fibroblasts, FB0 and FB2-5 in both primary and metastatic sites,
based on the expression of IL6, CCL2, S100A4, PDPN, and FGF7.
Each CAF sub-cluster supports different roles in the progression and
metastasis of ovarian cancer. Cells in FB0 expressed genes associated
with angiogenesis, Integrin signaling, and T cell receptor signaling
pathways. These pathways were related to extracellular matrix
remodeling and immune crosstalk under the tumor micro-
environment (TME). FB2 supported upregulation of NF-kappa B
signaling pathway genes and chemokine receptors associated with
cancer metastasis. FB2 and FB4 exhibited elevated expressions of
growth factor binding genes as well as genes enriched for
angiogenesis and blood vessel development. Top differentially
expressed genes in FB3 may be involved with endothelial cell
signaling and vascular function. FB5 showed genes enriched in
immune crosstalk and cytokine/interferon signaling pathways.
Among epithelial cells, we identified the EP3 sub-cluster as
cancer stem cells, based on high expression of IFIT1 and ISG15.

The majority of the immune sub-clusters were consistent with
those identified in our previous study on metastatic ovarian cancer
(Olalekan et al., 2021). We identified a new cluster of IL32 + B cells
(BC2) that are CD38-SDC1-S100A4+GAPDH+; these cells were
found in both primary and metastatic tumor sites with high T cell
infiltration, deriving primarily in clear cells and SOC histotypes.

We did not observe any significant difference in the overall
composition of cell lineages between primary vs. metastatic sites. We
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noted higher ratios of specific CAF (FB4 and FB2) and macrophage
(MA2 and MA3) subsets and lower ratio of an epithelial subcluster
(EP2) in metastatic sites, compared to primary tumors.

Overall percentages of T and B cells were higher in high TInf

samples, be it from primary or metastatic site, while the percentage
of MS was lower overall. At the sub-cluster level, the TC0 and
BC3 were positively correlated with TInf status, with MS2 showing a
negative correlation. The CAF sub-clusters FB0, FB2, FB4, and FB5,
and the CSC (EP3) were enriched in samples classified as metastatic,
low TInf.

The IHC and GWAS markers showed distinct expression
patterns on different histotypes, especially for the epithelial and
stromal lineages. The immune lineage was overall less sensitive to
these known markers.

Besides tumor site and TInf status, there were also differences in
the makeup of cellular sub-types between histotypes. The
percentages of epithelial cells from EP1-3 were higher in HGSOC
and MMMT histotypes, while the percentages of ESC in clusters
ES1-3 were higher in HGSOC only. For clear cell histotype, the
percentage of cells in TC0, BC2, and BC3 was higher. The
endometrioid histotype had a higher percentage of MS and
FB1 cells. The percentages of MA0, MA2, and TC1 cells were
higher in LGSOC than in other histotypes.

Lastly, we found fibroblasts and MSC to be active players in the
TME, exhibiting potentially distinct LR interactions with epithelial
and immune subclusters in patients and histotypes. Imputed ligands
and receptors may be leveraged to target therapy in ovarian cancer
patients.

Limitations of the study: The total number of patient samples
collected in this study is limited due to the pandemic. Certain cancer
subtypes such as MMMT were less represented in our samples
because of their lower prevalence (Xu et al., 2020). We observed
marked heterogeneity in the patients’ TME in our datasets; however,
due to limitations of sample size, we focused on conservative signals
within each group of interest. The treatment and outcome
information were not available for the patient cohort and
therefore, could not be included in the analyses. The cell sub-
populations in tumors dissected from different individuals, tumor
sites (primary vs. metastatic) or even different regions sampled from
the same tumor may vary. The ligand-receptor interactions were
inferred in silico through statistical testing, with the caveat that the
same ligand or receptor can account for multiple inferred ligand-
receptor pairs. Further validation tests are needed to confirm the
ligand-receptor interactions.

4 Materials and methods

4.1 Tissue collection, sample preparation,
and drop-seq

Ovarian cancer tissues from primary and metastatic sites were
collected from women undergoing debulking surgery at the
University of Chicago. Some of the tissue collected from the
different sites were patient-matched. The University of Chicago’s
Institutional Review Board for human research approved the
collection of human tissue after patient deidentification. Ovarian
tumors were transported in DMEM/F12 containing 10% FBS and

1% P/S (100% DMEMF/12), and processed as previously described
(Olalekan et al., 2021). Red blood cells and dead cells were removed
from cell suspensions using Miltenyi Biotec, 130-094-183, 130-090-
101, respectively, used according to manufacturer’s protocols.
Additionally, some samples were enriched for immune-only,
non-immune, tumor-only, and non-tumor cell compartments,
using magnetic bead-based isolation or fluorescence activated
flow sorting (Miltenyi Biotec, 130-118-780, 130-045-801, 130-
108-339, 130-042-401, 130-112-931, 130-118-497, and 130-110-
770, used according to manufacturer’s protocols).

Drop-seq was performed as previously described (Olalekan
et al., 2021) on ovarian cancer tumor samples from 12 patients
(Table 1). A total of 21 tumor samples were present in this study,
including 5 patients with Matched primary (right and/or left
ovaries) and metastatic (omentum, rectum) tumors (Table 2). Of
these, a few randomly selected samples were enriched for select
cellular compartments prior to running Drop-seq: CD45+

(5 samples), tumor (2 samples), and non-tumor (1 sample);
18 samples were processed without any enrichment.

4.2 Data processing, alignment, and
clustering analysis

A total of 40 sequencing runs were performed on Illumina’s
NextSeq 500 using the 75 cycle v3 kit, as previously described
(Olalekan et al., 2021). Some samples were sequenced multiple
times to achieve deeper resolution. Each run produced paired-
end reads, with Read 1 representing the 12 bp cell barcode and a
6 bp long unique molecular identifier (UMI), and Read
2 representing a 60–64 bp mRNA fragment. Paired-end reads
from the same samples were combined to generate 26 paired-end
fastq files. Read count matrices were generated from sequence reads
from the Drop-seq experiments for both exon and intron regions in
the human genome (gencode (Frankish et al., 2019) hg38 v.27) using
a Snakemake pipeline (Selewa et al., 2020) and STAR version
2.5.3 aligner (Dobin et al., 2013).

To select high-quality cells, we applied a filter based on the number
of genes detected per cell. Prior to filtering, each sequenced sample
produced approximately 5,000 cells. Based on the median number of
captured genes per cell, cells with less than 400 genes detected were
removed from the dataset. A total of 26,421 cells were retained for the
downstream analysis. We followed a standardized pipeline using the
single-cell analysis tool suite, Seurat v3.0.2 (Butler et al., 2018; Stuart
et al., 2019). A logarithmic normalization method (Butler et al., 2018)
was applied to all samples to transfer the gene expression counts [+1, to
avoid log(0)] scaled by a factor of 10,000 (TP10K) to log units. The
normalized matrices for all samples were integrated by the anchor-
based alignment method Canonical Correlation Analysis (CCA) using
Seurat (Stuart et al., 2019). The top 1,311 highly variable genes and top
20 canonical vectors were selected to perform the alignment
integration, where the integrated gene expression matrix had a
lesser number of features (genes) than the original gene expression
matrix. The integrated matrix was scaled by a linear transformation to
center the mean gene expression for all cells. We applied PCA on the
scaled integrated expressionmatrix to extract the top 50 components in
the data, followed by a heuristic elbow plot on the standard deviation of
each PC. We selected the top 16 variant PCs based on the elbow plot.
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The selected PCs were used in further exploration of the data, such as
UMAP (McInnes et al., 2018) dimension reduction, construction of
K-nearest neighbor graphs, shared nearest neighbor modularity
optimization-based clustering (Stuart et al., 2019), etc. We used
dimension reduction methods, UMAP, to generate 2D plots to
visualize different cell populations in the experiments. Hierarchical
clustering on the shared nearest neighbor graph was applied to infer the
clustering structure on the cells where the resolution parameter was set
to 0.2. Differential expression analysis was performed through the
FindMarkers function in Seurat using theWilcoxon Rank Sum test, and
statistically significant markers were extracted for sub-populations or
contrast groups based on an adjusted p-value (adj. p-val.) threshold
of 0.05.

4.3 Cell cycling effects

We inferred the cell-cycle phase for all cells based on previously
curated gene markers reflecting three phases of the cell cycle in
chemically synchronized cells (G1/S, G2/M, and M/G1) (Whitfield
et al., 2002; Evan et al., 2015). For each cell-cycle phase, the module
scores were calculated as the average expression levels of binned gene
markers subtracted by the aggregated expression of random gene sets
from the same bin. The Seurat AddModuleScore function was used to
assign all five module scores to each cell where 24 bins of aggregate
expression levels for the marker genes were used and a hundred control
genes were selected from the same bin per gene. The highest scored cell-
cycle phase was assigned to the cell. If none of the module scores were
positive, the cell was designated as not assigned (NA).

4.4 Cancer subtype classification

Four cancer subtypes-differentiated, immunoreactive,
mesenchymal, and proliferative were categorized by previous bulk
sequencing study in ovarian cancer (Tothill et al., 2008; Network,
2011). The marker genes for each subtype were determined by the
upregulated marker signatures on the four subtypes (Verhaak et al.,
2012). The Seurat AddModuleScore function was used to assign four
module scores to each cell where 24 bins of aggregate expression levels
for the marker genes were used and a hundred control genes were
selected from the same bin per gene. The subtypes were then assigned to
individual cells by the highest positive modular score. In the absence of
positive modular scores, the subtype was considered not assigned (NA).

4.5 Cancer patient survival prediction

The cancer outcome was categorized as poor and good in the
previous research on the TCGA ovarian cancer dataset (Tothill et al.,
2008; Network, 2011), where a list of gene signatures based onRNA-seq
data was extracted for both outcomes. We obtained the module scores
based on these lists of predictive gene markers using the Seurat
AddModuleScore function as described in the cancer subtype
classification. The predicted outcome was assigned to the cells
according to the module score.

4.6 Cell type classification using template-
based method

We assigned the cell type using a template-based cell annotation
method, namely, sc-TACA (https://github.com/bingqing-Xie/taca)
(Xie, 2021). The sc-TACA method utilizes an annotated single-cell
dataset as a template. In this study, six HGSOC metastatic samples
in the 26 samples have been previously annotated, which was used as
the template. The cell types annotated in this template were denoted
by T � ti, t� 1..p{ }, where p is the total number of unique cell types.
All samples were integrated by an anchor-based alignment via
Canonical Correlation Analysis (CCA) in Seurat (Butler et al.,
2018; Stuart et al., 2019). Then modularity optimization-based
hierarchical clustering FindClusters was applied on the integrated
dataset with a resolution r = 0.2 that resulted in 11 cell clusters. For
each cluster i, we obtained the annotated cell type vector Ci �
c1, c2, . . . , cNi{ } where Ni is the total number of cells from cluster
i and ci ∈ T. The annotation ti of a given cluster i was determined by
the highest ratio of annotated cell type within the cluster ti �
argmax

t
rit where rit � ∑ci |ci�t

Ni
. A threshold r min� 0.7 was enforced

to ensure the robust assignment. If max
t

rit < r min for cluster i, it was
labeled as undecided.

4.7 Immunohistochemistry

Ovarian cancer tissues were fixed and stained for
Immunohistochemistry as previously described (Olalekan et al., 2021),
to evaluate the fraction of cytokeratin-7 (Thermo Scientific,MA5-11986),
pan-vimentin (Abcam, Ab16700), CD45 (Agilent, M0701) positive cells.
Aperio ImageScope v12.4.3 was used to analyze the fraction of cells that
stained for CD45, vimentin, and CK7 in the entire tissue section, using
algorithm “Positive Pixel Count v9”.

4.8 Analysis of fibroblasts, epithelial cells,
and immune sub-population

After identifying the cell types, we extracted the fibroblasts,
epithelial cells, and immune cells (T cells, B cells, macrophages) to
conduct further investigation. Each sub-population expression
matrix was a subset of the integrated matrix. The expression
matrix was scaled and PCA analysis was performed to extract the
top components in the data. Top PCs were selected based on the
elbow plot, which varied from 10 to 20 based on the sub-population
variation. Hierarchical clustering on the shared nearest neighbor
graph was applied where the resolution parameter was set to a range
between 0.2 and 0.5. The same UMAPwas used to project the cells to
a 2D space to visualize the sub-types for each cell type. Differential
expression analysis was performed through the FindMarkers
function in Seurat using the Wilcoxon Rank Sum test, and
statistically significant markers were extracted for sub-
populations or contrast groups based on an adjusted p-value (adj.
p-val.) threshold of 0.05. The differences in cell composition ratios
between primary and metastatic sites, and between high and low Tinf

groups were evaluated by two-sided t-test with p-value estimation.
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4.9 Ligand-receptor interaction analysis on
cell type subclusters

We constructed a customized pan-cancer ligand-receptor (LR)
interaction database, using CellphoneDB (Efremova et al., 2020) and
published cancer studies, including 27 immune checkpoint LR pairs
(Pardoll, 2012), 114 interaction pairs between cancer cells and T cells
in lung cancer (Chen et al., 2020), 1380 LR pairs in a pan-cancer
study (Ghoshdastider et al., 2021), and 216 LR pairs related to
ovarian cancer (Castellano et al., 2006). For each sample, we inferred
LR interactions among any pair of the cell sub-clusters, SC � scji{ },
where i is the lineage such as EP, and j is the subcluster index, using
the pan-cancer LR database. We obtained a p-value for the
likelihood of cell-type enrichment of each ligand–receptor
complex (L � lji{ }, where i is a ligand and j is a corresponding
receptor). We denote scj1i1 , sc

j2
i2{ } for a sub-clusters pair. p-value is

calculated by the proportion of means that are as high as (or higher)
than the random permutation for all pairs, SC � (scj1i1 , scj2i2 ){ }.
Interactions with adjusted p-value <0.05 were considered
significant. The “significant means” vector, M �
msc

l ,l ∈ L, sc ∈ SC{ } was extracted for each sample and ml was set
to 0 when p-value >0.05 or sub-clusters with insufficient cell counts,
(|sc|) < 50. The number of absolute interactions ∑ (M> 0) was
used as a proxy to estimate the frequency of the cell-cell crosstalk
among cell types. The hierarchical clustered heatmap was used to
identify the shared patterns for the sub-clusters from different cell
types. We then grouped the samples by histotype and site for the
downstream comparative analysis. A linear model was built using
lmfit in Limma R library for a given contrast group (e.g., one
histotype against the rest of the histotypes), and the empirical
Bayes moderated t-statistics test ebayes was used to estimate the
significance of any LR signature, l ∈ L (Dixon, 2003; Smyth, 2005).
Significant positive LR pairs were used as the signature for any given
condition group.
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SUPPLEMENTARY FIGURE S1
Stacked bar plot for cell-type annotations for samples together. (A) Cell type
composition per sample, grouped by patient. (B) Composition of the cancer
Genome Atlas (TCGA) molecular subtype per sample, grouped by patient.
(C) Cell-cycle phase composition by major cell types.

SUPPLEMENTARY FIGURE S2
Immune, epithelial, and stroma lineages shown in Figure 2, with selected
markers for each cluster. The cluster number and color are consistent
with Figure 2. The expression in the dot plot is the averaged scaled log
normalized TP10k value. (A) UMAP (top) of immune cells only, and
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heatmap (bottom) of immune percentages for all samples with
unsupervised dendrogram forming the T cell infiltration high/low sub-
groups. (B) Dot plot of immune cell marker expressions for each immune
(TC, BC, MA) subcluster. (C) Dot plot of CSC and epithelial cell marker
expressions for each EP subcluster. (D) Dot plot of ESC, CSC and cell-
cycle marker expressions for each ES subcluster. Expression of TP53 is
added for reference. (E) Dot plot of CAF and fibroblast marker
expressions for FB subclusters. (F) Dot plot of MSC marker expressions
for MS subclusters. (G) Dot plot of endothelial marker expressions for EN
subclusters.

SUPPLEMENTARY FIGURE S3
Cell type composition of primary and metastatic tumors of different
histotypes and T cell infiltration status. (A) Heatmap of cell type
subclusters composition percentage for aggregated patient samples by
histotype. The column z-scores are the percentages normalized by
column. (B) Heatmap of cell type subclusters composition percentage
for aggregated patient samples by site and T cell infiltration. The
column z-scores are the percentages normalized by column. (C) Dot plot
of histotype markers expression on Immune lineage (TC, BC, and MA)
and Stroma lineage (FB, MS, and EN). The expression in the dot plot is
the centered log normalized TP10k value. (D) Dot plot of GWAS marker
expression on Epithelial (EP and ES) and Stroma (FB, MS, and EN)
lineages, broken down by histotype. The expression in the dot plot is
the centered log normalized TP10k value. (E) Dot plot of normal fallopian
tube specific, functional, and pan-epithelial markers expression on the
epithelial lineage (EP and ES). The expression in the dot plot is the
centered log normalized TP10k value. (F,G) Immunohistochemical
staining for CD45, vimentin, and CK7 are performed on tumor samples
of different histotypes and tumor sites. (F) Ovarian cancer tumor
samples collected from the omentum as the site of metastasis. Six
histotypes are shown: malignant mixed Müllerian tumors (MMMT), clear
cell, endometrioid with serous features, high grade serous ovarian
carcinoma (HGSOC), serous ovarian carcinoma (SOC), and low grade
serous ovarian carcinoma (LGSOC). (G) Ovarian cancer tumors
collected from the ovaries (primary tumor site). Five histotypes are
shown: malignant mixed Müllerian tumors (MMMT), clear cell,
endometrioid with serous features, high grade serous ovarian

carcinoma (HGSOC), and low grade serous ovarian carcinoma
(LGSOC). (H) The correlations between area staining for CD45, VIM, and
CK7 (IHC) with the percentages of immune, stroma and epithelial cells in
Drop-seq data, respectively. The gray area shows the confidence
interval of 95% from linear fitting. The cell types are abbreviated as
follows: EP, Epithelial cells; TC, T cells; MA, Macrophages; EN,
Endothelial cells; BC, B cells; FB, Fibroblasts; MS, Mesenchymal stem
cells; ES, Embryonic stem cells.

SUPPLEMENTARY FIGURE S4
Ligand-receptor (LR) interactions imputed customized cancer LR database.
Significant Means is defined in Methods. (A) Between epithelial cells and
fibroblasts. (B) Between immune cells and epithelial cells. (C) Between
immune cells and fibroblasts.

SUPPLEMENTARY FIGURE S5
Ligand-receptor (LR) interactions between T cells, fibroblasts, and ESC,
imputed using default CellphoneDB database. Color bars indicating
histotype and T cell infiltration status are the same for all panels. The
significant means is defined in the Methods. (A) Selected LR interactions
between T cells and fibroblasts in four samples. (B) Selected LR interactions
between T cells and embryonic stem cells (ESC) in four samples. (C)
Collagen-integrin LR interactions between T cells and fibroblasts in four
samples. (D) Collagen-integrin LR interactions between T cells and ESC in
three samples.

SUPPLEMENTARY TABLE S1
(A) Selected cluster markers, and (B) enrichment pathways for epithelial sub-
populations. (C) Selected cluster markers, and (D) enrichment pathways for
ESC sub-populations.

SUPPLEMENTARY TABLE S2
(A) Selected cluster markers, and (B) enrichment pathways for fibroblast sub-
populations.

SUPPLEMENTARY TABLE S3
(A) Selected cluster markers, and (B) enrichment pathways for endothelial
sub-populations.
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