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Introduction: Inorganic polyphosphate (polyP) is an ancient polymer which is
extremely well-conserved throughout evolution, and found in every studied
organism. PolyP is composed of orthophosphates linked together by high-
energy bonds, similar to those found in ATP. The metabolism and the
functions of polyP in prokaryotes and simple eukaryotes are well understood.
However, little is known about its physiological roles in mammalian cells, mostly
due to its unknown metabolism and lack of systematic methods and effective
models for the study of polyP in these organisms.

Methods: Here, we present a comprehensive set of genetically modified cellular
models to study mammalian polyP. Specifically, we focus our studies on
mitochondrial polyP, as previous studies have shown the potent regulatory role
of mammalian polyP in the organelle, including bioenergetics, via mechanisms
that are not yet fully understood.

Results: Using SH-SY5Y cells, our results show that the enzymatic depletion of
mitochondrial polyP affects the expression of genes involved in the maintenance
of mitochondrial physiology, as well as the structure of the organelle.
Furthermore, this depletion has deleterious effects on mitochondrial
respiration, an effect that is dependent on the length of polyP. Our results also
show that the depletion of mammalian polyP in other subcellular locations
induces significant changes in gene expression and bioenergetics; as well as
that SH-SY5Y cells are not viable when the amount and/or the length of polyP are
increased in mitochondria.

Discussion: Our findings expand on the crucial role of polyP in mammalian
mitochondrial physiology and place our cell lines as a valid model to increase
our knowledge of both mammalian polyP and mitochondrial physiology.
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Introduction

Inorganic polyphosphate (polyP) is a biopolymer comprised of
multiple phosphate units (Pi) bound together by high-energy
phosphoanhydride bonds, similar to those found in ATP
(Morrissey et al., 2012). PolyP is present in every tissue from
every studied organism, ranging from unicellular bacteria to
higher eukaryotes (Kumble and Kornberg, 1995; Osorio et al.,
2022). The physiological roles of polyP in prokaryotes and lower
eukaryotes have been extensively studied. For example, it is known
that polyP is crucial for bacterial growth and survival (Rao et al.,
2009), as well as in the post-translational modification of proteins in
yeast (via polyphosphorylation) (Azevedo et al., 2015). In mammals,
polyP is involved in the regulation of multiple physiological
processes at the cellular level. For example, its involvement in
blood coagulation and inflammatory response (Smith et al., 2006;
Mailer et al., 2019), bone and cartilage formation (Wang et al., 2019;
Khong et al., 2020), energy metabolism (Gray and Jakob, 2015;
Solesio et al., 2016a; Solesio et al., 2016b; Solesio et al., 2020; Solesio
et al., 2021; Hambardikar et al., 2022), amyloidogenesis (Yoo et al.,
2018; Lempart and Jakob, 2019; Xie and Jakob, 2019), and ion
channel regulation (Laver et al., 2001; Zakharian et al., 2009; Stotz
et al., 2014), has been demonstrated. Moreover, in the same
organisms, polyP plays a role in carcinogenesis and
tumorigenesis (Kulakovskaya et al., 2018; Boyineni et al., 2020),
as well as in neurodegeneration (Borden et al., 2021; McIntyre and
Solesio, 2021). However, the exact mechanism by which polyP exerts
all these roles is still far from being fully understood.

The distribution of polyP is not uniform in mammalian cells, as
it varies in different cell types. For example, using rats and mice,
some authors showed that polyP is present in the brain, heart,
kidneys, lungs, and liver of these animals; with subcellular presence
in the nucleus, plasma membrane, cytosol, mitochondria, and
microsomes (Kornberg et al., 1999). Moreover, we and others
have described that, in mammalian cells, there is an especially
high abundance of polyP in mitochondria (Abramov et al., 2007;
Solesio et al., 2016b). In fact, the mammalian F0F1 ATP synthase is
involved in the metabolism of polyP (even if other enzymes could
also be implicated in this process) (Baev et al., 2020); and the levels of
polyP are closely linked to the status of the mitochondrial
respiratory chain (Seidlmayer et al., 2012a).

PolyP’s highly energetic bonds and mitochondrial abundance in
mammalian cells suggest that this polymer could be involved in the
maintenance of mitochondrial physiology in these cells. This
possibility is supported by multiple results. For example, in a
study conducted using cardiac myocytes, the authors
demonstrated that polyP is a crucial regulator of the
mitochondrial permeability transition pore (mPTP) (Seidlmayer
et al., 2012a). These findings were corroborated in different cell
lines, including HepG2, HEK293, and C2C12, along with primary
cultures from astrocytes and neurons from rats (Abramov et al.,
2007). Additionally, the role of polyP in the maintenance of proper
mitochondrial calcium homeostasis has also been demonstrated
(Solesio et al., 2016b; Solesio et al., 2020); and a proteomics and
metabolomics study using SH-SY5Y cells revealed the involvement
of polyP in many bioenergetics-related mammalian pathways
(Guitart-Mampel et al., 2022). Finally, using HEK293 cells, we
have demonstrated a shift in energy metabolism from

mitochondrial to extra mitochondrial metabolic pathways
(Solesio et al., 2021). Accordingly, in these cells, we found lower
ATP levels; decreased mitochondrial oxidative phosphorylation
(OXPHOS); and upregulation of cytosolic metabolic pathways;
such as glycolysis (Solesio et al., 2021), and pentose phosphate
pathway (Hambardikar et al., 2022). Accumulation of reactive
oxygen species (ROS) and dysregulated antioxidant defense in
response to decreased mitochondrial polyP levels were also
reported (Hambardikar et al., 2022).

While the role of polyP in the regulation of mitochondrial
bioenergetics seems clear, the mechanism(s) that underly this
effect still remain unclear. One of the main reasons for this
dearth of knowledge is that the metabolism of polyP is poorly
understood in mammalian cells. However, this is not the case in
prokaryotes and lower eukaryotes. For example, Kornberg et al.,
isolated, purified, and cloned two of the main enzymes involved in
the metabolism of polyP in these organisms; which are, the
polyphosphate kinase (PPK) and the exopolyphosphatase (PPX)
(Kornberg et al., 1999). While PPK synthesizes polyP by the transfer
of the terminal Pi of ATP to a polyP chain; PPX hydrolyzes polyP to
Pi, at its terminal ends. Another enzyme involved in the metabolism
of polyP, which was also initially described by Kornberg and his
team, is the endopolyphosphatase (PPN). PPN internally cleaves
long chain polyP into short and medium chains (Kornberg et al.,
1999).While PPX and PPN are both polyP hydrolyzing enzymes, the
length of the chain of polyP produced by these enzymes could be
significantly different. It is important to note that PPX can act in
both long and short chain polyP, while PPN shows a higher substrate
specificity towards longer chains (more than 60 Pi) of polyP
(Andreeva et al., 2019). All these enzymes have been identified in
various microorganisms and lower eukaryotes. However, no
homologs have been found so far in mammals, despite multiple
efforts conducted by different research groups. Additional
complexity to polyP studies in mammalian cells is added by the
lack of well-described and comprehensive methods to extract and
quantify polyP, even though recently some significant advancement
have been published in this field, mostly in other organisms (Bru
et al., 2016; Solesio and Pavlov, 2016; Christ and Blank, 2018; Christ
et al., 2020); the relatively low concentration of polyP in these
organisms; and its dynamic nature, which makes the levels of polyP
dependent on the specific cell type and the metabolic state of the
cells.

To increase our knowledge ofmammalian polyP andmitochondrial
physiology, we have developed and characterized stable monoclonal
SH-SY5Y cells that express PPX, PPN, and PPK enzymes in
mitochondria, and PPX in the cytoplasm and endoplasmic reticulum
(ER). To conduct our studies, we have optimized DAPI-based
spectrophotometric assays to quantify polyP in mammalian cells.
Our results corroborate the potent effects of polyP in the regulation
of mammalian bioenergetics, and they show that polyP also affects gene
expression andmitochondrial architecture. Furthermore, we are the first
to demonstrate that themodification of the levels of cytoplasmic and ER
polyP also has a deleterious effect on cellular bioenergetics and gene
expression. Finally, we show the substantive influence of polyP chain
length (in cells expressing PPN vs. PPX) in mammalian bioenergetics.
Our results provide the research community with a toolkit of cellular
models to study mammalian polyP and they increase our knowledge
regarding its effects on mitochondrial physiology.
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Materials and methods

Reagents

Dulbecco’s Modified Eagle medium (DMEM):F12, penicillin/
streptomycin, Hank’s Balanced Salt Solution (HBSS), geneticin,
trypsin, and heat-inactivated fetal bovine serum (FBS) were
purchased from Gibco-Invitrogen (Carlsbad, California, US). 4′,6-
diamino-2-phenylindole (DAPI), lipofectamine, alkaline
phosphatase, Pierce BCA protein assay kit, Pierce ECL western
blotting substrate, Pierce Halt protease and phosphatase Inhibitor
Cocktails, Opti-MEM, ER-Tracker Red, and 0.1 M Cacodylate
buffer were purchased from Thermo Fisher Scientific (Waltham,
Massachusetts, US). Methanol, Phosphate-Buffered Saline (PBS), β-
mercaptoethanol, tris(hydroxymethyl)-1,3-propanediol
hydrochloride (TRIS-HCl), glycerol, phenylmethylsulfonyl
fluoride (PMSF), Tween-20, Dimethyl sulfoxide (DMSO),
potassium chloride, poly-L-lysine, [4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid] (HEPES), sucrose, mannitol, ER-
isolation kit, tetramethylrhodamine methyl ester perchlorate
(TMRM), ethylenediaminetetraacetic acid (EDTA), ethylene
glycol-bis (2-aminoethylether)-N,N,N’,N’-tetraacetic acid (EGTA),
magnesium chloride, 1,4-dithiothreitol (DTT), Hoechst 33,342,
Triton X-100, 25% glutaraldehyde, 4% paraformaldehyde,
osmium tetroxide, acetone, epon resin, uranyl acetate, and lead
citrate were obtained from Sigma Aldrich (St. Louis, Missouri, US).
All the materials and reagents used in immunoblots, including
secondary antibodies (anti-mouse, cat. num.: 1,706,516; anti-
rabbit, cat. num.: 1,760,515), polyvinylidene (PVDF) membranes,
fat-free milk, protein ladders, and polyacrylamide-precast gels were
obtained from BioRad (Hercules, California, US). Anti-OXPHOS
(ab110411), anti-PPX (ab225684), and anti-β-actin (ab8226)
primary antibodies were obtained from Abcam (Cambridge,
Cambridgeshire, United Kingdom). Anti-calreticulin (CST
2891S), and anti-TOMM20 (CST 42406S) antibodies were
purchased from Cell Signaling Technology (Danvers,
Massachusetts, US). Unless otherwise stated, all the reagents used
on the Seahorse experiments were purchased from Agilent
technologies (Santa Clara, California, US). scPPX enzyme was
purchased from James H. Morrissey’s’ Laboratory (University of
Michigan, Michigan, US). Short (≃ 14 Pi) chain synthetic polyP was
a kind gift from Toshikazu Shiba (Kitasato University, Tokyo,
Japan).

Cell cultures

SH-SY5Y cells were purchased from the American Type Culture
Collection (Manassas, Virginia, US) andmaintained in culture following
the provider’s instructions, and as we have previously done (Solesio et al.,
2012; Solesio et al., 2013a; Angiulli et al., 2018; Solesio et al., 2018).
Briefly, cells were grown using DMEM:F12 media supplemented with
10% (v/v) heat inactivated fetal bovine serum, and 10 units/mL of
penicillin/streptomycin. To conduct our experiments, cells were grown
to 80%–90% confluency in a humidified cell culture incubator (Heracell
Vios 160i, Thermo Fisher Scientific, Waltham, Massachusetts, US),
under a 5% CO2 atmosphere at 37°C. All the cells used for this
project were grown and maintained under the same conditions.

Generation of stable cell lines

SH-SY5Y cells were transfected with specific DNA constructs
allowing for expression in mammalian cells of each of the main
enzymes involved in the metabolism of polyP in microorganisms
and lower eukaryotes (PPX, PPN, and PPK, sequence was obtained
from Saccharomyces cerevisae). The vectors also contained a signaling
sequence to express these proteins either in mitochondrial matrix,
cytoplasm or ER; as well as the sequence for expression of GFP tag, in all
the cases except CytoPPX. We also transfected SH-SY5Y cells with
MitoGFP, a commercially available construct containing a mitochondrial
targeting sequence and the sequence for expression of GFP.

Transfections were conducted following our previously
established protocol (Guitart-Mampel et al., 2022; Hambardikar
et al., 2022). Precisely, 0.3 × 106 cells/well were plated in 6-well
plates. 48 h later, cells were transfected using 800 µL of Opti-MEM,
12 µL of lipofectamine, and 3.2 µg of the respective DNA per well.
24 h post-transfection, cells were treated with 0.5 mg/mL of the
selection antibiotic (geneticin). During the next 2 weeks, medium
was replaced by fresh medium containing geneticin every 2 days.
Subsequently, transfected cells were diluted in 96-well plates and
grown further. Single cell colonies were then selected for amplification
by visualization of GFP, using EVOS AMF4300 microscope
(ThermoFisher Scientific, Waltham, Massachusetts, US). Cell colonies
that expressed low or no GFP signal were discarded. CytoPPX cells lack
the GFP marker due to the design of the construct, hence the imaging
step was skipped for these colonies. Instead, the final cells were selected
on the basis of the presence of the PPX protein in the cytoplasm of the
transfected monoclonal stable cells.

Confocal and fluorescence microscopy

To confirm the co-localization of GFP and mitochondria or ER
in the newly created SH-SY5Y cells, we labeled each of the organelles
using specific fluorescence probes. Specifically, mitochondria were
labeled with TMRM, following the protocol that we previously used
(Solesio et al., 2021); while the ER was labeled using ER-tracker Red,
following the instructions provided by the manufacturer. Live cell
imaging was then performed using confocal microscopy (Leica SP8,
Wetzlar, and Germany), with a ×40 oil immersion objective.

Wild-type (Wt) cells that were transfected with the MitoPPK or
the MitoGFP constructs, or non-transfected were monitored over
time using fluorescentmicroscopy. Specifically, 24 h after transfection,
cells were imaged using an EVOS AMF4300 microscope
(ThermoFisher Scientific, Waltham, Massachusetts, US) to detect
GFP signal and confirm successful transfection and expression of
the specific plasmids. Subsequently, geneticin was added to the
growing medium. Seven days post-transfection, cells were stained
with DAPI and incubated for 15 min at 37°C in the dark. Cells were
then imaged again using transmitted light; the DAPI and GFP filters;
and the same microscope.

Cell fractioning

Mitochondrial fractions from MitoPPX cells were isolated
following the protocol that we previously used (Solesio et al.,
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2018; Hambardikar et al., 2022). Cytoplasmic fractions from
CytoPPX cells, and mitochondrial fractions from CytoPPX and
MitoPPN cells were collected from 150 mm petri plates.
Specifically, cells were scraped and resuspended in fractionation
buffer (20 mM HEPES, 10 mM KCl, 2 mM MgCl2, 1 mM EDTA,
1 mM EGTA, 1 mMDTT and 1X protease inhibitor), and incubated
for 15 min on ice. Subsequently, they were passed through a 20-
gauge needle 40 times. After a 20 min incubation on ice, cells were
centrifuged at 720 xg (Eppendorf 5430 R, Hamburg, Germany) for
5 min at 4°C. The collected supernatants were centrifuged at
10,000 xg for 5 min at 4°C, using the same centrifuge. The
obtained supernatants contained the cytoplasmic fractions, while
the pellets contained the mitochondrial fractions. Lastly, ER
fractions were collected using the ER isolation kit, following the
manufacturers’ protocol. For final last step, we obtained a pellet
containing rough ER-enriched microsomes, which was used for our
experiments.

Lysis and protein quantification of the collected fractions
were performed on the day of the experiments. The
mitochondrial and ER fractions were re-suspended in
25–30 µL of lysis buffer. All the fractions (mitochondrial, ER,
and cytoplasm) were then lysed by three freeze/thaw cycles,
followed by sonication at 30% amplitude (QSONICA
sonicator, Newtown, Connecticut, US), and centrifugation at
18,000 xg for 5 min at 4°C (Eppendorf 5430R, Hamburg,
Germany). Protein was quantified on the obtained
supernatants (lysates) using the Pierce BCA protein assay kit,
following the protocol provided by the manufacturer.

Immunoblots

Immunoblots were conducted following the previously described
protocol (Solesio et al., 2012; Solesio et al., 2013a; Baltanas et al., 2013),
and using 10 ug of protein per condition. Protein quantification was
conducted as indicated above. All primary and secondary antibodies
were used at 1:1,000 dilution. The signal was detected using the Gel
Doc XR Image System form BioRad (Hercules, California, US).
TOMM20 protein levels were used to confirm mitochondrial
enrichment in the mitochondrial fractions, calreticulin levels to
confirm ER enrichment in the ER fractions, and β-actin levels as
loading controls in the rest of the experiments.

Cell fixation and EM imaging and
quantification

2 × 106 cells were trypsinized and spun down (Eppendorf
Centrifuge 5910R, Hamburg, Germany) at 1,200 xg to form a
pellet. Cellular pellets were then fixed using a solution composed
by 2.5% glutaraldehyde and 4% paraformaldehyde in 0.1 M
cacodylate buffer. Subsequently, they were post-fixed in
buffered 1% osmium tetroxide, dehydrated in a graded series of
acetone, and embedded in epon resin. 90 nm-thin sections were
cut using a Leica EM UC6 ultramicrotome (Leica, Heidelberg,
Germany). Sectioned grids were stained with a saturated solution
of uranyl acetate and lead citrate. Images were captured using an
AMT XR111 digital camera (McLean, Virginia, US) on a Philips

CM12 transmission electron microscope (Amsterdam,
Netherlands).

Mitochondria were quantified in the obtained images using a
blind method (the images were unidentified for the counter),
following a similar protocol as we did in the past (Solesio et al.,
2012; Solesio et al., 2013a; Solesio et al., 2013b). Mitochondria were
grouped into normal, electron lucent and electron dense. Four
images per cells type were quantified and a percentage of each
group of mitochondria was determined based on total mitochondria
in each image.

DAPI-polyP spectrophotometric assay

The DAPI-polyP complex shifts the fluorescence emission of
DAPI to 550 nm, which allows for the visualization of polyP using
microscopy (Aschar-Sobbi et al., 2008). Subcellular fractions from
Wt cells were used as control conditions in these experiments. 50 μL
of lysates from various subcellular fractions were loaded into 96-well
black half-area plates, in triplicate and at a protein of concentration
of 0.1 μg/μL. PolyP standards (0, 2.5, 5, and 10 µM) were also
prepared, using short chain synthetic polyP. PolyP standards and
samples were diluted in a buffer containing 75 mM sucrose, 225 mM
mannitol, and 5 mM Tris-HCl. DAPI was added to each well at a
final concentration of 10 µM. Fluorescence was then quantified after
30 min dark adaptation at 37°C, using a BioTek spectrophotometer
(Thermo Fisher Scientific, Waltham,Massachusetts, US), and a λex =
415 nm and λem = 550 nm. DAPI signal for each sample was
corrected for background and the values were normalized to the
signal obtained from the Wt samples.

To validate the spectrophotometric assay based on DAPI-polyP
fluorescence, we quantifiedDAPI fluorescence at 550 nm in i) isolated
mitochondria from Wt cells and, 2) 10 μM short chain polyP, in the
presence or absence of PPX and Alkaline Phosphatase (AP), twomain
enzymes involved in the degradation of polyP. Samples were
incubated for 15 min at 37°C with 5 μg/mL of PPX enzyme or
5 U/µL of AP in the presence of 15 mM of MgCl2 as a cofactor.
DAPI-polyP fluorescence was then assayed as previously described.

Densitograms and pearson’s coefficients

Densitograms to determine colocalization between TMRM or
ER-tracker (indicating the specific subcellular organelles), and
GFP (indicating PPX) were performed using the RGB profile
plot plugin from ImageJ (NIH, Bethesda, MD, United States),
as indicated in the images. Using the same software, Pearson’s
coefficients were determined using JaCOP (Just another
colocalization plugin).

PPX and PPN enzymatic activity

The activity of the polyP hydrolyzing enzymes, PPX and PPN,
were assayed by the quantification of the degradation of short chain
exogenous polyP in cell lysates. While the length of mammalian
polyP still remains controversial; it has been proposed that this
polymer is usually found in two pools in cell lines: very long chains,
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and short lengths (Kumble and Kornberg, 1995). We decided to use
short chains of polyP to conduct all our studies because, based on the
bibliography, long chains of the polymer induce major effects in the
transcriptome, proteome, and phosphatome of mammalian cells
(Bondy-Chorney et al., 2020; Pirttiniemi et al., 2023). Moreover, the
data included in this manuscript show that the expression of
MitoPPK is lethal for SH-SY5Y cells.

To conduct these experiments, we used a modified version of
the protocol previously established by our laboratory (Solesio
et al., 2021). Specifically, cells were collected and lysed, and
protein levels were quantified as described above. Samples
were then diluted in incubation buffer (0.1% BSA (w/v), 10%
glycerol, 20 mM TRIS-HCl (pH = 7.5), and 50 mM potassium
chloride) to 0.25 μg/μL in 20 µL. This buffer was used for all the
solutions in this assay. A solution containing 5 mM of short chain
polyP was also prepared to be used as the substrate of the
enzymes. scPPX1 was used as a positive control for these
experiments, at a final concentration of 5 μg/μL in 20 µL.
DAPI was dissolved to 40 μg/μL and 99 μL of this solution
were added to each well of a 96-well black (clear bottom)
plate. To initiate the enzymatic reaction, 20 μL of polyP
(substrate) were added and mixed with 20 μL of the cell
lysates in a 1.5 mL tube. Immediately after that, 1 μL of the
reaction mix was added to each well. Each sample was added
in quadruplicates. Fluorescence was measured over time, at
550 nm. Results were analyzed after background correction
and normalized to Wt florescence at each time point.

Seahorse assays

The status of OXPHOS was assessed using a Seahorse
XFe24 Analyzer (Agilent, Santa Clara, California, US). Briefly,
4 × 104 cells/well were seeded in an Agilent Seahorse XF24 cell
culture microplate, using high glucose DMEM. Subsequently, cells
were incubated overnight under standard conditions. The medium
was then replaced by Agilent XF medium (DMEM containing 5 mM
HEPES without phenol red, pH = 7.4) supplemented with 10 mM
glucose, 1 mM pyruvate, and 2 mM L-glutamine. The Mito Stress
test was preceded by initial incubation of the cells at 37°C without
CO2 for at least 45 min, to ensure the pre-equilibration of the assay
medium. The assay was carried out by first measuring baseline
oxygen consumption rate (OCR), followed by sequential
measurements of OCR and extracellular acidification rate
(ECAR) after the injection of 1 µM oligomycin, 2 µM FCCP, and
0.5 µM rotenone + antimycin A. Specifically, basal respiration
represents the OCR before the addition of any of the drugs;
proton leak the OCR after the addition of oligomycin; and ATP-
linked respiration represents the value of the OCR resulting from the
subtraction of the proton leak from the basal respiration. Moreover,
maximal respiration, represents the value that the OCR reached after
the addition of FCCP; while the non-mitochondrial respiration, is
the OCR assayed after the addition of rotenone + antimycin A.
Finally, the spare capacity was calculated by subtracting the basal
respiration from themaximal respiration. All these calculations were
conducted following the manufacturer’s instructions.

Cell count-based normalization of real-time data was obtained
by staining cells with 5 µMHoechst 33,342 and counting the cells on

the BioTek Cytation 1 Imaging Multi-Mode Reader (Agilent, Santa
Clara, California US).

Gene expression

RNA isolation
Total RNA was isolated from approximately 1 × 106 cells, using

the RNeasy Micro Kit (QIAGEN, Hilden, Germany), and following
the manufacturer’s protocol. Total RNA concentration and integrity
were estimated by mass spectrophotometry (NanoDrop One, GE
Health Care, Buckinghamshire, United Kingdom).

cDNA synthesis
cDNA was synthetized from 1 µg of total RNA using the

QuantiTect Rev. Transcription Kit (QIAGEN, Hilden, Germany)
following the manufacturer’s instructions.

RT-qPCR
Specific primer sets for each gene were designed using Primer3web

4.1.0 (available at https://primer3.ut.ee/). The expression of the
housekeeping gene GAPDH (glyceraldehyde 3-phosphate
dehydrogenase) was used to normalize the relative expression of
target genes. Primer sequenced and amplicon sizes are shown below.
Amplifications were performed in a QuantStudio™ 6 Flex Real-Time
PCR System (Applied Biosystems, Foster City, California, US), in a final
volume of 10 µL using the fluorescent dye Power SYBR™ Green PCR
Master Mix (QIAGEN, Hilden, Germany) and 25 µM of each primer.
The thermal conditions were an initial hot start step at 95°C for 10 min,
followed by 40 cycles of 95°C for 15 s, and 60°C for 25 s. Differential gene
expression between groups were accessed by the 2−ΔΔCq method (Livak
and Schmittgen, 2001). The results are shown in fold change values.

Primers used

Gene Forward and reverse sequences Amplicon (bp)

GAPDH TTGGCTACAGCAACAGGGTG 161

GGGGAGATTCAGTGTGGTGG

SOD2 TGGGGTTGGCTTGGTTTCAA 95

GGAATAAGGCCTGTTGTTCCTTG

SIRT3 CGGCTCTACACGCAGAACATC 225

CAGCGGCTCCCCAAAGAACAC

MFN2 ATGTCCCTGCTCTTCTCTCG 202

GGTCCAGTTCTGCATTCCTG

TOMM20 CCCCAACTTCAAGAACAGGC 185

GATGGTCTACGCCCTTCTCA

DNM1L AGAATATTCAAGACAGTGTGCCA 145

TGTGCCATGTCCTCAGATTCT

PRKN GTGCCGTATTTGAAGCCTCA 123

GACAGGGCTTGGTGGTTTTC
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Statistical analysis

The qPCR data were analyzed in fold change values, n = 4-
5 biological replicates. Comparisons between multiple groups were
performed with one-way ANOVA with Tukey’s post hoc analyses.

PolyP quantification and Seahorse assays were conducted in
biological triplicates (n = 3). The immunoblots to determine the
presence of the studied enzymes were not conducted in triplicate,
due to the nature of the samples. Statistical significance of the
differences between groups in these experiments was determined
by Student’s t-test, one-way ANOVA (Turkey post hoc test).

All data is presented as mean ± SEM. The level of statistical
significance was set at α = 0.05 (*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001).
For the statistical analysis and graphic representation, OriginLab
software and GraphPad Prism version 9 were used. (Northampton,
MA, US; and San Diego, CA, US; respectively).

Results

Biochemical characterization of the cellular
models

Confocal imaging was performed to ensure colocalization between
GFP-PPX and GFP-PPN; and mitochondria or ER (Figure 1A). The
CytoPPX plasmid did not express GFP, therefore CytoPPX cells were
not included in these experiments. Densitogram of representative areas
included in the magnification images (Figure 1B), as well calculation of
the Pearson’s coefficient (Table 1), corroborated the specific presence of
PPX in the different subcellular compartments, along with its co-
localization with these compartments. The results were further
validated by western blot analysis of subcellular fractions, which
showed the presence of PPX in the appropriate fractions (Figure 2).
Due to the lack of availability of antibodies against PPN, immunoblots
were not performed for detection of these protein in MitoPPN cells.
However, GFP signal (a GFP tag is present in the MitoPPN construct)
was visualized using confocal microscopy imaging (Figure 1). It was not
possible to detect GFP protein in mitochondrial fractions from
MitoPPN cells by immunoblotting, despite GFP expression. This
discrepancy could be explaining by conformational changes in the
GFP protein, not allowing for the recognition by the specific epitope of
the antibody.

Mitochondrial expression of PPX and PPN
induces alterations of mitochondrial
architecture

Using Electron Microscopy (EM), we imaged all the cell lines
that we have created (Figure 3A). This allowed us to visualize
mitochondrial ultrastructural changes in response to the
modification of the levels of polyP in the different subcellular
compartments. Wt and MitoGFP cells were used as controls, as
mitochondria from these cells showed the standard shape,
including an intact inner membrane and well-defined cristae
projecting into the matrix. MitoPPX mitochondria showed
increased presence of electron lucent mitochondria, and this
effect was of a larger magnitude in mitochondria from MitoPPN
cells. Moreover, mitochondria from ER-PPX cells showed a
morphology similar to the Wt samples. In fact, quantification
of these images (Figure 3B), showed that, compared to Wt cells,
MitoPPX samples had 42.4% less normal mitochondria and
24.1% more electron lucent mitochondria; while MitoPPN

FIGURE 1
Confocal microscopy images confirm the mitochondrial
expression of GFP in mitochondria from MitoPPX and MitoPPN SH-
SY5Y cells, as well as the expression of GFP in ER from ER-PPX SH-
SY5Y cells. (A). Representative confocal images of Wt, MitoGFP,
MitoPPX, MitoPPN, and ER-PPX cells. ER was labeled using ER-Tracker
Red, while mitochondria were labeled using TMRM. Images that show
the overlap of the GFP signal and ER-Tracker Red or TMRM are
included. Magnifications (×3) of significant areas obtained from the
overlay images are also included. Scale bar = 50 µm for all the images
except for the magnifications. In that case, scale bar = 17 µm. (B).
Densitometry conducted along the lines that are marked in the
magnification images included in Figure 1A. Green: GFP, Red: specific
markers of mitochondria or ER.
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cells showed 57% less normal mitochondria and 44.4% higher
electron lucent mitochondria. CytoPPX cells showed lower
percentage of normal mitochondria, 66.3% less than Wt.
Moreover, they had the highest presence of electron dense
mitochondria (61.6% more than Wt cells). ER-PPX cells
showed no significant alterations in mitochondrial structure.
Based on all the data that we obtained, we concluded that Wt and
MitoGFP cells have similar mitochondrial morphology, without
any differences in terms of electron density. Therefore, we used
Wt cells as control samples for the rest of the experiments
included in this manuscript.

Targeted expression of polyP metabolizing
enzymes modulates polyP levels in the
specific subcellular compartments

Subsequently, we assayed the enzymatic activity of the polyP
hydrolyzing enzymes. To do this, exogenous polyP was added to
the cell lysates and its degradation was assayed by measuring
DAPI-polyP fluorescence (Abramov et al., 2007). Treatment with
exogenous PPX was used to demonstrate the specificity of the
DAPI-polyP binding, and alkaline phosphatase (AP) was used as a
further positive control (Figure 4A). Specifically, MitoPPX,
MitoPPN, CytoPPX and ER-PPX SH-SY5Y cells showed a
time-dependent decrease of DAPI fluorescence, which
indicated degradation of polyP. Wt cells, and polyP incubated
with scPPX1 were used as controls for these experiments
(Figure 4B).

The levels of polyP in the different subcellular compartments
were analyzed using an end-point DAPI-polyP spectrophotometric
assay. Mitochondrial-enriched fractions from MitoPPX, MitoPPN
and CytoPPX cells; cytoplasmic-enriched fractions from CytoPPX;
and ER-enriched fractions from ER-PPX cells were isolated.
Corresponding subcellular fractions from Wt cells were also
isolated and used as controls for these experiments.
Mitochondrial polyP levels showed a 25% decrease in MitoPPX
cells, and a 16% decrease in MitoPPN cells, when compared to Wt
cells (Figures 5A, B). CytoPPX cells showed 20.7% lower levels of
polyP in their cytoplasmic fractions, when compared to Wt cells;
while their levels of mitochondrial polyP were comparable to those
found in the mitochondrial fractions of Wt cells (Figures 5B, C). ER-
PPX cells did not show significant changes in polyP levels in the ER

fraction, when compared to the ER fractions obtained for the Wt
cells (Figure 5D).

Modulation of polyP in different subcellular
compartments causes differential gene
expression

mRNA fold change was quantified by qPCR for mitochondrial
physiology related genes. Specifically, MFN2 (mitochondrial
fusion), DNM1L (mitochondrial fission), PRKN (mitophagy),
SOD2 (antioxidant system), SIRT3 (mitochondrial acetylation/
deacetylation), and TOMM20 (mitochondrial content) expression
were assayed. The obtained values were normalized against the
housekeeping gene GAPDH (Figure 6). Our data show that
SIRT3 was overexpressed in MitoPPX, MitoPPN and ER-PPX
cells (1.31-, 1.81-, 1.35-fold change, respectively when compared
to Wt cells). Moreover, in CytoPPX cells, even if not significant, the
same tendency was observed. Furthermore, MitoPPX and MitoPPN
cells showed increased expression of SOD2 (1.17-, and 1.24-fold
change, respectively when compared to Wt cells) which remained
unaltered in CytoPPX and ER-PPX cells. PRKN expression was
decreased by 0.39-fold change in ER-PPX cells, while it showed an
increased tendency in MitoPPN cells, even if this tendency was not
significant. The expression of this gene remained unaltered in
MitoPPX and CytoPPX cells. MFN2 expression was decreased in
CytoPPX and ER-PPX cells by 0.76-, and 0.43-fold change,
respectively; when compared to Wt samples. TOMM20 and
DNM1L expression remained unaltered in all four cell types,
despite altered polyP levels.

Modulation of polyP in different subcellular
compartments alters OXPHOS

Mitochondrial respiration was assayed using a Seahorse analyzer
(Figure 7). Basal respiration and ATP-linked respiration were
significantly decreased in all four cell lines, when compared to
the Wt samples. Specifically, when compared to the Wt samples,
basal respiration was decreased by 30% in MitoPPX, 77% in
MitoPPN, 38% in ER-PPX, and 18% in CytoPPX cells. Moreover,
ATP-linked respiration was decreased by 33% in MitoPPX, 71% in
MitoPPN, 64% in ER-PPX, and 44% in CytoPPX cells, compared to
the Wt samples. In MitoPPN cells, all the parameters assayed where
decreased (except spare capacity), when compared toMitoPPX cells.
Moreover, MitoPPX cells showed decreased respiration in
comparison with the Wt cells, especially when we assayed
maximal respiration (which was decreased by 36%) and spare
capacity (which was decreased by 74%). The differences in the
case of ER-PPX and CytoPPX cells, when compared with Wt
samples, were of a lesser magnitude (Figure 7A). Contrary to the
decrease in non-mitochondrial respiration and spare capacity which
was observed in MitoPPX and MitoPPN cells, ER-PPX and
CytoPPX cells showed an increase in these respiratory
parameters, when compared to Wt. Specifically, non-
mitochondrial respiration was increased by 44% in ER-PPX, and
69% in CytoPPX cells. Moreover, spare capacity was increased by
75% in ER-PPX and 62% in CytoPPX cells. All these percentages are

TABLE 1 The specific proteins expressed in the various subcellular locations co-
localize with the markers used for visualizing these locations. Person’s
coefficients were calculated for all the conditions included in Figure 1. Note the
significant co-localization observed in MitoGFP, MitoPPX, MitoPPN, and ER-
PPX cells (Pearson’s coefficient higher than 0.5 and close to 1) indicating the
connection between the PPX or the PPN protein and mitochondria or the ER.
Image A: red channel, image B: green channel.

Cell type Pearson’s Coefficient (r =)

MitoGFP 0.988

MitoPPX 0.957

MitoPPN 0.97

ER-PPX 0.95
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calculated by normalizing the mean value of the specific raw values
with the mean of the Wt samples.

Expression of mitochondrial PPK
deleteriously affects cell viability in SH-SY5Y
cells

To increase the levels of mitochondrial polyP in our models, we
used a mammalian vector to express in mitochondria of SH-SY5Y

cells the PPK enzyme from Saccharomyces cerevisiae (MitoPPK
cells). These cells expressed the plasmid immediately after
transfection, as demonstrated by the presence of GFP
(Figure 8A). Seven days post-transfection and under treatment
with geneticin (selection antibiotic), cells were stained using
DAPI (to label their nuclei, using the regular excitation and
emission wavelengths) and imaged using a fluorescence
microscope and the filters for DAPI and GFP. The images clearly
demonstrated that the cells transfected with MitoPPK were not
viable at this stage (Figure 8B). We repeated this assay two more
times and obtained the same results. Therefore, we concluded that
expression of MitoPPK is incompatible with cell viability in SH-
SY5Y cells.

Discussion

PolyP is an understudied polymer in mammalian cells. This
is due, at least partially, to the dearth of models for its study. This
lack of models is mostly a consequence of the poor
understanding of the enzymes involved in its metabolism in
mammalian cells. We have previously created stably transfected
MitoPPX HEK293 and SH-SY5Y cells (Solesio et al., 2016b;
Guitart-Mampel et al., 2022). However, MitoPPX cells do not
allow to investigate the influence of chain length and diverse
subcellular locations [both factors have been suggested to affect
the role of mammalian polyP (Seidlmayer et al., 2019; Solesio
et al., 2020)] on the effects of polyP. Therefore, just by using
MitoPPX cells we are not able to obtain a comprehensive picture
of the effects of polyP in mammalian physiology. Here, we
present new cellular models which allow to study the effects
of i) another enzyme involved in the metabolism of polyP (PPN),
and ii) PPX expressed in other subcellular compartment,
different from mitochondria.

The lack of well-defined protocols to study mammalian
polyP is also an obstacle to advance the knowledge in this
field. We and others have exploited the fluorescence shift
induced by the DAPI-polyP complex (compared to the
fluorescence spectra of the DAPI-nucleic acids complex
[Kumble and Kornberg, 1995; Aschar-Sobbi et al., 2008)].
However, different protocols, have been proposed by multiple
research groups to assay this fluorescence. This results in high
variability of the data regarding the levels of mammalian polyP. In
the methods section of this manuscript, we describe in detail a
protocol that we have optimized for mammalian cells and that can
be used to assay the effects of the enzymes involved in the
metabolism of polyP in different subcellular compartments of
these cells. The binding between DAPI and polyP could be
non-specific under certain conditions (DAPI can also bind to
inositol pyrophosphates and RNA, and not only to polyP
(Aschar-Sobbi et al., 2008; Losito et al., 2009; Martin and Van
Mooy, 2013; Kolozsvari et al., 2014)). However, our experiments
using exogenous PPX, a very specific enzyme that degrades polyP
(Akiyama et al., 1993; Wurst and Kornberg, 1994), show that our
protocol specifically detects polyP.

Our data show that the targeted expression in mammalian cells
of the enzymes involved in the degradation of polyP in
microorganisms (PPX and PPN) is a valid strategy to introduce

FIGURE 2
PPX is expressed in mitochondria from MitoPPX, cytoplasm from
CytoPPX, and ER from ER-PPX SH-SY5Y cells. (A). Representative
immunoblots showing the presence of the PPX-GFP complex (70 kDa) in
themitochondrial fraction ofMitoPPX cells, aswell as the absence of
the same complex in the mitochondrial fractions of Wt and MitoGFP SH-
SY5Y cells. Please note that the levels of GFP were not assayed in this
figure. TOMM20 levels indicate mitochondrial enrichment in the assayed
fractions; while low β-actin levels indicate decreased presence of
cytoplasmic proteins in the mitochondrial fractions. MitoPPN cells were
not assayed because no antibodies for the PPN protein are available. (B).
Representative immunoblots that show the presence of the PPX protein
(45 kDa) in the cytoplasmic fractions of CytoPPX cells, and its absence in
the corresponding fractions of Wt and MitoGFP SH-SY5Y cells. Note that
the CytoPPX construct does not contain the sequence for the expression
of GFP. β-actin signal indicates cytoplasmic enrichment in the assayed
fractions. (C). Representative immunoblots that show the presence of the
PPX-GFP protein complex (70 kDa) in the ER fraction of ER-PPX SH-SY5Y
cells, as well as the absence of the same complex in the ER fraction of the
Wt cells. Calreticulin presence indicates ER enrichment in the assayed
fractions, and low β-actin signal indicates decreased presence of
cytoplasmic proteins.
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FIGURE 3
Depletion ofmammalian polyP causes structuralmitochondrial changes. (A). Representative images ofWt, MitoGFP, MitoPPX, MitoPPN, ER-PPX and
CytoPPX cells. These images were obtained using EM. Arrows point towards significant mitochondria. Scale bar = 500 nm. (B). Quantification of the
images. To conduct this quantification, mitochondria from all the conditions were classified as normal, electron lucent, and electron dense. MitoPPX and
MitoPPN cells showed a clear increase in the number of electron lucent mitochondria, while CytoPPX cells showed increased electron dense
mitochondria. Graphs represent average ±SEM of four independent images. Statistical analysis conducted by unpaired t-test with α = 0.05 (* p ≤ 0.05, **
p ≤ 0.01, *** p ≤ 0.001).
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these proteins in different subcellular locations. Specifically, for PPX,
for which antibodies are commercially available, our results show
the high co-localization between this protein and the specific
subcellular compartments that were targeted, assayed by
Pearson’s coefficient and densitograms of representative areas.
EM images showed fundamental differences in the structure of
mitochondria from some of the cell lines that we have created,
including CytoPPX, MitoPPX, and MitoPPN cells. In fact, while
CytoPPX cells presented an elevated number of mitochondria
containing electron dense areas, MitoPPX and MitoPPN cells
showed high proportion of electron lucent mitochondria,

compared to Wt cells. Some authors have shown that polyP
accumulates in electron dense areas in diverse models (Ryan,
1969; LeFurgey et al., 1990; Ota et al., 2016). Conversely, the
depletion of polyP could appear as electron lucent areas. It has
also been described that alterations of mitochondrial inner
membrane topology are associated with the increased presence of
electron lucent mitochondria. These alterations cause downstream
effects on key mitochondrial processes (Mannella, 2006). Therefore,
depletion of mitochondrial polyP could induce inner mitochondrial
membrane changes, which will affect bioenergetics, as observed in
this study. Increased presence of electron dense mitochondria in

FIGURE 4
(A). PPX and PPN enzymes are active in mutant SH-SY5Y cells. (A). Graph showing the kinetics of the PPX and PPN enzymes in the different
subcellular compartments in SH-SY5Y cells. To conduct these studies, we treated the cells with exogenous PPX and AP. Subsequently, we assayed DAPI-
polyP fluorescence. Note the sharp decrease in the fluorescence levels of DAPI-polyP after treatment with PPX and AP, in both mitochondria isolated
from Wt cells and exogenous polyP. Graphs represent average ±SEM of three independent experiments. Statistical analysis was conducted by
unpaired t-test. α = 0.05 (* p ≤ 0.05, *** p ≤ 0.001). (B). Cell lysates obtained from Wt, MitoPPX, MitoPPN, ER-PPX, and CytoPPX were incubated with
exogenous, short chain polyP (concentration is expressed in terms of Pi) and DAPI. Enzymatic activity was assayed by quantification of DAPI-polyP
fluorescence over 12 h. PolyP treated with the scPPX enzyme was used as control. Measurements were normalized to the Wt signal at each time point.
Graph shows representative enzymatic activity assay.
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CytoPPX cells could be a consequence of the depletion of
cytoplasmic polyP in these cells. This could suggest an inter-
organelle mechanism involved in the regulation of polyP, which
needs to be investigated further.

Our cellular models are also a valid strategy to modify the
endogenous levels of polyP in mammalian cells. In fact, our data
also show that PPX and PPN are active and able to hydrolyze
polyP, which aligns with the previous findings obtained with
MitoPPX cells (Hambardikar et al., 2022). The only exception to
this was found in ER-PPX cells, which do not show decreased
levels of polyP in the ER, despite the presence of active PPX in
this compartment. PolyP localization in the ER is not well
described in literature, however the enrichment of polyP has
been shown in ER from osteoblastic cell lines (SaOS-2) (Khong
et al., 2020). In the same study, the authors showed depleted
levels of polyP in the ER after transient transfections with the
ER-PPX construct (Khong et al., 2020). The differences between
these findings and ours could be a consequence of the use of cell
types with substantially different energy metabolism (SaOS-2 vs.
SH-SY5Y cells). Moreover, these different findings could also be
explained by the short-term (transient transfection) vs. long-
term (stable transfection) effects of PPX in polyP in the ER. In

the mammalian cell, mitochondria and ER are in close contact,
via the mitochondria-associated ER membranes (MAMs) (Raturi
and Simmen, 2013). One of the main proteins involved in these
junctions between mitochondria and ER is mitofusin 2 (Mfn2)
(Filadi et al., 2015). Mfn2 is present on the outer mitochondrial
membrane and the ER surface (de Brito and Scorrano, 2008).
Specifically, it has been described that decreased Mfn2 increases
the mitochondrial-ER tethering and cross-talk (Filadi et al.,
2015). Parkin is another protein typically involved in these
joint areas, whose regulation is linked to that of Mfn2 (Basso
et al., 2018).

Our qPCR data show a sharp decrease in the expression of
the genes that code for Mnf2 and Parkin proteins in ER-PPX
cells. This could be associated with increased MAMs in response
to polyP depletion in ER, probably as a compensatory
mechanism to maintain the levels of polyP in ER. It is
important to note that ER plays a crucial role in protein
synthesis and folding, and that the role of polyP as a
primordial chaperone has been previously described (Gray
et al., 2014). Therefore, ER might need sustained levels of
polyP to maintain proper protein homeostasis and cell
viability. Moreover, mitochondria have been described by us

FIGURE 5
The effects of PPX in SH-SY5Y cells are specific to the subcellular location where the enzyme is expressed. By measuring DAPI-polyP fluorescence,
we assayed the levels of polyP in mitochondrial fraction from (A). MitoPPX, and (B). MitoPPN and CytoPPX SH-SY5Y cells. Using the same method, polyP
levels were also assayed in (C). Cytoplasmic fraction from CytoPPX, and (D). the ER fraction from ER-PPX cells. Corresponding Wt fractions are used as
control in each of the experiments, and polyP levels were normalized to the values obtained in Wt cells. Graphs represent average ±SEM of three
independent experiments. Statistical analysis was conducted by unpaired t-test. α = 0.05 (* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001).
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and others as one of the preferred locations for polyP in
mammalian cells (Abramov et al., 2007; Solesio et al., 2016b),
and it has been proposed that polyP could be generated by the
ATP synthase (Baev et al., 2020). This could further support our
explanation of a compensatory effect involved in the
maintenance of steady levels of polyP in the ER: polyP could
be imported from mitochondria to ER, via MAMs, when the
levels are decreased in ER by the expression of ER-PPX. This
would produce no significant differences in the presence of
polyP in ER from ER-PPX cells.

The qPCR data also show significant increased expression of
SIRT3 in MitoPPX, MitoPPN, and ER-PPX cells, and even if not
significant, a similar tendency is observed in CytoPPX cells.
Furthermore, SOD2 expression is increased in SH-SY5Y cells
with depleted mitochondrial polyP (MitoPPX and MitoPPN).
SOD2 and Sirtuin 3 are mitochondrial proteins involved in the
cellular stress response. Their activation is closely related to the
status of mitochondrial physiology, especially to that of reactive
oxygen species (ROS) generation (Flynn and Melov, 2013; Zhang
et al., 2020). Therefore, the increased expression of SIRT3 and
SOD2 could be interpreted as a cellular response to counteract

the metabolic and oxidative stress induced by the depletion of
polyP. In fact, increased cellular stress has already been described
in MitoPPX cells (Solesio et al., 2021; Guitart-Mampel et al.,
2022; Hambardikar et al., 2022). Interestingly, changes in much
of the genes that we studied have been broadly demonstrated in
the main neurodegenerative disorders, including Parkinson’s
Disease and Amyotrophic Lateral Sclerosis (Tomkins et al.,
2001; Dawson and Dawson, 2010; Belluzzi et al., 2012; Palomo
et al., 2018; Vinciguerra et al., 2023).

Our attempts to create stably transfected SH-SY5Y MitoPPK
cells were unsuccessful. While the transfection of SH-SY5Y cells
with the MitoPPK plasmid was possible, and the plasmid was
expressed in mitochondria (based on GFP fluorescence),
MitoPPK cells became inviable soon after transfection. This
opens interesting questions regarding the effects of the chain
length of polyP in mammalian physiology. The current consensus
is that the length of the polymer in these organisms is around a
few tens of Pi, perhaps even less, and that this number is
dependent on the specific cell type (Seidlmayer et al., 2019).
For example, some authors have shown that, in human platelets,
secreted polyP is around 60-100 Pi long (Ruiz et al., 2004). Other

FIGURE 6
Targeted expression of PPX in SH-SY5Y cells affects gene expression. Expression of some of the main genes involved in mitochondrial physiology
was assayed in all mutant cells. Expression levels of mutant cells were normalized with the values obtained in the Wt samples. (A). MitoPPX, and (B).
MitoPPN cells showed increased expression of SOD2 and SIRT3. (C). ER-PPX cells showed increased expression of SIRT3 and decreased expression of
MFN2 and PRKN. (D). CytoPPX cells showed decreased expression of MFN2. Graphs represent average ±SEM of three independent experiments.
Statistical analysis was conducted by one-way ANOVA with Tukey’s post hoc analyses. α = 0.05 (* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001).
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FIGURE 7
Decreased levels of polyP affect the status of OXPHOS in SH-SY5Y cells. (A). Seahorse measurements that show OCR profiles in MitoPPN, MitoPPX,
ER-PPX, and CytoPPX SH-SY5Y cells. Quantification of the Seahorse results showed the effects of the depletion of polyP in OCR in basal respiration, ATP-
linked respiration, maximal respiration, proton leak, non-mitochondrial respiration, and spare capacity in (B). MitoPPX and MitoPPN SH-SY5Y cells, and
(C). ER-PPX and CytoPPX cells. Wt cells were used as control in all the cases. Note that the depletion ofmitochondrial polyP decreasedOCR in all the
cases; when the enzyme was expressed in ER or cytoplasm, this effect was less dramatic and, in some cases, even opposite. Graphs represent
average ±SEM of three independent experiments. Statistical analysis conducted by one-way ANOVA and Tukey’s post hocwith α = 0.05 (* p ≤ 0.05, ** p ≤
0.01, *** p ≤ 0.001).
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authors have shown that the length of polyP is significatively
higher in mice, and that it can vary substantially between
different mammalian cell lines. In fact, their data show that in
these cells, polyP is found mostly in two clusters: between five and
15 Pi, and between 500 and 800 Pi. The relative amount of polyP
in these clusters is very dependent on the specific cell line, with
PC12, Jurkat, and NIH3T3 having the highest presence of short
length polyP (Kumble and Kornberg, 1995). While the literature
is scarce, the toxicity of long chain polyP in mammalian cells has
already been suggested by some authors. For example, as
previously mentioned, long chains of the polymer induce
major effects in the transcriptome, proteome, and
phosphatome of mammalian cells (Bondy-Chorney et al.,
2020; Pirttiniemi et al., 2023), which could be associated with
substantial changes in cell physiology, including viability.
Furthermore, it has recently been published that increased
release of polyP by astrocytes causes toxicity to motoneurons
(Arredondo et al., 2022). Considering all this, our data suggest a

low tolerance for longer chains of polyP in SH-SY5Y cells, which
aligns with the limited bibliography available.

We further explored the effects of the length of polyP in
mammalian cell physiology by using Seahorse technology. All cell
lines show decreased OCR in response to treatment with FCCP. This
demonstrate that these newly created models have appropriate
mitochondrial membrane potential, which aligns with our
previous findings in HEK293 MitoPPX cells (Solesio et al., 2021).
Our Seahorse data also show that the transfection of SH-SY5Y cells
with theMitoPPX construct has deleterious effects onmitochondrial
bioenergetics, what corroborates our previous findings in
HEK293 cells (Solesio et al., 2021). The observed drop is even
more dramatic in the MitoPPN cells, which suggests that this
effect is length-dependent. The differences between PPN and
PPX in the cleavage of polyP, and the substrate-dependent
specific enzyme activity of these two enzymes have been
previously explored in other organisms (Andreeva et al., 2019).
Specifically, the study shows that, in S. cerevisiae, PPX has similar

FIGURE 8
Mitochondrial expression of PPK deleteriously affects the viability of SH-SY5Y cells. Fluorescence images obtained using transmitted light and a GFP
filter of MitoPPK cells. In this case, DAPI was visualized in the standard spectrum, as we used this dye to label the nuclei. (A). on day one post-transfection,
and (B). on day seven post-transfection. MitoGFP cells were used as control. Note that the expression of MitoPPK deleteriously affects the viability of SH-
SY5Y cells. Scale bar = 100 µm.
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enzymatic activity on long (polyP208) and short chain (polyP3)
substrates. However, PPN has a higher enzymatic specificity by
long chain polyP (polyP208), as compared to short chain (polyP3).
All this has never been addressed in mammalian cells. The substrate
specificity of the PPN enzyme could also explain the relatively higher
DAPI-polyP signal observed in the enzymatic assay of the MitoPPN
cells, as the degradation of polyP plateaus after a specific chain
length of polyP is reached.

Considering all this, our data suggest that the effects of polyP
in the maintenance of mitochondrial bioenergetics are highly
chain length-dependent. This data aligns with our findings
regarding loss of cell viability in MitoPPK cells. Moreover, the
influence of the length of polyP in its effects on mammalian
physiology has already been shown. For instance, in murine
cardiac myocytes, short chain polyP activates the mPTP, while
long chain polyP suppresses mPTP activation and enhances
energy production and cell metabolism (Seidlmayer et al.,
2019). Another study has reported that longer chains of polyP
are more effective in the stimulation of amyloidogenic proteins to
form fibrils, which has a protective effect on mammalian
physiology (Gray et al., 2014; Cremers et al., 2016). In our
models, mitochondrial respiration is not only affected by the
depletion of mitochondrial polyP, but also by the modification of
the length and the concentration of extra-mitochondrial levels of
polyP (CytoPPX and ER-PPX cells). This, jointly with the data
regarding the levels of polyP in the ER-PPX cells, suggests that
polyP can bypass membranes, via an unknown mechanism. In
fact, the ability of polyP to create channels in the membranes of
bacteria has already been demonstrated (Moreno and Docampo,
2013); and the role of polyP as a structural component of the
mammalian mitochondrial permeability pore has also been
established (Seidlmayer et al., 2012a; Seidlmayer et al., 2012b).

Here, we present a toolkit of cellular models to study mammalian
polyP. Thesemodels were created through stable expression of enzymes
involved in polyP metabolism in different subcellular locations of SH-
SY5Y cells. Our results show that the expression of these enzymes is, in
fact, targeted to specific organelles. Moreover, these enzymes are active
and their expression induces profound changes in both themorphology
of mitochondria and the gene expression in the SH-SY5Y cells. We also
demonstrate that SH-SY5Y have a low tolerance for long chains of
polyP. Lastly, our data demonstrate the potent regulatory effects of
mammalian mitochondrial polyP on bioenergetics, which appear to be
affected by the specific length of polyP. This expands the regulatory role
to polyP in other subcellular compartments. The use of our cellular
models could expand the study of polyP, and contribute to a better
understanding of this understudied, ancient polymer. Moreover,
dysfunctional mitochondrial bioenergetics has been broadly
demonstrated in many human pathologies (Galindo et al., 2012;
Solesio et al., 2012; Solesio et al., 2013b; Patro et al., 2021).
Therefore, a better understanding of the molecular mechanisms that
regulate mitochondrial bioenergetics could contribute to increase our
knowledge of the etiopathology of these diseases.
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