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Three types of muscles, cardiac, smooth and skeletal muscles are classically
distinguished in eubilaterian animals. The skeletal, striated muscles are innervated
multinucleated syncytia, which, togetherwith bones and tendons, carry out voluntary
and reflexbodymovements. Alarymuscles (AMs) are another typeof striated syncytial
muscles, which connect the exoskeleton to the heart in adult arthropods and were
proposed to control hemolymph flux. Developmental studies in Drosophila showed
that larval AMs are specified in embryos under control of conserved myogenic
transcription factors and interact with excretory, respiratory and hematopoietic
tissues in addition to the heart. They also revealed the existence of thoracic AMs
(TARMs) connecting to specific gut regions. Their asymmetric attachment sites,
deformation properties in crawling larvae and ablation-induced phenotypes, suggest
that AMs and TARMs could play both architectural and signalling functions. During
metamorphosis, and heart remodelling, some AMs trans-differentiate into another
type of muscles. Remaining critical questions include the enigmatic modes and roles
of AM innervation, mechanical properties of AMs and TARMS and their evolutionary
origin. The purpose of this review is to consolidate facts and hypotheses surrounding
AMs/TARMs and underscore the need for further detailed investigation into these
atypical muscles.
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Introduction

Alary muscles (AMs) were identified from anatomical studies of the circulatory system in
the abdomen of adult arthropods and described as multinucleated striated myofibers
connecting the heart to the lateral exoskeleton (Miller, 1950; De Wilde, 1948;
Alexandrowicz, 1954; Jones, 1954; Adams et al., 1973; Table 1). AMs take their name
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Abbreviations: AM, Alary muscle; AMA1, Alary muscle from Abdominal segment 1; AMDC, Alary muscle
derived cell; AMP, Adult muscle precursor; ChO, Chordotonal organ; CNS, Central nervous system;
DH31, Diuretic hormone 31; ECM, Extracellular matrix; ESM, Esophagus striated muscle; FC, Founder
cell; FCM, Fusion-competent myoblast; (i)TF, (identity) Transcription factor; L3 larva, 3rd instar larva; Lbd,
peripheral bipolar neuron; LCh5, Lateral pentascolopidial chordotonal organ; LG, Lymph gland; MT,
Malpighian tubule; PC, Progenitor Cell; PCC, Pericardial cell; SM, Skeletal/somatic muscle; TARM,
thoracic alary-related muscle; TARMT1, Thoracic AM-related muscle from the Thoracic segment 1;
TN, Transverse nerve; VLM, Ventral longitudinal muscle.
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from their wing (alae)-like shape and are sometimes termed
suspensory ligaments or alary ligaments in crustacea. In adult
insects, the circulatory system, called dorsal vessel, extends from
the head to the abdomen and is responsible for the intracelomic
flux of hemolymph. It is located medio-dorsally in the hemocoel and
divided into abdominal heart and thoracic aorta (Miller, 1950; Rizki,
1978; Curtis et al., 1999; Rotstein and Paululat, 2016; Figure 1A). The
walls of the heart consist of a layer of striated muscle cells helically
oriented around the lumen, surrounded by pericardial cells. A layer of
longitudinal muscle fibres, called ventral longitudinal muscle (VLM;
sometimes LM), underlies the ventral surface of the adult heart (Jones,
1954; Chiang et al., 1990; Curtis et al., 1999; Meola et al., 2003;
Lehmacher et al., 2012). A pair of AMs is present in each abdominal
segment. Each AM is laterally attached to a discrete epidermal
(exoskeletal) site and dorsally connects to the heart as a bundle of
myofibers, with some fibres contacting the AMs in the adjacent
segments along the surface of the heart (Figures 1B, B’). The
number of described pairs of AMs in adult arthropods varies from
3 in the Dungeness crab (Decapoda) to 10 in the stick insect
(Phasmatodea) and between 4 and 8 in Diptera and Lepidoptera
(Table 1). Many studies of the circulatory system and associated AMs
were conducted in evolutionarily successful holometabolous insects
with separate larval and adult habitats (Truman, 2019), particularly
species which either threaten human health or impact agriculture
(Meola et al., 2003; Martins et al., 2011; Leódido et al., 2013; Table 1).
Early physiological studies noted the absence of consistent link
between AM contraction and heart beating rates, while severing of
AMs could result into heart chamber collapse (Bullock and Horridge,
1965; and references herein). These data suggested a role of AMs
controlling the hemolymph inflow through the ostia during diastole,
not the heart beating rate (Rizki, 1978; Chiang et al., 1990; Ejaz and
Lange; 2008; Glenn, et al., 2010). AMs in the moth Hyalophora
cecropia and in Locusta migratoria were described as striated
muscles for slow contraction, poor in mitochondria, therefore
likely not in constant vigorous use (Sanger and McCann, 1968;
Miller et al., 1979). An alternative scenario to AM contraction
controlling the opening volume of the heart, was that AMs could
be non-contractile muscles acting as elastic fibres. Finally, since
adhering to the wall of the heart, AMs were also suggested to
constitute a heart suspensory apparatus and, together with the
VLMs, form a dorsal diaphragm partitioning the hemolymph into
a dorsal sinus above the diaphragm and a ventral body cavity bathing
internal organs (Jones, 1954; Miller et al., 1979; Bate, 1993; Miller,
1997). It is fair, however, to recognise that data scattering among
many different arthropod species, coupled to the difficulty to
manipulate AMs in living adults, has left many uncertainties about
AMs properties and physiological functions. The existence of AMs in
larvae of holometabolous insects, first depicted by Lowne (1890) and
in detail by Jensen (1973) (Table 1) brought out new developmental
issues. The discovery of thoracic alary-related muscles (TARMs)
(Boukhatmi et al., 2014; Bataillé et al., 2015) raised new questions
about the ontogeny, physiology and evolution of these muscles.

Alary muscle founder cells

Robustness of the muscle pattern is crucial for an animal’s fitness
and survival. Each body wall muscle, usually a large multinucleated

syncytium in bilaterians, displays a species-specific morphology and
capacity. In vertebrates, establishment of the skeletal muscle pattern
- around 600 different muscles in humans - and myofiber
differentiation are initiated and terminated in embryos, followed
bymuscle hypertrophy during the perinatal period. A pool of muscle
stem cells (satellite cells) is maintained and required to maintain
muscle homeostasis, growth and repair upon injury in adults
(Buckingham and Montarras, 2008; Chang and Rudnicki, 2014).
While specific molecular signatures have been identified for satellite
cells associated to specific adult muscles types (Evano et al., 2020),
developmental rules establishing stereotypical vertebrate muscle
patterns and shapes only begin to be elucidated (Besse et al.,
2020). In contrast, the molecular genetic basis of stereotypical
muscle patterns has been highly investigated in the dipteran
insect Drosophila (Bate, 1990; Bate, 1993; Dobi et al., 2015; Deng
et al., 2017; Junion and Jagla, 2022).

In holometabolous insects such as Drosophila, the embryo
hatches into a motile larva. Metamorphosis marks the end of the
larval growth period and initiation of the differentiation of adult
tissues. During this process, most larval body wall muscles are
histolysed and adult muscles form (Bate, 1993; Zirin et al., 2013).
Thus, two successive muscle patterns underlie Drosophila larval and
adult locomotion. The development of larval muscles, around
30 different muscles per hemisegment attached at precise
positions to the larval exoskeleton, is initiated in early embryos
(Bate, 1990). Each muscle is seeded by one founder myoblast, called
Founder Cell (FC), able to fuse with fusion-competent myoblasts
(Bate, 1990; Rushton et al., 1995). FCs are issued from asymmetric
division of Progenitor Cells (PC) and each express a distinctive code
of identity transcription factors (iTFs) which reflects both PCs
positional values relative to the epidermis and developmental
time (Frasch, 1999; Boukhatmi et al., 2012; Dobi et al., 2015;
Figure 2A). iTF codes control muscle morphological identity, that
is, each muscle-specific size, orientation and attachment sites to the
epidermis via specialised tendon cells, and muscle/muscle matching
at segment borders (Schweitzer et al., 2010; Dobi et al., 2015;
Maartens and Brown, 2015; Carayon et al., 2020). Drosophila
muscle iTFs include orthologues of mammalian myogenic TFs,
such as MyoD/MRF (Muscle Regulatory Factor), Lbx, Islet1, Six
and Tbx1 (de Joussineau et al., 2012; Buckingham and Rigby, 2014;
Dubois et al., 2016). Nautilus (Nau), theDrosophilaMRF ortholog, is
expressed in all FCs before fusion (Michelson et al., 1990), before
being restricted to and required in a small set of muscles
(Balagopalan et al., 2001; Enriquez et al., 2012). A defined
number of muscle PCs in abdominal segments divides into one
FC and one adult muscle precursor (AMP). AMPs proliferate until
metamorphosis, at which point most fuse together to de novo form
adult muscles. AMPs are characterised by persistent expression of
Drosophila Twist, a bHLHTF expressed early in all mesodermal cells
(Bate et al., 1991; Figure 2A). Similar to vertebrates, a small number
of AMPs is set aside to form a pool of satellite cells required for
muscle repair in adults (Chaturvedi et al., 2017; Boukhatmi, 2021).

AMs are also seeded by embryonic FCs, the only FCs which co-
express the T-box factor Org-1 (optomotor-blind-related-gene-1)
and the LIM homeodomain TF Tailup (Tup) (Tao et al., 2007;
Schaub et al., 2012; Boukhatmi et al., 2012; Boukhatmi et al., 2014;
Figures 2A, B), the Drosophila orthologues of mammalians
Tbx1 and Islet1, respectively (Thor and Thomas, 1997; Tao et al.,
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TABLE 1 Alary Muscles in different Arthropods. Arthropod species in which AMs were studied either in adults, or/and in larvae are listed by alphabetical
order. Their characteristics and/or common name, order and (sub) family are indicated. Human diseases linked to insect species in bold are indicated. The
reported numbers of AMs pairs are given. * refers to the discovery of TARMs in Drosophila.

Species name Characteristics and/or
common name

Order; (sub)
family

Linked human
diseases

AM pair
number

References(s)

ADULTS

Aedes aegypti hematophagous mosquito Diptera; Culicidae chikungunya, dengue, Zika
(virus)

Leódido, et al. (2013)

Anopheles aquasalis hematophagous mosquito Diptera;
Anophelinae

malaria (Plasmodium vivax) Barbosa da Silva et al., 2019

Anopheles gambiae hematophagous mosquito Diptera;
Anophelinae

malaria (Plasmodium
falciparum); lymphatic

filariasis

6 Glenn et al. (2010)

Baculum
extradentatum

walking stick Phasmatodea;
Clitumninae

10 Ejaz and Lange (2008)

Carausius morosus common stick insect Phasmatodea;
Lonchodinae

Opoczynska-Sembratowa (1936),
cited in Bullock and Horridge (1965)

Culex
quinquefasciatus

hematophagous mosquito Diptera; Culicidae West Nile fever Martins et al. (2011)

Drosophila
melanogaster

fruit fly Diptera;
Drosophilidae

4 Curtis et al. (1999)

Glossina morsitans tsetse (sleeping sickness) fly Diptera; Glossinae Trypanosomiasis
(Trypanosoma brucei)

7 Meola et al. (2003)

Manduca sexta tobacco hawk moth Lepidoptera;
Sphingidae

Dulcis, PhD thesis, Univ. Arizona,
(2004)

Marinogammarus
marinus

Amphipod; freshwater shrimp Amphipoda;
Gammaridae

9 Alexandrowicz, (1954)

Panstrongylus
megistus

kissing bug Hemiptera;
Reduviidae

Chagas disease (Trypanoma
cruzi)

8 Nogueira and de Souza (1991)

Periplaneta
americana

american coakroach Blattodea;
Blattidae

Adams et al. (1973)

Sphinx ligustri privet hawk moth Lepidoptera;
Sphingidae

Wasserthal and Wasserthal (1977)

Toxorhynchites
theobaldi

phytophagous “elephant”
mosquito

Diptera; Culicidae Barbosa da Silva (2019)

Rodniux prolixus kissing bug Hemiptera;
Reduviidae

Chagas disease (Trypanoma
cruzi)

7 Chiang et al. (1990)

Locusta migratoria Migratory locust Orthoptera;
Oedipodinae

Miller et al. (1979)

Hyalophora cecropia Giant silk moth Lepidoptera;
Saturniidae

Sanger and McCann (1968)

Caligo beltrao purple owl Lepidoptera;
Morphinae

Wasserthal and Wasserthal (1980)

LARVA/CATERPILLAR

Anopheles gambiae hematophagous mosquito Diptera;
Anophelinae

malaria (Plasmodium
falciparum); lymphatic

filariasis

9 League et al. (2015)

Anopheles
quadrimaculatus

hematophagous “March”
mosquito

Diptera;
Anophelinae

malaria (Plasmodium
falciparum)

Jones (1954)

Bombyx Mori domestic silk moth Lepidoptera;
Bombicidae

8 Ai H and Kuwasawa (1995)

Calliphora
erythrocephala

bow fly, house fly Diptera;
Calliphoridae

7 Lowne (1890); Jensen (1973)

(Continued on following page)
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2007; Schaub et al., 2012). Unlike skeletal muscle FCs, AM FCs do
not express Nau/MyoD, however, while retaining Twi expression,
similar to AMPs (Boukhatmi et al., 2014; Schaub et al., 2015;
Figure 2B). This unique Org-1+, Tup+, Twi+, Nau− expression
pattern together with the presence of AMs in both larvae and
adults, is suggestive of a dual, embryonic and adult identity of AMs FCs.

Development of AMs and thoracic
alary-related muscles (TARMs)

At embryo hatching, the Drosophila dorsal vessel extends from
the abdominal A7 segment forward to the thoracic T2/T3 segment

boundary. Seven pairs of larval AMs, one per abdominal segment
dorsally attach to the extracellular matrix (ECM) produced by the
pericardial cells surrounding the layer of cardiomyocytes (Labeau
et al., 2009; Drechsler et al., 2013; Boukhatmi et al., 2014; Figures 2C,
D). That ECM plays a key role in attachment of embryonic AMs to
the heart was illustrated by AMs detachment in mutant alleles of two
ECM proteins, laminin B1 and Cg25C, one type IV collagen in
Drosophila (Hollfelder et al., 2014). Another ECM constituent of the
elastic connective tissue surrounding the embryonic Drosophila
heart is Pericardin (Prc), a collagen IV-like protein (Chartier
et al., 2002; Reinhardt et al., 2023). Upon Prc depletion, AMs
come apart from the heart and the heart lumen collapses
(Drechsler et al., 2013; Bataillé et al., 2020). Laterally, AMs attach

FIGURE 1
Drosophila adult dorsal vessel and AMs. (A) Schematic drawing of an adult Drosophila (modified from Miller, A., 1950). Alary Muscles (AMs) in
abdominal segments A2 to A5 (AMsA2-A5) are drawn in red. The ventral longitudinal muscle (VLM, brown) is located underneath the heart (pale green).
Green dots indicate pericardial cells, and black dots the 3 pairs of valve cells. (B) Confocal view of the heart and AMs. Dissected AMER-Gal4; UAS-cd4-
tdTomato, HandC-GFP adult (Bataillé et al., 2020) stained with Phalloidin, showing AMs in red, pericardial cells (PCCs) and cardiomyocytes in green,
and dorsal abdominal skeletal muscles (SM) in blue. (B’) Phalloidin staining of the A4 segment, dorsal Z sections, showing the SMs, heart and AMA4.

TABLE 1 (Continued) Alary Muscles in different Arthropods. Arthropod species in which AMs were studied either in adults, or/and in larvae are listed by
alphabetical order. Their characteristics and/or common name, order and (sub) family are indicated. Human diseases linked to insect species in bold are
indicated. The reported numbers of AMs pairs are given. * refers to the discovery of TARMs in Drosophila.

Species name Characteristics and/or
common name

Order; (sub)
family

Linked human
diseases

AM pair
number

References(s)

Drosophila
melanogaster

fruit fly Diptera;
Drosophilidae

7 + 3* Labeau et al., (2009); Boukhatmi
et al. (2014)

Manduca sexta tobacco hawk moth Lepidoptera;
Sphingidae

7 Davis et al. (2001)
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to tendon cells situated at the intersegmental border. In their
trajectory from the exoskeleton to the heart, AMs loop around
main branches of the respiratory tracheal system. In addition
different AMs contact other internal organs including the gonad
and the fat body (Boukhatmi et al., 2014; Anllo et al., 2019). AM in
segment A1 (AMsA1) connects the lymph gland (LG), the larval
hematopoietic organ (Rizki, 1978; LaBeau et al., 2009; Bataillé et al.,
2020; Figure 2D). An astonishing observation byWeavers and Skaer,
2013, was that the distal tip cells of developing anterior Malpighian
tubules (MTs) successively adhere to AMA5, AMA4, and
AMA3 during organogenesis, and that this sequential adhesion
process is required for proper MT looping, and likely, effective
hemolymph sampling. The AM/MT interaction was the first hint
that AMs could establish, and be deformed by contacts with various
tissues and be involved in positioning of internal organs in addition
to the heart (Weavers and Skaer, 2013).

The observation of Org-1+/Tup+ expressing FCs in thoracic
segments (Figure 2B) led to another astonishing discovery, the
existence of three pairs of thoracic alary-related muscles (TARMs)
connecting the exoskeleton to specificmidgut regions (Boukhatmi et al.,

2014; Figures 2C, D). Two TARMs, TARM* and TARMT1, are seeded
by FCs specified in thoracic segment T1 and attach to the proventriculus
and to gastric caecae, respectively (Figures 2B, D). TARMT2 is seeded by
a FC specified in T2 and connects to a precise position of the anterior
midgut. The absence of Hox expression in TARMT2 is reminiscent of
the situation in somatic muscles which led Roy et al. (1997), to propose
that the T2 muscle pattern was the ‘ground state’. A TARM FC is
specified in T3 but programmed cell death induced by Antp/
HoxB7 activity interrupts TARM development in this segment
(Bataillé et al., 2020; Figure 2B). AMs and TARMs attachment to
the dorsal vessel and visceral organs, respectively, is also under Hox
control. In Hox gain-of-function experiments, AMs form in thoracic
segments (Labeau et al., 2009; Weavers and Skaer, 2013) instead of
TARMs (Bataillé et al., 2015). Conversely, removal of posterior Hox
(Ubx, Ultrabithorax) information in AMA1 and AMA2 leads to their
transformation into TARM-like muscles connecting to the gut at the
same position as TARMT2, suggesting that connection to endoderm is
the default fate (Bataillé et al., 2015; Bataillé et al., 2020).

TARMs are the first described striated muscles connecting the
exoskeleton to the gut in bilaterians. So far, TARMs have been

FIGURE 2
Larval AMs and TARMs. (A) Positions of muscle Founder Cells (FCs) at the origin of dorso/lateral skeletal muscles, AMs and Adult Muscle Precursors
(AMPs) in an abdominal segment at embryonic stage 10 (Dobi et al. (2015)). Each FC is represented by a dot. FCs for skeletal muscles, designated by
muscle initials and number (Bate, 1993), express Nau/MyoD (grey), AMPs express Twi (blue) and AM FCs express Twi plus Org-1/Tbx1 and Tup/Islet1 (red).
(B) Schematic representation of Hox expression in AM FCs in a stage 11 embryo. Antp expression leads to AM apoptosis (black cross) in segment T3.
(C–E) Third instar larvae. (C)Dorsal view of an intact AMER-Gal4; UAS-cd4-tdTomato, HandC-GFP larva showing AMs and TARMs in red, cardiomyocytes,
pericardial cells and valve cells (white circle) in green, and brightfield in grey to visualize the position of the dorsal tracheal trunks. (D) Schematic drawing
of AMs and TARMs (adapted from Bataillé et al. (2020)). Abdominal AMA1-A7 and thoracic TARMs1-3 are drawn in red. AMs are internal to the dorsal trachea
(grey blue), and connect dorsally to the ECM surrounding the pericardial cells and the dorsal vessel (green), and the Lymph Gland (purple). AMA3interacts
with the tip cell of the anterior Malpighian tubule (MT). TARMs connect specific regions of the gut (light grey). (E) Detailed views of AMA4-A5 attachment to
the heart viewed by confocal microscopy on a dissected AMER-cd4-tdTomato; HandC-GFP larva stained with Phalloidin and Pericardin (Prc), showing
AMs and Prc in red, pericardial cells (PCC), cardiomyocytes and valve cells in green, and skeletal muscles (SM) in blue. Median and right panels show AMs
and Prc (red), and Phalloidin staining (blue), illustrating the ECM network prolongating the striated myofibrils and connecting AMs on either side of the
heart and to the heart itself.
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documented neither in adult arthropods, nor in embryos of
primitive ametabolous or hemimetabolous insects which hatch as
a miniature version of the adult and do no not develop through a
larval stage (Table 1). Investigating TARMs in a wide spectrum of
arthropods could be the source of new discoveries.

AMs and TARMS in larvae: Architectural
and signalling functions?

Genetic analyses showed that embryonic AM and TARM
development requires both org-1 and tup functions (Boukhatmi
et al., 2014). The design of AM/TARM-specific org-1 and tup-
expression reporter lines allowed in turn to specifically follow
and ablate these muscles in larvae (Schaub et al., 2015; Bataillé
et al., 2020). Morphological analyses confirmed that the shape of
anterior and posterior AMs diversifies during larval development
(Jensen, 1973). AMsA5-A7 adopt multi-fibre, fan-shaped connections
to the heart (Figures 2C–E). AMsA1-A3 maintain a conspicuous
tripolar “T” shape, with myofibres oriented ventro-dorsally from
the exoskeleton to the aorta, then laterally along the aorta (Bataillé
et al., 2020; Figure 2C and Supplementary Movie S1).

Targeted loss of AMs in larvae both leads to collapse of the
cardiac vessel, recalling the proposed role in adults in AMs, and
relieves topological constraints on curvature of the respiratory
system. Loss of TARMs impairs positioning of the visceral mass.
Therefore, AMs and TARMs collectively or individually maintain
internal organs in proper position within the hemocoel (Bataillé
et al., 2020). AMs/TARMs could also play signalling functions.
TARMT2 attaches to the junction region of the anterior and acid-
secreting portion of the larval midgut, where enteroendocrine cells
expressing DH31 required for peristalsis are located (LaJeunesse
et al., 2010). This attachment site and food transit reduction upon
deletion of TARMs raise the possibility that TARMs could regulate
endocrine functions. The lateral aspects of AMA1 run between the
dorsal vessel and LG primary lobes and englobe the hematopoietic
niche cells. Vesicles originating from AMs are detected in the aorta
region situated between the LG lobes, suggesting that AMs could
signal to the LG (Bataillé et al., 2020). Of note, the AMA1 pair is the
only pair which does not detach in laminin B1mutants, suggesting a
specific attachment mode (Hollfelder et al., 2014).

Undeniably, a most-peculiar feature of AMs and TARMs,
revealed by live imaging of crawling larvae, is their extreme
deformability/elasticity (Bataillé et al., 2020; Supplementary
Movie S1). The multiple shapes adopted by AMs suggest that
they could be passively deformed along each crawling stride
cycle, during which internal organs move asynchronously with
surrounding abdominal body wall (Heckscher et al., 2012). This
deformability and asymmetric attachments to rigid and soft tissues,
distinguishes AMs/TARMs from other striated muscles. In larvae,
the sarcomeric AM fibres are prolonged by ECM rich fibres (Bataillé
et al., 2020; Figure 2E). It was previously reported in Calliphora that
systole causes considerable elongation of the elastic (dorsal) fibres
from the alary muscles but only little elongation of the muscle fibres
themselves (Jensen, 1973), an observation which remains to be
investigated in depth. Whether AMs/TARMs express specific
isoforms of Myosin heavy chain (MHC) and/or proteins of the
sarcomere anchors (Kiehart et al., 1989; Kronert et al., 2012;

Steinmetz et al., 2012; Cao and Jin, 2020; Murgia et al., 2021) to
achieve peculiar deformability properties needs to be investigated,
with biomaterials and biomedical perspectives.

Trans-differentiation of AMs at
metamorphosis

Complete metamorphosis of holometabolous insects includes
histolysis of abdominal larval body wall muscles and de novo
formation of adult muscles. The presence of AMs both in larvae
and adults of holometabolous insects therefore stands out as
exception, and AM behavior during metamorphosis has intrigued
entomologists for years (Jensen, 1973). The dorsal vessel is itself
considerably restructured: the linear heart tube with one terminal
wide-lumen heart chamber in larvae is converted into a linear four-
chambered heart tube with three valves in adults (Rizki, 1978;

FIGURE 3
AMs fate at metamorphosis. (A) Schematic representation of the
dorsal vessel andAMs in a late embryo. The 7 pairs of abdominal AMsA1-A7

display a similar T-shape. AMsA2-7 are innervated at their base by the TN
motor neuron (violet) and dorsal dendrite of the peripheral lbd
neuron (blue). (B) third instar larva: AMs have increased in size and
diversified in morphology during larval growth. Innervation has not
yet been described in detail. (C) After metamorphosis, 4 pairs of AMs,
AMsA2-5 are found in adults. AM innervation is shifted to dorsal
myocardium. Fragmentation of larval AMsA1-3 into mononucleate
myoblasts (ADMCs) is followed by a new round of fusion into VLM. This
trans-differentiation process and apoptosis of posterior AMs leaves
uncertain the origin of adult AMsA2-A5.
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Lehmacher et al., 2012; League et al., 2015; Rotstein and Paululat,
2016; Poliacikova et al., 2021; Meyer et al., 2023; Figures 3A–C).
During this process « aortic » larval A1 to A4 myocytes are
reprogrammed to acquire contractile properties while abdominal
A5-A7 myocytes are eliminated by programmed cell death (Monier
et al., 2005; Poliacikova et al., 2021). This results in forward shifting
of the contractile heart from segments A5-A7 in embryos/larvae to
A2-A5 in adults, the adult aorta being restricted to the thorax.
Alongside, only a subset of AMs survive metamorphosis while
VLMs are a new addition (Jensen, 1973; Curtis et al., 1999;
Figures 3B, C). One hypothesis was VLMs could form by fusion
of adult myoblasts with AM fragments (Curtis et al., 1999). AM fate
and trans-differentaition into VLMs in Drosophila pupae has now
been deciphered, using in vivo imaging, cell lineage and genetic
analyses (Schaub et al., 2015; Schaub et al., 2019). These authors
showed that larval AMA1-A3 undergo a lineage reprogramming
process without proliferation. One first step is dedifferentiation
and fragmentation of AMA1-A3 into mononucleated alary muscle
derived cells (AMDCs), a step which involves JNK and Yorkie
signalling. It is followed by a de novo round of fusion of AMDCs
including recruitment of additional myoblasts from the pool of
AMPs, and re-differentiation of de novo syncytia into VLMs
(Figures 3B, C). Like AM FC specification, AM to VLM
transdifferentiation is controlled by Org-1/Tbx1 and Tup/Islet1.
It also requires Twi acting downstream of Org-1 (Schaub et al., 2015;
Rose et al., 2022). Further dissection of this naturally occurring
transdifferentiation process will likely bring more information into
mechanisms of cellular reprogramming during ontogeny and tissue
regeneration. Trans-differentiation of larval AMA1-A3, together with
removal of posterior AMs and maintenance of AMA4 connection to
the posterior cardiac valve region (Jensen, 1973; Monier et al., 2005;
Meyer et al., 2023) leaves unclear, however, how adults AMA2-A5 are
remodelled during metamorphosis (Figures 3B, C). More broadly,
how reprogramming of larval aorta into contractile cardiomyocytes,
transdifferentiation of specific cardiomyocytes into valve cells,
transdifferentiation of anterior AMs into VLM and connection of
AMA5-AMA7 to the adult heart is coordinated during
metamorphosis to generate a functional adult dorsal vessel,
remains a fascinating question.

Both skeletal muscles, AMs and TARMs, considerably enlarge
during Drosophila larval development to accommodate increasing
body volume. For skeletal muscles, fusion of a FC with a defined
numbers of FCMs in embryos sets the number of nuclei specific to
each muscle. Muscle size increase is accompanied by an increased
size, not number, of nuclei with endoreplication stepping up the
DNA content within each nucleus. Nuclear scaling, i.e., maintaining
a stable scaling of DNA content with muscle size, relies upon muscle
individual increase of nuclear ploidy (Demontis and Perrimon,
2009; Windner et al., 2019). Polyploidization of cardiac and
pericardial cells (Jensen, 1973; Chakraborty et al., 2023) also
accompanies the increase in length of the Drosophila heart. The
number of nuclei per AM/TARM in L3 larvae is between 4 and 6
(Bataillé et al., 2020), similar to the number at embryo hatching
(Boukhatmi et al., 2014; Rose et al., 2022), suggesting as for skeletal
muscles the absence of nuclear divisions during larval development.
Yet, the ability of at least a subset of multinucleate AMs to
dedifferentiate into mononucleated alary muscle derived cells
(AMDCs) and fuse with additional myoblasts during VLM

formation (Schaub et al., 2015; 2019; Figure 3B) suggests that
these AM nuclei are diploid at the onset of metamorphosis,
something which remains to be ascertained. How to reconcile
AM nuclear diploidy and AM growth could then be addressed.
More globally, the dual embryonic and adult identity of AM nuclei
suggests specific properties. Localized interactions of AMs with
other tissues, such as the LG or the MT tip cell further raises the
question of whether some AMnuclei are specialized to regulate these
local interactions.

AMs dual innervation?

Innervation of the heart in the control of heart-beating and
hemolymph flux has been investigated in various insects and
crustaceans (Alexandrowicz, 1954; Bullock, T. H. and Horridge,
1965; Miller and Usherwood, 1971; Jones, 1977; Miller et al., 1979).
Several questions related to AMs role(s) in heart control needed to
be addressed: whether AMs were innervated, independent of heart,
and by which type of neurons (Wasserthal and Wasserthal, 1977;
Carr and Taghert, 1988; Chiang et al., 1990; Ai and Kuwasawa, 1995;
Miller, 1997).

The present view is that adult AMs, or a subset, are innervated by
the dorsal branch of a segmentally repeated nerve (alternately called
dorsal nerve or transverse nerve (TN)), with neuron-AMs junctions
located at their junction to the myocardium (Wasserthal and
Wasserthal, 1977; Carr and Taghert, 1988; Chiang et al., 1990; Ai
and Kuwasawa, 1995; Miller, 1997; Dulcis and Levine, 2003; Meola
et al., 2003). Dorsal projections of the TN have been observed to
fasciculate with a peripheral bipolar neuron (lbd), also designated as
BpN, BpN2 or L1 (Wasserthal and Wasserthal, 1980; Bodmer and
Jan, 1987; Miller, 1997; Dulcis and Levine, 2003; Williams and
Shepherd, 1999; Ejaz and Lange, 2008; Figure 3C). An FMRFamide
neuromediator were previously co-localised to the dorsal unpaired
median (DUM) heart-1a neuron which projects to the heart and
AMs in locusts (Stevenson and Pflüger, 1994; Lange et al., 2009).
Glutamate immunostaining was also detected in the Drosophila
abdominal heart (Dulcis and Levine, 2003). Innervation of adult
AMs could thus comprise excitatory and neurosecretory
innervation. It remains to separate out which neuron (terminals)
are active on the adult AMs and on the heart itself, and the specific
roles of the peptidergic and glutamatergic innervation (Miller, 1997;
Dulcis and Levine, 2003).

In larvae, heart position and lumen opening are constrained by
AMs (Bataillé et al., 2020), but not heart-beating activity which is
myogenic. However, Gorczyca et al. (1994), found that AMs were
already innervated by the TN in late embryos, at their base, not dorsal
attachment to the heart, unlike proposed in adults (Figure 3A). The
embryonic TN extends dorsally from the CNS and reaches the cell body
of the lbd neuron along the segmental boundary after branching off to
innervate one skeletal muscle, the ventral transverse muscle 1 (VT1)
(Gorczyca et al., 1994; Macleod et al., 2003; Landgraf and Thor, 2006).
The dorsal dendrite of the lbd neuron travels with the TN to the base of
the AM (Gorczyca et al., 1994; Figure 3A). Correlatively, the structure of
the embryonic AM neuromuscular junction displays both features of
excitatory motoneurons with the postsynaptic marker, Disc Large
(DLG), accumulation around boutons (Wang X. et al., 2022) and
thick neuritic endings diagnostic of the tip of sensory neurons
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(Gorczyca et al., 1994). Thus, both embryonic and adult data suggest a
dual AM innervation, motor and peripheral, deviating from the rule of
insect skeletal muscles solely innervated by motoneurons (Kohsaka
et al., 2012).

The question of whether AM function(s) is active or passive in
relation to heart beat and possibly in coordination with the animal
motion was introduced by Alexandrowicz (1954). In mammals,
feedback proprioceptive information from muscle to the CNS is
provided by sensory innervation of intrafusal muscle fibres (Barker
and Chin, 1961; Kröger and Watkins, 2021; Dimitriou, 2022). In the
Drosophila larva, proprioceptive information is provided by surface
touch neurons and neurons of stretch-receptive, chordotonal organs
(ChO). Neither are directly connected to larval skeletal muscles
(Ghysen and Dambly-Chaudiere, 1989; Brewster and Bodmer, 1995;
Hassan et al., 2019). The base of AMs, the site of neuro-AM junction
prior to metamorphosis, superimposes a nodal epidermal
attachment site of many skeletal muscles (Labeau et al., 2009;
Boukhatmi et al., 2014; Bataillé et al., 2020; Figure 4). This

location raises the admittedly speculative possibility that the lbd
neuron could sense AM stretching during locomotory contraction
and relaxation waves, and feed-back information to the TN neuron.
Intrasegmental contractions of lateral muscles are sensed by the
lateral LCh5 chordotonal organs (Figure 4A) (Caldwell et al., 2003;
Klein et al., 2010; Hassan et al., 2019). The stretching axes of AMs
and LCh5 could possibly form a proprioceptive grid (Figure 4B).
Prior to speculating further, many functional data are needed. It
remains unknown whether the TN controls AMs contraction, and
whether the neuronal input from the ldb is neurosecretory and/or
carries a sensory feed-back function.

The lbd is one peripheral neuron which persists from larval to
adult (Williams and Shepherd, 1999). During metamorphosis, TN
dorsal arborizations ramify extensively along cardiac chambers and
associated AM strands (Dulcis and Levine, 2003), such that AM
innervation seems to be shifted from its base in larvae, to strands
reaching pericardial ECM in adults (Figures 3A–C).Whether the lbd
and TN neurons are part of the same neuronal circuit(s) in larvae
and adults also remains to be deciphered.

Ancestral origin and evolution of AMs;
the Tbx1-Islet1 (Twi) network

An unusual feature of AMs/TARMs which distinguishes them
form cardiac, skeletal and visceral muscles is their asymmetric
attachment, to the exoskeleton on the one hand, and either the
cardiac or the visceral mesoderm, on the other. In mammals, the
muscle diaphragm which separates lung and heart from visceral
organs is also an asymmetric striated muscle. Its peculiar C-shape
results from insertion of lateral muscular fibres into bones, either
ribs or vertebrae, while central fibres are organised around a sheet of
fibrous tissue, the central tendon which surrounds the esophageal
hiatus (Merrell and Kardon, 2013). Although highly speculative,
whether the mammalian diaphragm and the insect AMs/TARMs
and VLM could represent two specific adaptations of an ancestral
demarcation between dorsal circulatory and respiratory, and ventral
visceral organs, is one possibility. In primates, facial subcutaneous
muscles display asymmetric attachment, into the skin on one side,
and to facial bones or other muscles, on the other (Heude et al., 2018;
Ziermann et al., 2018). Some of these muscles derive from the
cardiopharyngeal mesoderm, also at the origin of the esophagus
striated muscle (ESM) which forms in the absence of a primary
skeletal muscle scaffold. Tbx1 and Islet1 are required cell-
autonomously for specification of ESM progenitors, Tbx1 acting
genetically upstream of Islet1 (Gopalakrishnan et al., 2015; Comai
et al., 2019). More broadly, Tbx1 and Islet1 are major conserved
actors in the genetic program controlling pharyngeal muscle
development in chordates while Twi is involved in formation and
regeneration of extraocular muscles (Nathan et al., 2008;
Sambasivan et al., 2011; Zhao et al., 2020; Whitman et al., 2022).
In Drosophila, the Tbx1/Islet1 genetic hierarchy selectively controls
AM/TARM development and, together with Twi, AM into VLM
trans-differentiation (Boukhatmi et al., 2014; Schaub et al., 2015;
Rose et al., 2022). Whether the Tbx1/Islet1 hierarchy has been
recruited during evolution for diversification and specific
adaptations of striated muscles is an open question. Extant
cnidarians display myoepithelial cells that are fully integrated

FIGURE 4
The dorso-lateral muscles. (A) Two consecutive segments are
shown. Left segment, internal view; right segment, external view. AMs
are the internal-most muscles. Each muscle is designated by its
abbreviated name (Bate, 1993). The dorso-lateral muscle
attachment sites at each segmental border are drawn in green, the
lateral pentascolopidial chordotonal organs (LCh5) in brown, with
neuron cell bodies in blue. Pericardin-rich ECM is drawn in black. (B)
The contours of muscles attached to the lateral intersegmental
epidermal attachment site are drawn, illustrating muscle-muscle
matching interfaces (dark grey) and the nodal attachment site of AMs.
The dorsal projections of the TN (violet) and LBD (blue) neurons reach
the base of AMs. The stretching axes of the LCh5 ligament cells and the
AMs are schematised by dotted double arrows.
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into the ectodermal and endodermal epithelial tissues. These
specialized cells which contain interconnected contractile basal
extensions play equivalent roles to muscle layers (Leclère and
Röttinger, 2017). In medusae, locomotion is achieved by the
rhythmic pulsation of circular sheets of epithelial striated muscles
located around the bell margins and lining the subumbrellar surface.
Their contractions are counteracted by the elastic properties and
antagonistic force of the ECM (mesoglea) (Leclère and Röttinger,
2017; Wang Y. et al., 2022). It would certainly be rewarding to
investigate whether the Tbx1-Islet1 (Twi) regulatory hierarchy
operates in muscles of cnidarians and/or other diploblastic
animals and contributes to specifying specific mechanical/elastic
properties such as those found in AMs/TARMs.

Concluding remarks

AMs andTARMs aremultinucleate striatedmuscles connecting the
exoskeleton to multiple internal organs in insects. Several critical
questions remain unanswered, among which the modes and roles of
AM innervation, their mechanical properties, and their evolutionary
origin. Further characterization of these still mysterious muscles is
expected to bring original insight into the processes of anatomical, and
physiological diversification of striated muscles throughout evolution.
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