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The Section on Nuclear Organization and Dynamics has a wide range of expertise on its
Editorial and Reviewer Boards and we have captured a snapshot of this in the set of papers
highlighted in this Editor’s Showcase.

Zelenka et al. in previous studies of the T-cell CD4+/CD8+ stage of development had
noted that the transcription factor SATB1 had additional functional roles (Cai et al., 2003;
Feng et al., 2022; Zelenka et al., 2022). They postulated that these roles might be supported by
another splice variant of SATB1 and in “A novel SATB1 protein isoform with different
biophysical properties” they identified this novel variant. Apart from a beautiful
characterization of this novel splice variant that included super-resolution microscopy
imaging and identification of many interacting proteins, they found that it phase separates
and does so in a manner regulated by phosphorylation. Notably, they also found it binds to
non-coding RNAs and it has recently been demonstrated by Nobel Laureate Phil Sharp and
others (Zhang et al., 2015; Sharp et al., 2022) that RNA binding can also drive phase
separation. They demonstrated a propensity to phase separate for both the previous and
novel isoforms, but further showed that an additional exon in the novel isoform also
contained a prion-like domain that further enhances its phase-separation capabilities. In
comparing ATAC-Seq cancer data, they found that the accessibility of the extra exon in the
novel isoform (implying its expression) correlates with better outcomes in several cancers.
Finally, consistent with splicing proteins being amongst its identified interacting proteins,
the new SATB1 isoform seems to regulate its own splicing. These findings are important not
just in their own right, but because after over a quarter century studying this transcription
factor and massive amounts of high-throughput sequencing studies, a new splice variant can
still be found. Editors at the Section on Nuclear Organization and Dynamics anticipate that
there are thousands of as yet unidentified tissue- and developmental stage-specific splice
variants and encourage papers identifying them as well as papers identifying new drivers of
phase separation.

Stephenson-Gussinye and Furlan-Magaril presented an insightful overview of the
evolving field using “Chromosome conformation capture technologies as tools to detect
structural variations and their repercussion in chromatin 3D configuration.” Historically
translocations were identified by chromosome spreads and subsequently through fusion
points identified by genome sequencing; however, since 4C was first used on primary cancers
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in 2009 (Simonis et al., 2009), it has revolutionized the identification
of these and other structural variations (SVs) by also revealing data
about how the change affects regulation in adjacent regions, e.g.,
altering super-enhancer interactions that regulate expression of
multiple genes that can contribute to the original cancer—for
example, a gene hub supporting cell migration to drive
metastasis. However, even less expensive techniques such as 3C
can give much information about SVs in cancers that can inform on
patient treatments and expected progression.

The labs of Hoboth et al. developed a way that the many millions
of formalin fixed and paraffin embedded (FFPE) tissue sections can
be used for quantitative multi-parameter investigations. In
“Quantitative super-resolution microscopy reveals the differences
in the nanoscale distribution of nuclear phosphatidylinositol 4,5-
bisphosphate in human healthy skin and skin warts,” they developed
protocols for using such samples to quantify nuclear
phosphatidylinositol 4,5-bisphosphate (nPI(4,5)P2) levels within
the nuclear speckle compartment. The authors had previously
shown by that nPI(4,5)P2 levels are elevated in human
papillomavirus (HPV)-associated cancer (Marx et al., 2018) and
wondered if a staining protocol could be developed for use
diagnostically as well as if it is similarly upregulated in HPV-
induced warts that sometimes become malignant (Howley and
Pfister, 2015). Stimulated emission depletion (STED) microscopy
(Hell and Wichmann, 1994; Klar et al., 2000) is amongst the highest
resolution super resolution microscopy approaches, while still being
comparatively easy to use. They adapted a staining protocol for use
with FFPE tissue sections to mark both nPI(4,5)P2 and nuclear
speckles using STED. The paper is worth reading for the shear
beauty of the staining alone, but they moreover demonstrated the
increase in co-localization of the nPI(4,5)P2 and a nuclear speckle
marker in HPV-induced warts compared to healthy skin. This
suggests that similar markers could be used to distinguish disease
samples and potentially even prognostically grade tumors.

Rush et al. presented a beautifully balanced overview of different
models for nucleo-cytoplasmic transport in “Unveiling the
complexity: assessing models describing the structure and
function of the nuclear pore complex.” Notably, the beautiful
historical overview highlights a number of misconceptions from
oversimplification such as the typical textbook descriptions
implying a rigid diffusion barrier when its nature is quite
dynamic. This review is also very valuable in its accuracy and

clear descriptions of the limitations of some of the techniques
used to generate the data on which transport models are derived.
This review is the most comprehensive I have encountered covering
the Plug (Talcott and Moore, 1999), Polymer Brush (Rout et al.,
2003), Oily Spaghetti (Macara, 2001), Hydrogel (Ribbeck and
Gorlich, 2001), Reduction of Dimensionality (Peters, 2005),
Forest (Yamada et al., 2010), Gradient (Ben-Efraim and Gerace,
2001), Dilation (Oberleithner et al., 2000), and Transport Receptor
(Lim et al., 2006) models for central channel transport. In addition,
mechanisms of transmembrane transport through the peripheral
NPC channels are also described.

These papers highlight both the excellence and wide range of
expertise among our editors at Frontiers. It should be noted that in
addition to these great studies and reviews, Frontiers Nuclear
Organization and Dynamics editors have contributed many
excellent studies to many other Research Topics over the past year.
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