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The elimination of cancer cells critically depends on the immune system.
However, cancers have evolved a variety of defense mechanisms to evade
immune monitoring, leading to tumor progression. Complement factor H
(CFH), predominately known for its function in inhibiting the alternative
pathway of the complement system, has recently been identified as an
important innate immunological checkpoint in cancer. CFH-mediated
immunosuppression enhances tumor cells’ ability to avoid immune
recognition and produce an immunosuppressive tumor microenvironment.
This review explores the molecular underpinnings, interactions with immune
cells, clinical consequences, and therapeutic possibilities of CFH as an innate
immune checkpoint in cancer control. The difficulties and opportunities of using
CFH as a target in cancer immunotherapy are also explored.
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1 Introduction

The immune system is crucial in identifying and eradicating cancer cells (Fridman,
2012; Fridman et al., 2017). Tumors, however, have developed a variety of ways to elude
immune surveillance, create an immunosuppressive microenvironment, and often coopt
the immune system to promote tumor growth (Vinay et al., 2015; Abbott and Ustoyev,
2019). The concept of immunological checkpoints, which has emerged as a ground-
breaking field, has highlighted the relevance of immune mechanisms that inhibit the
host response (He and Xu, 2020; Pisibon et al., 2021; Guo et al., 2023). While immune
checkpoints like PD-1/PD-L1, and CTLA4 have attracted a lot of attention, more recent
data suggests that fundamental innate immune mechanisms including the complement
system are also involved in immune escape mechanism in cancer (Parente et al., 2017;
Moore et al., 2021).

The complement system constitutes an essential component of the innate immunity
comprising of over 32 different proteins, including membrane proteins, serum proteins, and
serosal proteins. Three distinct mechanisms can activate the complement system: the
alternative pathway (AP), the classical pathway (CP), and the lectin pathway (LP) (Ricklin
and Pouw, 2021; Kemper et al., 2023). While the CP and LP are initiated by antibody- and
carbohydrate-mediated recognition processes, respectively, the AP is activated by
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hydrolysis of C3 and is constitutively active. Though the three
pathways differ in the initiation of the complement cascade, they
converge at the formation of C3 convertase (C4bC2b in CP and LP
and C3bBb in AP) resulting in cleavage of C3 to C3a and C3b.
Furthermore, by binding C3b, C3 convertases forms C5 convertases
(i.e., C4bC2aC3b in CP and LP and C3bBbC3b in the AP), resulting
in the assembly of cell lytic, membrane-attack complex (MAC, C5b-
9). Membrane bound C3b also act as opsonin and triggers ingestion
by phagocytosis. Furthermore, the anaphylatoxins C3a and C5a,
formed as split products of C3 and C5 cleavage, associate with the
cells of the innate and adaptive immune system to induce
chemotactic and inflammatory responses (Ling and Murali, 2019;
Kemper et al., 2023).

Complement factor H (CFH) is the most important inhibitory
regulator of AP activation. It is a serum protein that plays a crucial
function in suppressing complement activation on cells and in the
extracellular matrix of host tissues (Ferreira et al., 2010) by binding
to cell surfaces via glycosaminoglycans (Blaum et al., 2015;
Langford-Smith et al., 2015). While liver is the predominant
source of CFH (Schwaeble et al., 1987), it is also produced by
other cell types (Brooimans et al., 1990; Chen et al., 2007; Licht et al.,
2009; Ferreira et al., 2010; Sakaue et al., 2010; Tu et al., 2010). In
addition, a truncated form of CFH, known as factor H-like protein 1
(FHL-1), produced by alternative splicing of the cfh gene (Ripoche
et al., 1988), can be found locally, such as in retinal pigment
epithelial cells and the liver (Clark et al., 2014). CFH competes
with factor B for binding to C3b and has three complement-
regulating functions: 1) prevents the formation of C3 convertase
(C3bBb) via the AP; 2) accelerates the dissociation of already formed
C3bBb; 3) serves as a cofactor for the serine protease complement
factor I (CFI) making C3b susceptible to cleavage leading to the
formation of iC3b (Makou et al., 2013). When bound to cell surface,
the iC3b fragment undergoes further hydrolysis by CFI and
membrane-bound cofactors like CR1, resulting in the release of
C3dg and C3d. While C3b deposition initiates series of reactions
culminating in the formation of MAC, its proteolytic degradation
products, iC3b, C3dg, and C3d lead to lymphocyte activation and
maturation by interacting with their receptor, complement receptor
2 (CR2) on immune cells like B cells and DCs (Kalli et al., 1991;
Nagar et al., 1998; Carroll, 2004; Lyubchenko et al., 2005; Carroll and
Isenman, 2012; Merle et al., 2015). Thus, by preventing the
production and amplification of C3 convertases and encouraging
the decay of already produced convertases, CFH plays a crucial part
in controlling amplification of the complement system (Jozsi et al.,
2019). By interacting with a different complement protein, including
C3b and C3d, as well as cell surface glycosaminoglycans (GAGs) and
complement receptor 3 (CR3), CFH prevents complement
activation. However, dysregulation of CFH expression and
function in the context of cancer has also been linked to immune
evasion, fostering tumor development and metastasis (Jozsi and
Uzonyi, 2021).

2 Dysregulation of CFH in cancer and
impact on clinical outcomes

CFH is overexpressed on many different types of cancer cells
and is usually associated with poor prognosis. The first report of the

association of CFH with cancer was published in 1998 where it was
demonstrated that the presence of CFH on lung cancer cells makes
them resistant to complement mediated lysis (Varsano et al., 1998).
Since then, several reports have confirmed the role of CFH in various
solid tumors including glioblastoma (Junnikkala et al., 2000), bone
cancer (Fedarko et al., 2000), ovarian cancer (Junnikkala et al.,
2002), colon cancer (Wilczek et al., 2008), cutaneous squamous cell
carcinoma (Riihila et al., 2014) and breast cancer (Smolag et al.,
2020). In contrast, a few reports have shown the anti-tumoral effect
of CFH. Bonavita et al. demonstrate that in a mouse model of
sarcoma, CFH exerts antitumoral effect by inhibiting the production
of anaphylatoxins thus creating an immunosuppressive
environment (Bonavita et al., 2015). Another study reports
spontaneous hepatic tumor formation in aged mice with CFH
deficiency (Laskowski et al., 2020). This was presumably due to
life-long inflammation or potentially due to non-canonical effects of
CHF; it is not clear if this finding would be relevant to humans
undergoing treatment with an anti-CFH antibody. Thus, CFH has
become a therapeutic target of interest, although the exact way to
target CFH without off-target effects has been challenging.

CFH is also produced by cells other than the liver, including
cancer cells. In renal cell carcinoma, intracellular CFH has been
reported to drive tumor growth independent of the complement
cascade (Daugan et al., 2021). It has been shown that CFH is
upregulated in lung cancer, and that this overexpression is
associated with larger tumors, lymph node metastases, and worse
overall survival (Ajona et al., 2004; Cui et al., 2011). Increased CFH
expression is also linked to larger tumor size, metastasis, and late
stage tumors in breast cancer (Smolag et al., 2020). Further, CFH
levels are elevated in cutaneous squamous cell carcinoma and
overexpression is linked to immunosuppression (Johnson et al.,
2022). Increased CFH expression has also been detected in tumor
tissues relative to neighboring normal tissues in this disease. CFH
dysregulation in cancer has significant implications for clinical
outcomes. Increased CFH level in the tumors of lung
adenocarcinoma patients is linked to poorer overall and disease-
free survival and serves as a prognostic marker (Cui et al., 2011).
Additionally, CFH may function as a prognostic biomarker in other
malignancies including cutaneous squamous cell carcinoma
(Johnson et al., 2022). Furthermore, it has been linked to the
invasion and spread of cancer cells. Small extracellular vesicles,
called exosomes, secreted by cancer cells can promote metastasis by
delivering protein andmRNA cargo to other cancer cells and to non-
cancer cells at distant sites, helping to prepare “premetastatic niches”
where cancer cells can seed. Mao et al. have shown that CFH on
tumor extracellular vesicles stimulates tumorigenesis and metastasis
(Mao et al., 2020). Another study by Bushey et al. confirms that
CFH-containing exosomes, secreted from tumors that express CFH,
may be shielded from complement-dependent destruction by their
CFH and a higher level of these exosomes has been linked to higher
metastatic potential of cancer cell lines (Bushey et al., 2021).

Interestingly, early-stage non-small cell lung cancer patients
who do not develop metastasis or recurrence after surgical
resection had autoantibodies against CFH. These anti-CFH
autoantibodies were found to recognize a conformationally
unique CFH epitope hypothesized to be presented on the surface
of tumor cells (Amornsiripanitch et al., 2010; Campa et al., 2015).
The autoantibodies inhibited CFH binding to lung cancer cells,
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increased C3b deposition, and induced complement mediated lysis
of tumor cells (Campa et al., 2015) and also served as prognostic
marker for stage I NSCLC (Gottlin et al., 2022).

3 CFH functions as innate immune
checkpoint

CFH is a key component in the process of cancer immune evasion
(Ricklin et al., 2010).Multiple studies have established that cancer cells
use CFH to undermine complement-mediated immune responses
and enhance tumor growth and progression (Afshar-Kharghan, 2017;
Revel et al., 2020). The importance of CFH in age-related macular
degeneration and its connection to cancer are highlighted by Riihilä
et al. (Riihila et al., 2014) who discuss how CFH overexpression may
help cancer cells evade the immune system. CFH has been shown to
create immunosuppressive effects by preventing complement
activation, impairing antigen presentation, and encouraging
regulatory T cell development (Parente et al., 2017). It also impacts
immune cell trafficking, cytokine production, and tumor-associated
macrophage polarization, contributing to an immunosuppressive
tumor microenvironment (TME) (Wang et al., 2016; Parente et al.,
2017; Bushey et al., 2023). The following five mechanisms have been
proposed to explain how CFH helps cancer cells to evade
complement-mediated toxicity or immune responses and advance
tumor growth.

3.1 CFH causes complement evasion

As discussed previously, the activation of the complement
pathway through CP, LP and AP results in the production of
complement components that participate in various effector
functions. These include opsonization, inflammation, and direct
lysis of target cells. In the context of cancer, the complement
system’s role extends beyond its traditional function, as it has
been implicated in cancer immune evasion and tumor
progression (Ajona et al., 2019b; Senent et al., 2022). Studies
have demonstrated the involvement of complement in cancer
immune surveillance. For instance, Reis et al. provide an
extensive review on the role of complement in cancer
immunotherapy, highlighting its importance in tumor
recognition, inflammation, and clearance (Reis et al., 2018).
Zhang et al. discuss the implications of the complement system
in tumor development, prevention, and therapy, emphasizing the
role in immunosurveillance and the potential for targeting
complement components in cancer treatment (Zhang et al.,
2019). These studies collectively underscore the critical role of
the complement system in cancer immune surveillance and its
potential as a target for cancer immunotherapy.

CFH gives cancer cells the ability to sabotage complement-
mediated immune responses and advance tumor growth as
discussed above. The formation of the membrane attack complex
(MAC) and consequent cell lysis are both prevented by CFH’s ability
to attach to the surfaces of cancer cells and suppress complement
activation (Parente et al., 2017). Additionally, CFH can obstruct
opsonization, which is necessary for phagocytic cells to recognize
and destroy cancer cells. CFH binds to C3b and thus prevents C3b

from adhering to cancer cells and inhibiting phagocytosis. Further,
by modulating the complement cascade, CFH can limit the
production of pro-inflammatory complement fragments C3a and
C5a and suppress immune cell-mediated tumor destruction. In
addition, CFH prevents the cleavage of C3b and thus the
formation of cleavage products displaying the C3d moiety that
serves as a ligand for CR2 receptors on B cells and DCs. The
binding of C3d to CR2 receptor on immune cells is important
for activation and affinity maturation of lymphocytes (Alcorlo et al.,
2015; De Groot et al., 2015). Due to these evasion tactics, cancer cells
are better able to survive and proliferate by evading immune
surveillance.

3.2 CFH impairs antigen presentation, T cell
expansion, and B cell functions

CFH has been found to interfere with antigen presentation, a
critical step at the beginning of adaptive immune responses against
cancer cells. Dendritic cells (DCs) can bind CFH and lose their
capacity to effectively deliver tumor antigens to T cells. This reduced
antigen presentation restricts the activation and growth of tumor-
specific T cells, suppressing the adaptive anti-tumor immune
response and fostering immunological tolerance (Olivar et al.,
2016; Dixon et al., 2017). CFH also enhances the differentiation
of anti-inflammatory and tolerogenic monocyte derived DCs. These
immature DCs show lower expression of maturation markers and
costimulatory molecules, decreased production of pro-
inflammatory Th1-cytokines like IL-6, IL8, IL-12, TNF, IFN-γ,
and favored immunomodulatory cytokines production including
TGF-β and IL-10. These DCs do not cause activation of allo-
stimulated T cells and increased the production of regulatory
T cells (Tregs) (Olivar et al., 2016).

In addition, CFH directly engages with T cells and inhibits their
activation, proliferation, and effector activities (Wang et al., 2016).
CFH inhibits intratumoral effector T cell function through direct
binding to its receptor CR3 or indirectly through inhibiting
production of complement activation products C3a and C5a. It
has been shown that CR3 is expressed on activated CD4+ and CD8+

T cells (Gray and Horwitz, 1988; Savary and Lotzova, 1992; Hamann
et al., 1997; Wagner et al., 2001) and a majority of CD8+ TILs from
melanoma (Hersey and Jamal, 1990) and pancreatic cancer
(Ademmer et al., 1998). The upregulated CR3 delivers a negative
signal to effector T cells because not only is CR3 expression
associated with dysfunctional (CD28−, CD4low, CD8low, or
CD57+) T cells in different diseases (Dianzani et al., 1994; Mollet
et al., 1998) but also direct engagement of CR3 on T cells by C3bi-
coated zymosan was shown to inhibit T cell proliferation (Wagner
et al., 2001). Recent reports strongly support the premise that tumor-
associated/derived CFH binds to CR3 on CD4+ and CD8+ TILs and
directly inhibits their expansion. Further, it is known that locally
produced C3a/C5a signaling through Ca3R/Ca5R on T cells is
required for CD28 upregulation and T cell activation (Lalli et al.,
2008; Strainic et al., 2008). Since CFH inhibits the production of
these anaphylatoxins (Ajona et al., 2004) further T cell activation is
impeded. However, the role of C3a/C5a in T cell function tumor
immunity is still controversial (Reis et al., 2018; Ajona et al., 2019a;
Wang et al., 2019).
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Merle et al. discovered that CFH also inhibits B cell activation
and function. (Merle et al., 2015). The C3 split product, C3d when
conjugated with antigen interacts with its receptor CR2 on B cells
and follicular DC to induce both B cell activation and follicular DCs
mediated B cell affinity maturation thus presenting these antigens in
germinal centers to incite effector and memory B cell responses
(Carroll and Isenman, 2012; Merle et al., 2015). CFH interferes with
the production of complement split product C3d and thus inhibits
B cell responses. Further, uninhibited systemic complement
activation is induced by loss of CFH resulting in increased
production of C3 fragments with concomitant elevated surface
levels of CR2 on mature B cells associated with increased BCR
signaling (Kiss et al., 2019).

3.3 CFH promotes regulatory
T cell expansion

Though the direct interaction of CFH with Tregs has not been
established, the proliferation and activation of Tregs in the TME
have been linked to CFH overexpression. It has been shown that
tumor cell-expressed indoleamine 2,3-dioxygenase 1 increased CFH
and FHL-1 expression independent of tryptophan metabolism
resulting in Treg proliferation and activation. Further, increased
expression levels of CFH and FHL-1 levels were associated with
poorer survival in glioblastoma patients (Zhai et al., 2021). One
possible explanation for the effect of CFH on Tregs is that CFH
inhibits production of C3d. C3d binds to CR2 on intratumoral Tregs
(itTregs) and cause suppression of Id2 expression which in turn
triggers apoptosis and loss in function of itTregs. Amplified CFH
expression or activity creates an environment that is more
immunosuppressive and favorable to Treg accumulation and
function. Platt et al., have shown that C3d in the tumor
augments anti-tumor immunity via eliminating itTregs by
binding and signaling through its cognate receptor CR2 on
itTregs (Platt et al., 2017). Furthermore, increased CFH
expression is associated with increased prevalence of Tregs and
an immunosuppressive TME in cutaneous squamous cell carcinoma
(Johnson et al., 2022).

3.4 CFH modulates immune cell trafficking
and function

CFH has the capacity to control cytokine production and
immune cell trafficking in the TME. It can influence the
recruitment and activation of other immune cells, such as
neutrophils and macrophages (Ricklin and Pouw, 2021). CFH
binds to CR3 receptors (CD11b/CD18) on neutrophils via its
SCR7 and SCR19-20 domains (Avery and Gordon, 1993;
DiScipio et al., 1998), to modulate cell activation and function
(Losse et al., 2010). It is known that complement pathways and
neutrophils serve to activate each other and the AP acts as a
positive feedback amplification of neutrophil activation (Camous
et al., 2011; Halbgebauer et al., 2018). Studies have shown that
neutrophils with immunosuppressive properties expand in the
TME and are associated with poor prognosis. The neutrophils in
the TME secrete proteases, chemokines and cytokines attracting

other tumor promoting immune cells or immunosuppressive
T cells along with ROS generation and formation of
neutrophil extracellular traps (NETs) facilitating cancer
progression. These neutrophils can serve as biomarkers for
progression and therapy response in cancer patients and may
be used as targets to augment the efficacy of anti-cancer therapy
(Masucci et al., 2019; Wu et al., 2020). Further, Zhao et al. have
shown that a higher ratio of neutrophil-to-lymphocyte is
associated with adverse overall outcome in many solid tumors
(Wu et al., 2020; Zhao et al., 2020). Interestingly, there are reports
to show that CFH not only facilitates neutrophil recruitment, but
it also has an anti-inflammatory effect induced by the formation
of neutrophil extracellular traps (NETs) (Schneider et al., 2016;
Chen et al., 2018). In addition, CFH treatment of neutrophils
induces reactive oxygen species (ROS) production and
degranulation in neutrophils activated by PMA, fibronectin
plus b-glucan, or anti-neutrophil cytoplasmic autoantibody,
thus inhibiting neutrophil apoptosis (Kasahara et al., 1997).

Further, there is evidence to show that neutrophils and
monocytes also engage CFH through membrane bound
molecules such as integrins (e.g., αIIbβ3) and L-selectin (Lambris
et al., 1980; Malhotra et al., 1999; Kang et al., 2012), that are known
CFH receptors. In addition, CFH possibly binds to CR4 receptors on
macrophages and DCs and exhibits similar cellular effects as binding
to CR3 receptors on neutrophils (Parente et al., 2017). These
additional interactions mediate the control of cell adhesion and
migration, and cytokine production confirming that CFH has a
direct anti-inflammatory and tolerogenic effect on intra-tumoral
leukocytes.

CFH can also enhance Myeloid- derived suppressor cells (MDSC)
accumulation, expansion, and immunosuppressive functions within the
TME, contributing to immune evasion, probably via direct interaction
with CR3 receptors (Sun et al., 2012; Parente et al., 2017) as discussed
below. The role of MDSC accumulation in the TME in cancer
progression has been confirmed by several studies (Pillay et al.,
2013; Wu et al., 2020), and the importance of targeting these cells
for cancer immunotherapy has also been demonstrated (Law et al.,
2020; Li K. et al., 2021; Li X. et al., 2021). Dysregulation of CFH can lead
to immunological escape from tumors by impairing immune cell
homeostasis and changing the ratio of pro-inflammatory to anti-
inflammatory cytokines (Jozsi et al., 2019; Smolag et al., 2020).

3.5 CFH promotes tumor-associated
macrophage polarization

CFH can promote tumor-associated macrophages (TAMs)
polarization towards an immunosuppressive M2-like phenotype,
characterized by the release of immunosuppressive and anti-
inflammatory cytokines. It favors differentiation of CD14+

monocyte into IL-10 producing (HLA-DRlowPD-L1hi)
macrophages with immunosuppressive properties. CFH binds to
unidentified receptor(s) on monocytes surface through it SCR19-20
region that leads to its internalization triggering downstream
intracellular events to transform the transcriptome into an
immunosuppressive signature. (Smolag et al., 2020). This
polarization also favors tumor growth and creates an
immunosuppressive TME.
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In summary, CFH mediates immune evasion by cancer cells
through a variety of cellular and molecular pathways. Because of its
overexpression, inhibition of opsonization, and support for an
immunosuppressive TME, CFH helps cancer cells resist
complement-mediated and complement-independent immune
responses. Understanding these pathways lays the groundwork
for the creation of innovative therapeutic approaches that target
CFH to boost antitumor immune responses and enhance cancer
treatment results.

4 Targeting CFH as an immune
checkpoint for cancer immunotherapy

Targeting CFH and its related molecular pathways is a novel
therapeutic approach to modify the TME, improve anticancer
immune responses, and decrease tumor growth and spread.
Multiple strategies could be used for targeting CFH for anti-
cancer therapies. Use of monoclonal antibodies (mAbs) designed
to specifically target CFH could neutralize its immunosuppressive
effects and inhibit cancer progression. These mAbs can potentially
block CFH’s interactions with complement components, permit
complement activation of tumor cells, while driving anti-tumor
immune program. Campa et al. have shown that CFH
autoantibodies isolated from early stage lung cancer patients can
activate the complement system and cause cytotoxicity of tumor
cells in vitro (Campa et al., 2015). Based on this study and the
correlation of anti-CFH autoantibodies with early stage NSCLC,

better outcome, and longer time to recurrence (Amornsiripanitch
et al., 2010; Gottlin et al., 2022), a monoclonal anti-CFH antibody
was cloned from a single peripheral B cell of a NSCLC patient. This
therapeutic antibody, GT103 identifies a conformationally distinct
epitope of CFH located in SCR 19 domain (Bushey et al., 2016). It
exhibits growth inhibitory activity in vivo in several different cancer
models (Bushey et al., 2016; Bushey et al., 2021; Bushey et al., 2023;
Saxena et al., 2023). Further, it enhances CDC of rituximab-resistant
malignant B cells (Winkler et al., 2017). GT103 has shown potential
as a therapeutic agent in cancer (Clarke et al., 2022).

Studies on the mechanism of action of GT103 show that it
overcomes CFH-mediated complement evasion in the TME. In
summary, GT103 modulates the TME and limits tumor growth
via the following processes (summarized in Figure 1). 1.
GT103 causes complement activation through the CP and
induces CDC of cancer cells both invitro and invivo (Bushey
et al., 2016; Bushey et al., 2021; Bushey et al., 2023). 2.
GT103 enhances antigen presentation and T cell expansion.
GT103 treatment increases antigen specific CD4+ and CD8+

T cells in the TME in a syngeneic model of lung cancer (Saxena
et al., 2023). Further, it increases the influx of effector T and B cells
along with DCs and also leads to increased activation of B cell
receptor pathways, mechanisms crucial for antigen presentation
(Bushey et al., 2023; Saxena et al., 2023). 3. GT103 inhibits Treg
activation and expansion. GT103 treatment decreases itTregs in the
TME possibly by inhibiting their activation and inducing their
apoptosis (Saxena et al., 2023). 4. It creates a favorable TME by
modulating immune cell trafficking and cytokine production,

FIGURE 1
Anti-tumor mechanism of GT103. CFH in the TME inhibits antitumor immunity by twomajor modes of actions: direct binding to its receptor CR3 on
TANs and activated T cells as well as possibly M-MDSCs, and indirectly through suppressing complement activation. GT103 blockade of CFH actions in
the TME results in reduced M-MDSC differentiation, increased apoptosis of itTregs and TANs, as well as enhanced expansion of effector CD4+/CD8+

T cells and activated B cells.
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counteracting the effect of CFH. GT103 reduces the influx of
immunosuppressive tumor associated neutrophils, MDSCs, and
itTregs. It further reduces serum levels of pro-inflammatory and
pro-tumorigenic cytokines (Saxena et al., 2023). 5. GT103 inhibits
tumor-associated macrophage polarization to an
immunosuppressive phenotype as evidenced by decreased M2-
type macrophages in the TME (Saxena et al., 2023). 6. Further, it
inhibits hepatocellular carcinoma (HCC) tumorigenesis and
metastasis driven by tumor extracellular vesicles overexpressing
CFH (Mao et al., 2020). GT103 can also target CFH-expressing
tumor-derived exosomes for destruction via innate immune
mechanisms via Fc interactions with C1q or, presumably Fc
gamma receptors on macrophages (Bushey et al., 2021). Thus, by
promoting complement activation and immune cell recruitment to
the TME, the anti-CFH antibody GT103 has demonstrated efficacy
in suppressing tumor growth in preclinical models. The antibody is
currently being evaluated as monotherapy in a phase Ib clinical trial
(Clarke et al., 2022) and in combination with Keytruda in phase II
for advanced, refractory/relapsed NSCLC patients.

In addition to using monoclonal antibodies to target CFH, small
molecule inhibitors that can disrupt CFH’s interaction with tumor
cells and immune cells can be created as therapeutic agents and
utilized as single agents or in combination with other therapies to
improve their efficacy. Furthermore, CFH-based vaccines can be
designed to encourage the immune system to recognize and destroy
CFH-overexpressing tumor cells. CFH peptides or fusion proteins
can be used as antigens in these vaccines to elicit specific immune
responses against CFH-expressing tumor cells. To improve
immunogenicity, CFH-based vaccines can be coupled with
adjuvants or immune-stimulatory drugs. Adoptive cell therapy
with CFH-specific immune cells such T cells or natural killer
(NK) cells can also be utilized to target and eradicate CFH-
expressing tumor cells. To improve specificity and cytotoxicity
against tumor cells, these immune cells can be modified to
express CFH-specific receptors such as T cell receptors (TCRs) or
chimeric antigen receptors (CARs). Furthermore, gene editing
techniques, such as CRISPR-Cas9, can be used to alter CFH
expression in tumor cells and could potentially be used as anti-
cancer therapy. These immunotherapeutic approaches have the
potential to increase immune surveillance and promote anti-
tumor immune responses and need to be explored as anti-CFH
therapy for cancer. In addition, treatment outcomes for cancer could
be greatly enhanced by combining CFH-targeted treatments with
other therapeutic techniques. Multiple facets of tumor growth and
immune evasion can be addressed by combinations with
immunotherapies, chemotherapy, and targeted treatments. By
releasing the inhibitory effects of CFH and further activating
anti-tumor immune responses, immune checkpoint inhibitors,
such as anti-PD-1/PD-L1 or anti-CTLA-4 antibodies, can be used
in conjunction with CFH-targeted therapies to increase the
effectiveness of immune checkpoint blockade (Ajona et al.,
2019b; Ricklin et al., 2019; Saxena et al., 2023). CDC of
rituximab resistant malignant B cells from CLL patients can be
augmented by GT103 (Winkler et al., 2017) and CDC of human lung
tumor cell lines by the anti-PD-L1 drug avelumab can be augmented
by GT103 (Saxena et al., 2023). Further, chemotherapeutic drugs can
be used in conjunction with CFH-targeted therapies to take
advantage of the immunomodulatory effects of CFH inhibition

while also specifically targeting tumor cells. In addition to
promoting immune-mediated tumor clearance, this combined
approach can synergistically increase the cytotoxic effects on
tumor cells.

5 Future perspectives and challenges

A thorough knowledge of the molecular pathways underpinning
CFH-mediated immune evasion is essential to take full advantage of
the therapeutic potential of CFH and requires further investigation.
Targeted therapy development will benefit from understanding the
intricate interactions between CFH, complement proteins, immune
cells, and the TME. While anti-CFH therapy has shown promise in
preclinical and early clinical trials, there are significant obstacles to
its use in cancer treatment. Targeting a major component of the
immune system, such as CFH, might have unintended
consequences, such as upsetting immunological balance, which
can lead to autoimmune reactions and increased susceptibility to
infections. The development of atypical hemolytic uremic syndrome
(aHUS) is a major concern, as evidenced by a finding that shows
autoantibodies against the CFH SCR 19-20 domains are correlated
with aHUS (Blanc et al., 2012; Durey et al., 2016). As a result, the
challenge is to develop anti-CFH agents that specifically target
cancer cells while protecting healthy cells that express CFH.
Furthermore, the duration and dosage of anti-CFH medication
can influence the likelihood of autoimmune responses. Prolonged
or high-dosage treatment may increase the risk of immune system
dysregulation; thus, the dose must be carefully regulated.

Furthermore, the effectiveness of anti-CFH therapy might also
depend on the type of cancer and individual patient characteristics.
Some tumors may not respond as well to this sort of treatment, as the
targeting epitope may be absent. Identifying the patients who would
gain the most from anti-CFH therapy is still a challenge. Patient
selection based on biomarkers, the patient immune status, or genetic
profile is crucial, although it is still in its early stages. Furthermore,
patients with pre-existing autoimmune disorders could experience
progressive or new symptoms when exposed to anti-CFH therapy
and may not be suitable candidates.

In addition, cancer cells may develop resistance to anti-CFH
treatment over time as is seen with other targeted medicines. This
has the potential to result in therapy failure and disease progression.
To achieve themost favorable results, anti-CFH therapymay need to
be combined with other treatment modalities such as chemotherapy,
immunotherapy, or radiation therapy. The successful
implementation of CFH-targeted medicines depends on selecting
the right patient populations, tailoring treatment plans, and
addressing potential off-target consequences.

6 Conclusion

The complement system is a complex but important part of
innate immunity. Through its control of the complement system,
interactions with immune cells, and effects on the TME,
complement factor H contributes significantly to immune evasion
in cancer. Developing efficient strategies to combat immunological
evasion while driving an effective adaptive immune response in
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cancer requires an understanding of the intricate interactions
between CFH and numerous immune system elements. As a
therapeutic strategy to boost anti-tumor immune responses and
better patient outcomes, targeting CFH shows promise. To fully
investigate the therapeutic potential of CFH as a therapeutic target in
cancer immunotherapy, additional study and clinical trials
are required.
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