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Tunicates, the sister group of vertebrates, offer a unique perspective for
evolutionary developmental studies (Evo-Devo) due to their simple anatomical
organization. Moreover, the separation of tunicates from vertebrates predated
the vertebrate-specific genome duplications. As adults, they include both sessile
and pelagic species, with very limited mobility requirements related mainly to
water filtration. In sessile species, larvae exhibit simple swimming behaviors that
are required for the selection of a suitable substrate on which to metamorphose.
Despite their apparent simplicity, tunicates display a variety of mechanoreceptor
structures involving both primary and secondary sensory cells (i.e., coronal
sensory cells). This review encapsulates two decades of research on tunicate
mechanoreception focusing on the coronal organ’s sensory cells as prime
candidates for understanding the evolution of vertebrate hair cells of the inner
ear and the lateral line organ. The review spans anatomical, cellular andmolecular
levels emphasizing both similarity and differences between tunicate and
vertebrate mechanoreception strategies. The evolutionary significance of
mechanoreception is discussed within the broader context of Evo-Devo
studies, shedding light on the intricate pathways that have shaped the sensory
system in chordates.
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1 Introduction

Twenty years ago, a paper provocatively titled “Novel, secondary sensory cell organ in
ascidians: in search of the ancestor of the vertebrate lateral line” by Burighel and others
(Burighel et al., 2003), provided evidence that the tunicate ascidian Botryllus schlosseri
possessed a complex mechanosensory organ, the coronal organ. Unlike the previously
characterized multicellular mechanoreceptor organs of adult tunicates (Manni and Pennati,
2015), this novel organ was not composed of peripheral neurons (i.e., primary sensory cells)
but showed dedicated axonless secondary receptor cells. These secondary receptor cells were
contacted at their base by neurites coming from brain neurons, forming both afferent and
efferent synapses with the sensory cells (Figure 1A). This discovery also revealed that the
adult tunicate brain possessed sensory neurons, since then not considered, for the
elaboration of afferent information from the coronal sensory cells and their control by
means of efferent inputs. Moreover, in B. schlosseri, coronal sensory cells showed an apical
bundle with a cilium accompanied by microvilli and/or stereovilli. They were aligned on the
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oral siphon tentacles and exposed to the incoming seawater. Inmany
aspects, these cells resembled vertebrate hair cells of lateral line
organs (Manni et al., 2004). These features, combined with the
evolutionary proximity between tunicates and vertebrates,
considered sister groups (Delsuc et al., 2018), initiated a
controversial yet exciting debate on the homology of coronal
sensory cells and hair cells. This discussion extended to the
homology of the embryonic territories from which they originate.
Vertebrate hair cells derive from neurogenic placodes (namely, from
the otic and the lateral line placodes) that, together with the neural
crest, were at that time considered exclusive to vertebrates (Manni
et al., 2001; 2004). Therefore, the discovery of the coronal organ
(with sensory cells hypothesized homologous to vertebrate hair
cells), together with the publication of the first data on the
presence of placodal area and neural crest-like cells in tunicates
(Manni et al., 2001; Jeffery et al., 2004; Mazet and Shimeld, 2005),
challenged the foundation of the main theory of vertebrate
evolution, the so-called “New head hypothesis” (Gans and

Northcutt, 1983). This theory proposed that neurogenic placodes
and neural crest cells were, with respect to non-vertebrate chordates,
novel cell populations that contributed to the success of vertebrates
and their development of complex nervous systems.

In the past 20 years since the discovery of the coronal organ,
numerous aspects of its morphology, physiology, and development
have been elucidated (Burighel et al., 2011; Manni and Pennati,
2015). The organ has been found in all the tunicate taxa (except for
Salps, see below) so far examined. Its mechanoreceptive function
and synaptic connectivity has been established and some key
developmental genes studied. Nevertheless, many questions
remain unanswered, making the investigation of tunicate
mechanoreception an intriguing question in evolutionary
developmental biology research.

Tunicates constitute a diverse group of marine invertebrates,
including both pelagic and sessile animals with different behavior
and motility, thus having varied sensory requirements. Traditionally,
tunicates were classified into three classes: the sessile Ascidiacea and

FIGURE 1
(A) Illustration of a primary and a secondary receptor cell in tunicates. The primary receptor is a peripheral neuron, whose soma (indicated by the
blue nucleus) is in the epidermis. The secondary receptor (orange) is, vice versa, a dedicated receptor that transmits its input to a brain sensory neuron. (B)
Chordate evolutionary tree. * The monophyly of Phlebobranchia is disputed [see (DeBiasse et al., 2020)]. Stolidobranchia species are defined as
Pleurogona (with gonads in the lateral body wall), whereas Phlebobranchia and Aplousobranchia are defined as Enterogona (with gonads close to
the gut). (C) Adult individual of the ascidianMolgula socialis (right view). (D) Young colony of Botryllus schlosseri composed by two adult zooids and their
buds. Dorsal view. (E)Ciona robusta larva at stage 28, 18 h post fertilization at 20°. Arrowheads: two anterior papillae. Ascidian larvae are composed of an
anterior cephalenteron, i.e., a body part including both head structures (such as the brain) and trunk structures (such as the gut), and a posterior tail. The
cephalenteron is usually called a “trunk”.
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the pelagic Thaliacea and Larvacea. However, molecular phylogenies
suggest that ascidians are a paraphyletic group and support the
monophyly of thaliaceans (Delsuc et al., 2018; Kocot et al., 2018;
DeBiasse et al., 2020) (Figures 1B–D). The tunicate tadpole swimming
larva exhibits a typical chordate body plan which is lost during
metamorphosis in ascidians and thaliaceans. At this stage the latter
adopts a sac-like body with two apertures, the oral and the atrial
siphons, for seawater circulation and filtration. The sessile ascidians,
the most extensively studied group, exhibit a larva with a tripartite
brain derived from the dorsal nerve tube. The larva also possesses
numerous primary mechanosensory cells scattered in the
monolayered epidermis, allowing the detection of a suitable
substrate for metamorphosis (Wakai et al., 2021; Sakamoto et al.,
2022). The sessile adult has a ganglionic brain, and its mobility is
limited to the siphon and bodywall contraction as defensive responses
(Mackie and Burighel, 2005).

Here we review research on mechanoreception in tunicates. We
begin by examining mechanoreceptor cells and organs based on
primary receptors in the ascidian larva (Section 2). Then, we
describe the diversity of mechanoreception structures (including
both single or clustered cells and multicellular organs) based on
primary receptors exhibited by adult tunicates (Section 3). Lastly, we
consider 20 years of research on the coronal organ from a
morphological, physiological and developmental point of view,
describing similarities and differences between coronal sensory
cells and vertebrate hair cells (Section 4).

2 Putative mechanosensory cells of the
ascidian larva

As the larvae are primarily responsible for ascidian dispersal,
their simple swimming behavior is modified by environmental
stimuli. This is likely to increase the odds of escaping predation
and settling in a suitable location for metamorphosis. For instance,
mechanical stimulation of the adhesive/sensory papillae, the three
sensory organs (two dorsal and one ventral) located in the anterior
larval region (Figures 1E, 2A–B) is sufficient and necessary to trigger
metamorphosis in Ciona (Wakai et al., 2021; Sakamoto et al., 2022).
While mechanosensitive modulation of swimming has yet to be
definitively shown in ascidian larvae, startle-like behaviors have
been described in Ciona (Athira et al., 2022). Here we discuss what is
known about the development and function of the candidate
primary mechanosensory cell types that have been identified in
these larvae.

2.1 Caudal epidermal neurons

Sometimes referred to as Caudal Epidermal Sensory Neurons,
these primary receptors are a subset of a broader class of tail
epidermal neurons and were initially described in Diplosoma
listerianum (previously named D. macdonaldi) (Torrence and
Cloney, 1982). They have since been reported in numerous other

FIGURE 2
(A) Larval sensory neurons in Ciona robusta (see Ryan et al., 2017). Left lateral view. In the tail there are two groups of caudal epidermal neurons,
12 dorsal (DCENs) and 12 ventral (VCENs). There are three groups of Trunk Epidermal Neurons, 12 rostral (RTEN), four anterior (aATENs) and four posterior
(pATENs). There are three rostral papillae with two pairs of sensory neurons (Pns) each. (B,C) frontal and cross sections of C. robusta, showing some
sensory structures: the anterior dorsal papilla (P), and the sensory vesicle (SV) with the otolith and the ocellus, Toluidine blue. C1-C2: tunic cuticular
layer; EC: endodermal cavity; LB: larval brain; MG: motor ganglion; NC: nerve cord; NT: notochord; SV: sensory vesicle.
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species spread across both enterogonid (e.g., Ciona, Phallusia) and
stolidobranch (e.g., Halocynthia, Molgula) ascidians (Torrence and
Cloney, 1982; Takamura, 1998; Imai and Meinertzhagen, 2007;
Terakubo et al., 2010; Ohtsuka et al., 2014; Ryan et al., 2018).
Although the CENs have yet to be conclusively shown to be
mechanosensory, Torrence and Cloney proposed this based on
ultrastructural similarities to cupular organ mechanoreceptors of
the adult (Torrence and Cloney, 1982). (Figure 1E) CENs are found
embedded in the epidermis of the larval tail, along both the dorsal
and ventral midlines (Figure 1E). Therefore they are sometimes
divided into Dorsal CEN (DCEN) and Ventral CEN (VCEN)
subtypes (Ryan et al., 2018) (Figure 2A). CENs occur in regularly
interspersed pairs, but their number is variable, with an average of
14 pairs per larva reported inCiona (Pasini et al., 2006). Each neuron
bears a single cilium that projects into the overlying extracellular
tunic. In the tunic these cilia form a branched network termed the
ASNET (Ascidian Dendritic Network In Tunic) (Torrence and
Cloney, 1982; Konno et al., 2010; Terakubo et al., 2010;
Yokoyama et al., 2014). While the base of the cilia are formed by
microtubules and are clearly stained by anti-acetylated tubulin
immunofluorescence, their distal portions in the tunic do not
contain ordered microtubule arrays (Torrence and Cloney, 1982;
Terakubo et al., 2010). CENs possess short axons that form contacts
primarily between each other and a few putative relay neurons, such
as the Bipolar Tail Neurons (BTNs) (Stolfi et al., 2015; Ryan et al.,
2018). The BTNs have been proposed to be homologous to
vertebrate cranial sensory neurons (Papadogiannis et al., 2022),
though their sensory capabilities are entirely unknown. Like all
epidermal neurons, CENs express Slc17a6/7/8, encoding Vesicular
glutamate transporter (Vglut) and are therefore likely glutamatergic
(Horie et al., 2008).

Extensive work in Ciona has revealed the embryonic origins
of the CENs and the molecular pathways regulating their
specification. CENs arise from neurogenic midlines of the tail
epidermis, both dorsally and ventrally. Both midlines are derived
from b-lineage blastomeres that also give rise to epidermal cells
and BTNs (Pasini et al., 2006). While induction of the dorsal and
ventral neurogenic midlines occurs independently through
different signals, they converge on a shared gene regulatory
network for sensory neurogenesis (Pasini et al., 2006; 2012;
Tang et al., 2013; Waki et al., 2015). Both midlines express
Msx, which in turn activates the expression of the proneural
bHLH gene, Achaete-Scute-like.a (Ascl.a, though sometimes
referred to as Ascl2 or Ascl.b previously). However, in the
dorsal midline, Msx is activated by Otx and Nodal, while in
the ventral midline it is activated instead by Tbx2/3 (Pasini et al.,
2006; Waki et al., 2015). Otx and Nodal expression in the dorsal
midline in turn depends on FGF signaling, while Tbx2/
3 expression in the ventral midline is induced by ADMP/BMP
signaling instead (Pasini et al., 2006; Waki et al., 2015).
Downstream of Ascl.a, both dorsal and ventral networks
appear to function through a series of transcription factors,
especially conserved neuronal selectors such as Pou4 and
Myt1 (Tang et al., 2013). While all the cells in these
neurogenic midlines express Ascl.a and thus likely have the
potential to give rise to CENs, the final number of neurons is
limited by typical lateral inhibition via the Delta/Notch pathway
and the microRNA miR-124 (Chen et al., 2011; Tang et al., 2013).

Given that the dorsal and ventral neurogenic midlines are
induced by different mechanisms, it has been proposed that one
may have evolved as a co-option of the other (Waki et al., 2015).
More specifically, it was proposed that the ventral midline is the
ancestral one, as induction of ventrolateral sensory neurons by BMP
is observed in cephalochordates as well (Lu et al., 2012). The
neurogenic dorsal midline of tunicates and vertebrates would
therefore represent a co-option of this neurogenic program in the
last common olfactorian ancestor (last common ancestor of
tunicates and vertebrates). In vertebrates, the dorsal neurogenic
domain would have allowed for the emergence of neural crest-
derived neurons and other sensory neuron types, like Rohon-Beard
cells of anamniote larvae. Alternatively, the ventral midline may
have evolved specifically in tunicates as a co-option of an ancestral
Msx-dependent neural plate border program for sensory neuron
specification. Complementary to these scenarios, it has also been
suggested that both dorsal and ventral midlines were neurogenic in
the chordate ancestor, and that vertebrates lost the ventral one
(Pasini et al., 2006). However, it was reported that another tunicate
species, Halocynthia roretzi, has only a small number of ventral
CENs near the tail tip, and that its dorsal neurogenic midline
depends on FGF, Nodal, and BMP combined, along with yet-
undiscovered inductive signals (Ohtsuka et al., 2014). Although
the midline neurogenic programs are deeply conserved across
tunicates (Coulcher et al., 2020), it is clear that additional work
on diverse tunicate species will be required to better refine our
evolutionary models.

2.2 Trunk epidermal neurons (RTENs,
aATENs, and pATENs)

In addition to putative mechanosensory neurons of the tail,
there are three epidermal neuron subtypes found in the dorsal areas
of the epidermis of the larval “trunk”. These primary receptors were
defined as Trunk Epidermal Neurons. These are, from anterior to
posterior, Rostral Trunk Epidermal Neurons (RTENs), Anterior
Apical Trunk Epidermal Neurons (aATENs), and Posterior Trunk
Epidermal Neurons (pATENs) (Imai and Meinertzhagen, 2007;
Ryan et al., 2018) (Figure 2A). In Ciona, there are 7 RTENs on
either left/right side (14 total neurons) of the dorsolateral epidermis
between the papillae and the sensory vesicle (Ryan et al., 2018). The
aATENs occur as two left/right pairs on either side of the dorsal
midline (4 total neurons), while the four pATENs appear to lie
directly on the midline (Ryan et al., 2018). Although all trunk
epidermal neurons contribute to the larval ASNET, like CENs
their mechanosensory abilities have never been tested (Abitua
et al., 2015; Poncelet et al., 2022; Hoyer et al., 2024). The three
subtypes all have well-developed axons but show different
connectivity within the PNS network, hinting at distinct
functions. RTENs form extensive chemical synapses onto a few
different interneurons in the larval brain including the Eminens
cells, which are GABAergic (Cao et al., 2019). pATENs on the other
hand form extensive inputs onto the Ascending Motor Ganglion
(AMG) complex, especially the sole cholinergic (i.e., excitatory)
AMGneuron, AMG5 (Ryan et al., 2018; Ryan et al., 2016; Ryan et al.,
2017; Kourakis et al., 2019; Popsuj and Stolfi, 2021). Downstream
connections even suggest opposite effects on swimming behavior,
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either arresting swimming (RTENs) or triggering swimming
(pATENs). In contrast, the aATENs do not appear to form very
many chemical synapses, at least at the relatively early larval stage
documented by the connectome studies (Ryan et al., 2018). This may
support its proposed role as a neurosecretory cell, and potentially
homologous to both olfactory neurons and Gonadotropin-releasing
hormone (GnRH) neurons in vertebrates (Abitua et al., 2015; Okawa
et al., 2020).

Much less is known about the development of the different
Trunk Epidermal Neurons, compared to the CE Ns. InHalocynthia,
RTENs are specified from anterior neural plate lateral border cells by
FGF, Nodal, and BMP signaling (Ohtsuka et al., 2014), while excess
BMP signaling appears to suppress the formation of the oral siphon
placode, or stomodeum, which gives rise to the aATENs in Ciona
(Abitua et al., 2015). A similar FGF/Nodal/BMP combination is
required for CEN specification in Halocynthia (see above), though
this may be different in Ciona and other tunicate families. This
suggests that a common gene regulatory network might be shared
between Trunk and Caudal subsets of ESNs. The development of the
pATENs has not been studied at all, to our knowledge. In sum, much
work remains to be done on both the function and development of
these different Trunk Epidermal Neurons.

2.3 Papilla neurons

Despite our current knowledge of the Ciona larval connectome
and the regulation of caudal and Trunk Epidermal Neuron
development, there is little direct evidence supporting their
mechanosensitive nature. There is no evidence directly refuting
that CENs and assorted Trunk Epidermal Neurons are
mechanosensory cells, either. However, the larval neuron most
widely accepted as a mechanosensitive cell type is the Papilla
Neuron (PN) (Figure 2A) (Manni et al., 2021). In Ciona, PNs
(sometimes called Papilla Sensory Neurons or Primary Sensory
Neurons of the Papillae) are found surrounding the three
adhesive/sensory papillae at the very anterior end of the larva
(Zeng et al., 2019). There are two dorsal papillae (one left, one
right) and one medial ventral papilla (Figures 2A, B). Each papilla
contains exactly 4 PNs, and additional cell types with proposed
adhesive and/or sensory functions (Zeng et al., 2019; Johnson et al.,
2023b). PNs are also found in species with complex eversible
papillae (e.g., Diplosoma spp.) and even in those without overtly
protrusive papillae, (e.g.,Molgula spp) (Torrence and Cloney, 1982;
Vorontsova et al., 1997). Larval metamorphosis in Ciona depends on
mechanosensation, as larvae attach to a solid substrate to initiate tail
regression and the transition to the post-metamorphic, sessile stage.
Mechanical stimulation of the papillae were shown to be sufficient
and necessary for triggering metamorphosis, while impairing PN
development or function can block metamorphosis (Wakai et al.,
2021; Sakamoto et al., 2022; Hoyer et al., 2024).

Like all epidermal neurons in the Ciona larva, PNs have apical
cilia and axons. Their axons continue to extend posteriorly towards
the larval brain during the swimming period, and these potentially
late connections coincide with the competence period (Johnson
et al., 2023b). Swimming larvae are not immediately competent to
initiate tail regression and metamorphosis immediately after
hatching, and competence to settle is acquired only after a few

hours of swimming (Nakayama-Ishimura et al., 2009), presumably
while PN axons are still growing. Unfortunately, the Ciona larva
connectome was described in a relatively early larval specimen, and
these later connections have not been documented at the synaptic
level (Ryan et al., 2016). Little else is known about how PNs might
regulate tail regression and metamorphosis downstream of
mechanical stimulation. It is known that GnRH is important for
tail regression, while GABA appears to regulate GnRH release and
other processes in metamorphosis, such as body rotation (Hozumi
et al., 2020). However, it is unclear where and how these
neurotransmitters act, in the absence of PN synaptic
connectivity data.

The PNs develop from an anterior neurogenic territory
surrounding the central cells of the papillae that shows many
similarities to the neurogenic midlines of the tail (Johnson et al.,
2023b; Roure et al., 2023). This territory expresses Ascl.a, and later
on Delta/Notch signaling limits the number of Pou4+ cells that will
differentiate into PNs (Johnson et al., 2023b). The papilla territory in
turn is specified by Foxc and Foxg orthologs (Horie et al., 2018; Liu and
Satou, 2019), which suggests an evolutionary connection to anterior
placodes of vertebrate embryos. However, the cells that give rise to PNs
appear to downregulate Foxg, while sustained Foxg expression is
associated with the more central papilla cell types, like the Axial
Columnar Cells (ACCs) (Johnson et al., 2023b). Knocking out Pou4
blocks PN differentiation and metamorphosis (Sakamoto et al., 2022;
Johnson et al., 2023b). Similarly, using chemogenetics to inhibit PN
function also inhibits metamorphosis (Hoyer et al., 2024). Candidate
effectors of PN functions have also been knocked down/out, resulting in
similar loss of metamorphosis. For instance, morpholino knockdown
and TALEN-mediated knockout of a gene encoding the TRP channel
family member PKD2 reduced the incidence of mechanically-induced
Ca2+ transients in PNs and moderately inhibited metamorphosis
(Sakamoto et al., 2022). Similarly, CRISPR/Cas9-mediated knockout
of Vamp1/2/3, encoding synaptic vesicle protein Synaptobrevin, also
modestly inhibited metamorphosis (Johnson et al., 2023a). However,
the exact mechanotransduction channel in the PNs has yet to be
identified. Based on Ca2+ imaging, PNs also respond to chemical
cues, suggesting they may be polymodal sensory cells (Hoyer et al.,
2024). Certain chemicals can promote or inhibit tunicate settlement and
metamorphosis, suggesting that the larvae rely on both biotic and
abiotic cues for optimal settlement site selection (Durante, 1991; Rae
Flores and Faulkes, 2008; Hoyer et al., 2024). Interestingly, the ACCs at
the very center of the papillae also respond to mechanical stimuli
(Hoyer et al., 2024), which may reflect independent mechanosensory
ability, or local communication between PNs and ACCs. In sum,
although substantial work is still needed to better understand the
development and function of the PNs, they represent a promising
model for the study of tunicate mechanosensation thanks to the clear
metamorphosis defects associated with their loss or perturbation.

2.4 Otolith and antenna cells

Most ascidian larvae have an otolith/statocyst, which is most
frequently a single, rounded melanin-containing cell suspended in
the lumen of the sensory vesicle (Torrence, 1986; Jiang et al., 2005)
(Figures 2A–C). Ciona larvae exhibit strong geotactic behavior,
preferring to settle on the dark underside of obstacles in the
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water (Jiang et al., 2005), such as floating docks and ship hulls. A
light- and gravity-dependent circuit has been proposed for ensuring
such behavior, as larvae will swim up (or position themselves
upwards if facing down) when drifting under a shaded area
(Bostwick et al., 2020). Key to this behavior are the Antenna
Cells, a pair of neurons that make contact with the otolith and
presumably detect its displacement in the sensory vesicle via
mechanotransduction (Torrence, 1986; Sakurai et al., 2004).
However, little is known about these neurons aside from their
characterization by the connectome studies, in which they were
shown tomake extensive synapses onto a handful of relay neurons in
the larval brain (Ryan et al., 2016). Therefore, their mechanosensory
nature is by far the most speculative and poorly documented out of
all the candidate mechanoreceptors of the tunicate larva. A variant
of the typical larvae of some colonial species belonging to the taxon
Styelidae have only one sensory organ, the photolith, which is
thought to function in both gravity and light reception
(Sorrentino et al., 2001). In B. schlosseri, it consists of a
unicellular statocyst, formed by an expanded pigment cup, which
receives extensions from six photoreceptor cells (Sorrentino
et al., 2001).

3 Mechanosensation in adult tunicates

Mechanoreception in adult tunicates is well developed, relying
on both primary sensory cells, which are either scattered, organized
in small clusters, or in specific organs (Figure 3), and the secondary

sensory cells of the coronal organ (as discussed in Section 3.3).
However, information on primary sensory cells and/or organs
containing primary sensory cells in adult tunicates is quite
limited in comparison to that regarding the ascidian larva. In
most cases only morphological data are available with occasional
supplementation from the results obtained by neurophysiologists
who worked in the field in the 70–90 s of the last century. Even
though no developmental data are currently available for these
primary sensory cells, developmental data is available for the oral
siphons, a very sensitive region where many primary sensory cells
are located. Specifically, the oral siphon primordium expresses
anterior placode markers Pitx and Dlx, indicating that oral
siphon primordia express genes shared with vertebrate placodes
(Boorman and Shimeld, 2002; Irvine et al., 2007; Graham and
Shimeld, 2013). The comparative morphology of the coronal
organ has been deeply analyzed in several tunicate species and
some aspects of its development and physiology have been studied in
a select few ascidians.

3.1 Scattered or clustered primary
mechanoreceptor cells in adult tunicates

Isolated primary cells (or small clusters of 2-3 primary sensory
cells) have been described in the vicinity of the siphons, the most
responsive regions of adult ascidian and thaliaean tunicates
[reviewed in (Mackie and Burighel, 2005; Manni and Pennati,
2015)] (Figures 3A, B). These cells are peripheral neurons whose

FIGURE 3
Sensory organs based on primary sensory cells in adult tunicate (see Caicci et al., 2013; Manni and Pennati, 2015; Anselmi et al., 2022). (A) Confocal
imaging of the primary sensory cells stained with anti-alpha tubulin (green) labelling nerves and Hoechst (blue) in the oral siphon of B. schlosseri. (B)
Scattered primary sensory cells.) (C) Illustration of the primary sensory cell stimulation in the “siphon stimulation test”. (D) Cupular sense organ in Ciona.
(E) Capsular organ in Cheliosoma productum. (F) Cupular strand in Corella. (G) Corpuscles in Polyandrocarpa misakiensis. (H) Cupular organ in
Pyrosoma atlanticum. (I) Triads in Doliolum nationalis.
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somata are in the monolayered epidermis that both delimits the
animal body and descends into the siphons. A long axon extends
from the soma base to the central nervous system, whereas a
dendrite, represented by a single cilium, projects apically. Since
the epidermis is covered by the tunic, these intraepithelial sensory
cells are not directly exposed to the external seawater. They react to
stimuli through the tunic, which has a different thickness and
elasticity depending on species and body region. In the ascidians
Corella inflata and Corella eumyota, each siphon has approximately
8,000 primary sensory neurons that have been revealed by
immunohistochemical labeling (Mackie et al., 2006).
Physiological tests have shown that these cells are tactile and
vibration sensors. In the same siphon region, rounded, axonless
cells were also frequently seen, along with cells with very short
axons; both have been suggested to be early stages in the formation
of the sensory neurons. In the colonial ascidian B. schlosseri, the oral
siphon primary sensory cells have been analyzed in relation to the
blastogenetic cycle and to colony aging (Anselmi et al., 2022)
(Figure 3B). The number of these mechanoreceptor cells varies
along the cycle, increasing from early-to mid-cycle, before
decreasing in late-cycle. This dynamic pattern parallels zooid
sensitivity to stimuli, which is greatest when the number of
mechanoreceptors is highest. Similarly, both the number of oral
siphon primary sensory cells and zooid sensitivity to stimulation are
higher in zooids belonging to young colonies than in those belonging
to old colonies. In B. schlosseri, the ability of these mechanoreceptors
to respond to stimuli has been detected using a sensitive behavioral
test, the siphon stimulation test (Anselmi et al., 2022) (Figure 3C).
This test assesses the ability of the oral siphon to close after
stimulation with a waterjet whose pressure is controlled by a
microinjector. The waterjet pressure is increased progressively,
and the minimum pressure needed to induce a siphon
contraction is recorded as a parameter indicating zooid sensitivity.

Primary ciliated sensory neurons, presumed mechanoreceptors,
have also been reported in thaliaceans and appendicularians and
were described using conventional light microscope staining
techniques or Nomarski microscopy [reviewed in (Bone, 1998)].
Unfortunately, detailed morphological observations from
transmission electron microscopy (TEM) are not available for
these sensory cells. In Pyrosoma, those around the inhalant
siphon were investigated experimentally, finding that their
delicate touch evokes siphon contraction, whereas a stronger
stimulation evokes a siphon contraction by branchial ciliary
arrest (Mackie and Bone, 1978). In salps, sensory cells with a
long cilium were also reported on the mouth lips, sometimes also
organized in small groups. However, no detailed or physiological
information is available on them (Bone, 1998).

3.2 Multicellular mechanoreceptor organs
based on primary sensory cells in
adult tunicates

A number of multicellular organs with putative
mechanoreceptive function have been described morphologically
in tunicates, both at light and electron microscopy [reviewed in
(Bone, 1998; Mackie and Burighel, 2005; Caicci et al., 2013; Manni
and Pennati, 2015)]. In some cases, their mechanoreceptive function

has been determined by means of experimental studies; in other
cases, it has been inferred on the basis of organ morphology and
position. No data are available on their development. Among
tunicates, ascidians have been more extensively studied than
thaliaceans and larvaceans. The variety of multicellular organs,
probably evolved from clusters of simple ciliated
mechanoreceptors (Mackie and Singla, 2003), underlines the
importance of mechanoreception and its behavioral integration.

The first organs to be described using scanning and transmission
electron microscopy were the cupular sense organs (75–100 per
individual) located in the atrial mantle epithelium of the adult
ascidian Ciona intestinalis (Bone and Ryan, 1978) (Figure 3D).
They are composed of groups of supporting cells flanking
15–20 ciliated neurons whose sensorial cilia are embedded in a
gelatinous cupula, probably produced by the supporting cells. The
cupula gives the name to the organs. These organs are able to detect
near field vibrations as well as local water movements that displace
the cupula and the cilia within it, resulting in electrical responses in
the sensory cells. For their overall morphology and physiology,
shared with the neuromasts of the lateral line organ and the hair cells
of the vertebrate inner ear, the cupular sense organs were suggested
by the authors to be evolutionarily linked to the vertebrate
mechanosensory organs. From a cellular point of view, however,
the cupular sense organs comprise primary sensory cells, whereas
the vertebrate counterparts comprise secondary sensory cells,
making the hypothesized homology inconsistent.

For many years the cupular sense organs were the only
multicellular mechanoreceptor organs known in adult
ascidians, until Mackie and Singla described in the atrial wall
of the branchial sac of the solitary ascidian Chelyosoma
productum the capsular organs at light and electron
microscopy (Mackie and Singla, 2003) (Figure 3E). In the
latter, the sensory cells are grouped in a macula and are
characterized by a group of short microvilli surrounding a long
cilium projecting into a small cavity (the “capsule”). The capsule
cavity is delimited by supporting cells, is filled with a fluid and has
an acellular diaphragm spanning an opening in the top. Each
sensory cell has an axon reaching the brain via the visceral nerve,
the nerve connecting the brain to the visceral organ (branchial sac,
gut and heart). By means of electrophysiological recordings and
tests aimed to determine their sensitivity, the authors concluded
that these organs are vibrational-sensing and are adaptive in
detecting the movements of objects in the vicinity.

The same authors described also in the genus Corella other
organs based on primary sensory cells (Mackie and Singla, 2005).
Using immunocytochemical analyses, they found in C. eumyota
structures resembling the cupular sense organs of C. intestinalis, but
located on the atrial surface of the branchial sac. Moreover, they
recognized in C. inflata, using both immunocytochemistry and
electron microscopy, a novel sense organ, the cupular strand
(Figure 3F) which is a very elongated cupular organ located in
the atrial surface of the branchial sac. Axons from the sensory cells
enter the cerebral ganglion through the visceral nerve. Neither the
cupular sense organs nor the cupular strand have been studied
physiologically. However, by analogy with such structures in other
metazoans, cupular organs were supposed to be hydrodynamic
sensors registering local disturbances or changes in water flow
through the atrial cavity.
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A similar function was hypothesized for primary sensory cells of
the colonial ascidian Polyandrocarpa misakiensis (Koyama, 2008).
These cells form small corpuscles located in epidermal pockets filled
with tunic at the base of the oral and atrial siphons and have been
called “oral tentacular sensory cells” and “atrial tentacular sensory
cells”, respectively. The sensory cells, both isolated and forming
small clusters, have axons joining a nearby nerve located at the base
of the siphons (Figure 3G). Their apical apparatus is composed of a
long, modified cilium projecting into the tunic, accompanied by a
ring of microvilli of equal length. Supporting cells delimit the small
cluster of sensory cells or are located between the isolated sensory
cells. Some oral tentacular sensory cells are also found associated
with neurosecretory cells.

Cupular sense organs have also been described in the thaliacean
Pyrosoma atlanticum (Pyrosomatida), in a study aimed at describing
at electron transmission microscopy the oral sensory structures of
this tunicate (Caicci et al., 2013). The organs, previously mentioned
by (Fedele, 1923), are scattered on the rounded flaps of the oral
siphon and are composed of pyriform sensory cells accompanied by
supporting cells (Figure 3H). The sensory cell apical plasmalemma
exhibits a long cilium surrounded by 50–60 microvilli and is
embedded in a tunic-like cupula secreted by supporting cells. An
axon emerges from the sensory cell basal side. The organ function
has not been investigated. However, displaying strong
morphological resemblance with the ascidian cupular organs, it
was supposed they play a similar mechanosensory role, probably
in relation to reflex patterns involved in swimming control. Indeed,
when the oral siphon is stimulated by touching, or by the collision of
large particles or their entry into the gill, the animal responds by
arresting ciliary beating and contracting the siphon (Bone and Ryan,
1978). It has been suggested that ascidian and thaliacean cupular
organs are the result of evolutionary convergence (Caicci
et al., 2013).

In the thaliacean Doliolum nationalis (Doliolida), triads of
sensory cells, have been described in whole mount preparations
(Bone, 1959) and by transmission electron microscopy (Caicci et al.,
2013). These are a dozen groups of three sensory cells (supporting
cells are not present) regularly arranged around the oral siphon,
covered by the tunic. Each sensory cell has an apical long cilium
projecting into the tunic and extends an axon from its base
(Figure 3I). The triads are stimulated by the deformation of their
apical cilia when water flows through the oral siphon as the animal
swims (Bone, 1959). The oozooid stage of doliolids displays also an
otocyst, but no detailed information is available on its morphology
(Bone, 1998).

Apart from a statocyst containing a statolith, located on the left
part of the Oikopleuridae brain, whose mechanosensory function
has not been studied (Bone, 1998), no other multicellular
mechanosensory organs based on primary sensory cells have
been found in larvaceans. The ventral organ, a sensory structure
below the mouth constituted of about 30 primary ciliated receptors,
is considered a chemosensor (Bollner et al., 1986).

3.3 Secondary sensory cells in tunicates

The coronal organ has been found in all examined tunicates
except salps (see paragraph 4.1) (Burighel et al., 2011; Caicci et al.,

2013; Rigon et al., 2013). Positioned at the outer edge of the velum
and the tentacles, at the base of the oral siphon, this organ comprises
a continuous row of secondary sensory cells (Figure 4A). These cells
are characterized by the presence of numerous stereovilli or
microvilli and nonmotile cilia (a single cilium or multiple cilia)
composed of 9 + 2 microtubules. The secondary sensory cells form a
ring at the base of the oral siphon exposed to incoming water.
Indeed, they function as mechanoreceptors involved in detecting
variation in water flowing inside the oral siphon and possibly
dangerous particles (Mackie et al., 2006).

Both afferent and efferent synapses are found between the base
of coronal sensory cells and the peripheral axons of sensory neurons
whose cell bodies lie on the brain (Burighel et al., 2003). The
innervation pattern of the coronal organ has been studied
through immunochemistry (Mackie et al., 2006; Gasparini et al.,
2013a; Anselmi et al., 2022), and synaptic connectivity has been
established using transmission electron microscopy (Burighel et al.,
2003; Manni et al., 2004; 2006; Caicci et al., 2010b; Caicci et al., 2013)
and in situ hybridization (ISH) experiments (Rigon et al., 2018).
Each tentacle contains nerve fibers (from the subcoronal nerve)
located at the base of the ciliated cells branching from the
pericoronal nerve (Figures 4A, 5A, B), a nerve that encircles the
oral siphon and originates from the anterior nerve brain. Synaptic
contacts have been identified, using TEM, based on the presence of
small presynaptic vesicles on one or both sides of the synaptic cleft
and the characteristic thickening of the postsynaptic membrane.
Frequently, sensory coronal cells make synapses with multiple
neurites (Burighel et al., 2011). Glutamate (which mediates
afferent hair cell inputs), acetylcholine, GABA and serotonin
(which is involved in efferent stimulation to hair cells) are
expressed in the coronal organ (Rigon et al., 2018).

The sensory cells are flanked on both sides by supporting cells
and, in some species, by secretory cells. Typically, supporting cells
extend apically a cytoplasmic crest delimiting the nearby sensory
bundle (Figure 4A) and are connected to neighboring cells through
tight junctions. There is no gap junction: signal transmission to the
central nervous system is solely mediated by neurons located in the
brain (Burighel et al., 2011). Secretory cells, when present, face
towards the middle of the tentacles and do not form synapses with
the nerve that contacts the sensory cells. Their function is not
known, however the abundance of ER and the extended Golgi
apparatus suggest that they are involved in protein synthesis.
Their vicinity to the sensory cells suggests a secretory mechanism
activated by the stimulation of the sensory cells (Manni et al., 2006).
Sensory cells, supporting cells and, if present, secretory cells are all
supported by a basal lamina that consists of a layer of fibers that
merge and surround with the nerve fibers.

3.4 Variability of coronal sensory cells

The coronal organ exhibits a remarkable degree of diversity
among the different tunicate species and even within the same
species (Table 1). The diversity of the coronal organ is correlated to
the variability of the apical structure and the presence or absence of
secretory cells (Figure 4B). In Stolidobranch ascidians, three types of
sensory cells have been identified based on the organization of their
apical structure: a central cilium surrounded by microvilli (type 1),
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two long cilia and graded-height stereovilli (type 2), a complete ring
of stereovilli surrounding two cilia (type 3). Interestingly, some
species like Styela plicata can exhibit both type 1 and type 2 sensory
cells (Manni et al., 2004). Molgula socialis presents a particularly
complex condition since displaying all three types of sensory cells
with types 2 and 3 predominantly located towards the proximal side
of tentacles where they are exposed to inflowing water, while type
1 is located more peripherally (Figures 5C–F). It is worth noting that
in Stolidobranch ascidians, extracellular radial filaments connecting
the cilia to the surrounding stereovilli have been described (Burighel
et al., 2003; Caicci et al., 2010a), even though the precise mechanism
of signal transduction is not yet fully understood. In
Phlebobranchiata and Aplusobranchiata some species have short

microvilli (Ciona robusta), while others lack them (Phallusia
mammillata). Additionally, some species such as Ascidiella
aspersa and C. inflata possess secretory cells. Secretory granules
have been found not only in both type 2 and type 3 sensory cells of
Pleurogona (Manni et al., 2004; Manni et al., 2006; Caicci et al.,
2007) but also in some sensory cells of Enterogona species (Manni
et al., 2006).

In larvaceans the ultrastructure of the coronal organ was studied
in two species ofOikopleura (Rigon et al., 2013). These animals have
a single type of secondary sensory cells with numerous cilia of the
same length, microvilli in multiple lines. They are flanked by non-
ciliated supporting cells forming a crest alongside the coronal organ.
A recent study on the mesopelagic giant appendicularian

FIGURE 4
Secondary sensory cells in the adult tunicates. (A) Location and main features of the coronal organ in tunicates. The organ is composed of a
continuous row of cells on the oral tentacles and the velum (orange). Each sensory cell makes synapses with the subcoronal nerves (two per tentacle,
close to the coronal organ) that are branches of the pericoronal nerve (green). The latter is a mixed nerve, connected to the brain through the anterior
nerves. Sensory cells (pink) are flanked by supporting cells (grey); in some enterogona species, also secretory cells (violet) can be recognised.
Stereovilli are apical, finger-like, long structures, composed of parallel actin filaments connected to the cell cytoskeleton; microvilli are thinner than
stereovilli, with less abundant actin microfilaments. (B) Comparative schematic illustration showing the coronal organ variability in some representatives
of tunicate groups. Stolidobranchia ascidians display the greatest complexity in the sensory apical bundle, which can be composed of microvilli or
stereovilli, the latter also graded in length. * The monophyly of Phlebobranchia is disputed [see (DeBiasse et al., 2020)]. (C) Responses obtained after a
strong (upper) and a light (bottom) stimulation of the coronal cells. The latter response is detected in the “tentacle stimulation test”.
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TABLE 1 Table summarizing the principal findings on the tunicate secondary sensory cells.

Taxon Species Location Proposed
function

Behavioural
test

Hair bundles Cytoplasm of
sensory cell

Radial filament
connecting the

cilia

Supporting
cells

Accessory
secretory

cells

References

Pleurogona
stolidobranchia

Botryllus
schlosseri

tentacles of oral
siphon

Sensitivity to
contact of
inflowing particles

Tentacle
stimulation test

Single cilium and
stereovilli

Accessory centriole Loose fibrillar matrix
generally present among
microvilli and cilia

Supporting cells
form a wall or crest

Burighel et al.
(2003)

Botrylloides leachi,
B. violaceus

tentacles of oral
siphon

Sensitivity to
contact of
inflowing particles

Single cilium and
stereovilli

Accessory centriole Loose fibrillar matrix
generally present among
microvilli and cilia

Supporting cells
form a wall or crest

Burighel et al.
(2003), Burighel
et al. (2008)

Molgula socialis tentacles of oral
siphon

Sensitivity to
contact of
inflowing particles

Three types (type
1,2 and 3). Stereovilli

Electron dense
granules, accessory
centriole in sensory
cells

Extracellular radial
filaments connecting the
cilium or cilia to the
surrounding stereovilli

Supporting cells
form a wall or crest

Caicci et al. (2007)

Pyura stolonifera,
P.haustor

tentacles of oral
siphon

Sensitivity to
contact of
inflowing particles

A pair of cilia
surrounded by a
crescent ring of
stereovilli graded in
length

Accessory centriole in
sensory cells, electron
dense granules

Extracellular radial
filaments connecting the
cilium or cilia to the
surrounding stereovilli

Supporting cells
form a wall or crest

Caicci et al.
(2010a)

Styela plicata. S.
montereyensis, S.
gibsi

tentacles of oral
siphon

Sensitivity to
contact of
inflowing particles

A pair of cilia
surrounded by a
crescent ring of
stereovilli graded in
length

Accessory centriole in
sensory cells, electron
dense granules

Extracellular radial
filaments connecting the
cilium or cilia to the
surrounding stereovilli

Supporting cells
form a wall or crest

Manni et al.
(2004), Caicci et al.
(2010a)

Polyandrocarpa
zorritensis

tentacles of oral
siphon

Sensitivity to
contact of
inflowing particles

A pair of cilia
surrounded by a
crescent ring of
stereovilli graded in
length

Accessory centriole in
sensory cells, electron
dense granules

Extracellular radial
filaments connecting the
cilium or cilia to the
surrounding stereovilli

Supporting cells
form a wall or crest

Caicci et al.
(2010a)

Enterogona
aplousobranchia

Clavelina
lepadiformis

tentacles of oral
siphon

Sensitivity to
contact of
inflowing particles

More than two cilia of
same length that
constitute an oriented
rows parallel to
coronal organ;
microvilli

Supporting cells
form a wall or crest

Manni et al. (2006)

Diplosoma
listerianum

tentacles of oral
siphon

Sensitivity to
contact of
inflowing particles

More than two cilia of
same length that
constitute an oriented
rows parallel to
coronal organ;
microvilli

Supporting cells
form a wall or crest

Manni et al. (2006)

(Continued on following page)
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TABLE 1 (Continued) Table summarizing the principal findings on the tunicate secondary sensory cells.

Taxon Species Location Proposed
function

Behavioural
test

Hair bundles Cytoplasm of
sensory cell

Radial filament
connecting the

cilia

Supporting
cells

Accessory
secretory

cells

References

Enterogona
phlebobranchia

Ciona robusta tentacles of oral
siphon

Sensitivity to
contact of
inflowing particles

Tentacle
stimulation test

More than two cilia of
same length that
constitute an oriented
rows parallel to
coronal organ;
microvilli

Accessory centriole in
sensory cells

Mackie et al.
(2006), Manni
et al. (2006)

Ascidiella aspersa tentacles of oral
siphon

Sensitivity to
contact of
inflowing particles

More than two cilia of
same length that
constitute an oriented
rows parallel to
coronal organ;
microvilli

Accessory
secretory cells

Mackie et al.
(2006), Manni
et al. (2006)

Phallusia
mammillata

tentacles of oral
siphon

Sensitivity to
contact of
inflowing particles

More than two cilia of
same length that
constitute an oriented
rows parallel to
coronal organ, no
microvilli/stereovilli

Electron dense
granules in sensory
cells

Mackie et al.
(2006), Manni
et al. (2006)

Chelyosoma
productum

tentacles of oral
siphon

Sensitivity to
contact of
inflowing particles

More than two cilia of
same length that
constitute an oriented
rows parallel to
coronal organ;
microvilli

Accessory
secretory cells

Mackie et al.
(2006), Manni
et al. (2006)

Corella inflata, C.
willmeriana

tentacles of oral
siphon

Sensitivity to
contact of
inflowing particles

Tentacle
stimulation test

More than two cilia of
same length that
constitute an oriented
rows parallel to
coronal organ; no
microvilli/stereovilli

Accessory
secretory cells

Mackie et al.
(2006), Manni
et al. (2006)

Appendicularia Okopleura dioica,
O. albicans

lower lip and
pharynx

Monitoring
particle flow into
pharynx

More than two cilia
different in lengths
and shorter toward the
cell edges; microvilli

Supporting cells
form a wall or crest

Bone, 1998; Rigon
et al. (2013)

Thaliacea Pyrosoma
atlanticum

flaps and a
single ventral
tentacle

Sensitivity to
contact of
inflowing particles

Single cilium,
stereovilli

Caicci et al. (2013)

Doliolum
nationalis

flaps Sensitivity to
contact of
inflowing particles

Single cilium,
stereovilli

Caicci et al. (2013)

Salpe Thalia
democratica

absent Rigon et al. (2013)
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Bathchordeaus stygius has revealed the presence of three pairs of oral
sensory organs within the mouth cavity, hypothesized to be
homologous to the coronal organ. Each of these organs is
composed of sensory cells with an apical cilium, innervated by
brain nerves and surrounded by non-ciliated epidermal cells that
nearly cover the organ (Le et al., 2023). In addition to the coronal
organ, appendicularians possess the so-called Langerhans cells,
which are secondary mechanoreceptors located in the posterior
of the “trunk” epidermis and connected with afferent neurites
through gap junctions. When stimulated, Langerhans cells trigger
the escape response of the animal (Bone and Ryan, 1978).

In thaliaceans, the coronal organ has been studied in Pyrosoma
atanticum and D. nationalis (Caicci et al., 2013). These animals have
a single type of secondary sensory cell possessing a cilium
accompanied by microvilli. Instead of tentacles, at the base of the
oral siphon thaliaceans have flaps (D. nationalis), or single ventral
tentacles with dozens of flaps (P. atlanticum). Notably, the coronal
organ is absent in Thalia democratica, a salp. This absence is likely a
derived condition evolved in parallel with the different feeding
system adopted by this group of animals. Indeed a cladistic
analysis, performed using 19 morphological characters in
16 tunicates species, and a cephalochordate and three vertebrate
species as outgroups, revealed that the putative ancestral coronal cell
in tunicates was a simple monociliated cell, that successively
differentiated into the current variety of oral mechanoreceptors
in the various tunicate lineages. The evolutionary changes in
sensory cells may correspond to different feeding strategies
(Rigon et al., 2013).

3.5 Physiology of the coronal organ

Studies aimed to elucidate the function of the coronal organ have
primarily focused on two species: the solitary ascidian C. inflata
(Mackie et al., 2006) and more recently the colonial ascidian B.
schlosseri (Manni et al., 2018; Anselmi et al., 2022; Thompson et al.,
2022). Behavioral experiments aimed to manipulate water flow
patterns and observe siphon closure responses demonstrated that
the secondary sensory cells are mechanoreceptors (Mackie et al.,
2006). In C. inflata, a pioneering study showed that stimulating the
oral tentacles with a glass needle caused the atrial siphon to contract
to less than half its resting diameter, with no change in the diameter
of the oral siphon. This response was named “crossed response”
(Figure 4C). Depending on the stimulus strength and duration, the
degree of atrial siphon closure during the crossed response varied.
While gentle stimulation of the inner surfaces of the siphon or oral
tentacles elicited varying degrees of the crossed response, stronger
stimulation induced “squirts”, characterized by a robust,
synchronous contraction of both siphons and adjacent regions of
the body wall (Figure 4C). This was accompanied by arrest of the
cilia activity in the branchial stigmata responsible for creating the
water current. Notably, a single stimulation could evoke not just one
but a series of contractions suggesting coordination through a
pacemaker (Mackie et al., 2006). These responses were lost after
tentacle amputation. Electrophysiological recordings on the oral
siphon were conducted to measure the electrical activity of the
secondary sensory cells when exposed to specific stimuli in order to
understand how sensory cells are activated and transmit signals. The

results confirmed that crossed responses and squirts are centrally
mediated reflexes but local conduction pathways also exist and
persist after brain removal (Mackie et al., 2006).

Further insights have emerged from a different type of
behavioral experiment, the tentacle stimulation test, conducted in
B. schlosseri to assess animal performance under different conditions
(Manni et al., 2018; Anselmi et al., 2022). This test aims to record the
minimum pressure applied to the tentacle required to trigger the
crossed reflex. Controlled and quantifiable pressure was applied
through a water jet flow directly to the tentacles. Results showed that
stage of adult individuals, the age of the colonies, and their overall
condition (e.g., exposure to drug) significatively influence the zooids
performance. Specifically, a higher threshold for response is
observed in case of lower numbers of brain neurons, as in old
colonies and zooids approaching their resorption, or in case of
coronal organ impairment following drug treatment. In this regard,
is it important to mention that the coronal sensory cells, like
vertebrate hair cells, are damaged by gentamicin (an ototoxic
drug) treatment resulting in a loss of coronal sensory cell
continuity along the organ (Manni et al., 2018). This leads to a
significant decrease in the percentage of responsive zooids to the
tentacle stimulation test compared to the same colonies before
treatment. Interestingly, fenofibrate has been found to have a
strong protective effect on coronal sensory cells against the
gentamicin-induced toxicity, similar to what occurs in vertebrate
hair cells (Park et al., 2017; Manni et al., 2018).

Additionally, experiments involving stimulation of the oral
siphon with ultrasound were conducted on three solitary
ascidians. These experiments revealed that the coronal organ
plays a role in perceiving ultrasounds, exhibiting a frequency-
dependent behavioral response. Higher sensitivity was observed
at the highest frequency tested (Varello et al., 2023).

3.6 Secondary sensory cell development

In tunicates, the coronal organ develops during embryogenesis
from a thickened ectodermal epithelium known as the “anterior
proto-placode”. This tissue eventually gives rise to the oral siphon,
tentacles and velum (Manni et al., 2004; Gasparini et al., 2013a;
Manni et al., 2018). Importantly, the anterior proto-placode
expresses homologues of some placodal genes (Patthey et al.,
2014), (Figure 6).

The development of the coronal organ has been studied using
TEM in C. robusta and B. schlosseri (Manni et al., 2004; Gasparini
et al., 2013a). In Ciona, coronal cells become morphologically
recognizable during the early juvenile stage when they appear as
cells with short cilia and occasional microvilli. Over time, these cells
progressively develop hair cell-like features, including microvilli
containing actin and myosin, and associated with supporting
cells. Importantly, the coronal organ continues to grow
throughout the entire lifespan of the animal, parallel to the
growth of the tentacles. Immunohistochemistry has revealed
higher mitotic activity in the coronal organ of adults, with
proliferating coronal sensory cells and supporting cells detected
using Histone H3 antibody (Gasparini et al., 2013a). ISH has shown
that orthologs of genes such as Atoh1, Notch, Delta-like, HES, and
Musashi are expressed during the development of the coronal organ
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(Rigon et al., 2018) mirroring gene expression patterns seen in
vertebrate neural and hair cell differentiation (Fritzsch and
Elliott, 2017).

The development of the coronal organ during asexual
reproduction has been investigated in B. schlosseri (Manni et al.,
2018). The coronal cells undergo cyclical development on a weekly
basis becoming first recognizable in the buds during mid-cycle due
to the differentiation of their apical bundle and basal synapses. Their
definitive configuration is reached when their parents are in late-
cycle which coincides with the degeneration of both the parent brain
and sensory system.

4 Evolutionary relationships between
vertebrate and invertebrate
mechanoreceptor cells

In addition to primary mechanosensitive sensory neurons,
vertebrates possess specialized secondary mechanosensory cells,
including the hair cells of the inner ear and lateral line and
Merkel cells of the skin. Vertebrate hair cells share several
developmental, morphological, and functional similarities with
tunicate primary and secondary mechanoreceptor cells. These
similarities and differences are discussed below.

FIGURE 5
(A,B)Confocal pictures of the B. schlosseri oral siphon and tentacles stained with anti-alpha tubulin (green) labelling nerves, phalloidin (red) labelling
cytoplasmatic actin and dapi (blue) labelling cell nuclei. (C,D) Scanning electronmicroscopy showing the coronal organ ofMolgula socialis. Squared area
in C is enlarged in D. The organ is composed of a row of 1-2 sensory cells (recognisable by their hair bundle) flanked by supporting cells characterized by
an apical cytoplasmic crista (arrowhead). Two types of sensory cells can be recognised: with a couple of cilia surrounded by graded stereovilli (type
3), and with a single cilium surrounded bymicrovilli (type 1). (E,F) Transmission electronmicroscopy showing a transverse section of the coronal organ of
M. socialis. Squared area in E is enlarged in F to show the different apical bundle structure: two sensory cells at left display microvilli (type 1), whereas the
sensory cell at right possesses stereovilli (type 2 or 3).
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4.1 The development of vertebrate hair cells
from cranial placodes

Towards the end of gastrulation, the vertebrate neural plate
arises from the most dorsal population of embryonic ectoderm in
response to a variety of organizing signals (Grocott et al., 2012;
Groves and LaBonne, 2014; Thawani and Groves, 2020). The border
between the developing neural plate and the future epidermis gives
rise to two distinct multipotential lineages - neural crest cells and
cranial placodes. The cranial placodes are ectodermal thickenings
that give rise to (1) cranial sensory neurons of the trigeminal ganglia,
(2) cranial sensory neurons of the epibranchial ganglia, (3) the otic
placode which will form the entire inner ear including hair cells and
sensory neurons, (4) the olfactory epithelium, (5) the lens of the eye,
and (6) the anterior pituitary gland (Singh and Groves, 2016; Streit,
2018); (Figure 6A). In aquatic vertebrates, lateral line placodes will
give rise to the hair cell-bearing neuromasts located along the head
and trunk of the animal. The anterior and posterior lateral line
neuromasts of teleosts, named for the direction in which their cells
migrate, arise from a lateral line placode in the vicinity of the otic
placode. Some aquatic species, like axolotls and paddlefish, have
ampullary organs containing specialized electroreceptor cells that
also arise from a lateral line placode (Baker et al., 2013; Modrell
et al., 2017).

Cells destined to give rise to cranial placodes first express
members of the AP2a and FoxI families, which distinguish non-
neural ectoderm from the adjacent neural ectoderm (Ohyama and
Groves, 2004; Grocott et al., 2012; Khatri et al., 2014; Pla and
Monsoro-Burq, 2018); (Figure 6B). Some cells within this region
then express both Six homeobox transcription factors and Eya co-
regulators in what has been termed the pre-placodal domain (Streit,
2004; 2007; Sato et al., 2010). Six1 is expressed throughout the pre-
placodal domain, posterior placodes like the otic placode express
Eya1 and Six4, and anterior placodes like the olfactory placode
express Eya2 and Six3 (Streit, 2004; 2018; Sato et al., 2010). Locally
acting signals then divide this pre-placodal region into distinct
placodal territories along its anterior-posterior axis. Members of
the Pax gene family play an important role in this process: Pax6-
expressing progenitors give rise to the olfactory and lens placodes,
Pax3-expressing progenitors give rise to the trigeminal placode, and
Pax2/8-expressing progenitors give rise to the otic placode and the
epibranchial placodes (Baker and Bronner-Fraser,
2001); (Figure 6B).

Once the otic placode has formed, the tissue transforms by
invagination into the otic vesicle or otocyst. The otocyst co-opts
dorso-ventral and anterior-posterior signals used to pattern the
central nervous system (Groves and Fekete, 2012; Wu and Kelley,
2012) to form a series of prosensory patches expressing the Sox2
transcription factor (Raft and Groves, 2015). These prosensory
patches will give rise to the auditory and vestibular epithelium
containing hair cells and supporting cells. The surrounding non-
sensory epithelium of the ear expresses the transcription factor
Lmx1a and will give rise to structures such as the semicircular
canals of the vestibular system (Gu et al., 2016; Żak and Daudet,
2021). Mutual antagonism between Sox2 and Lmx1a, driven in part
by Notch pathway signaling, leads to the correct positioning and
distribution of the prosensory patches (Mann et al., 2017). Hair cells
and supporting cells develop from each sensory patch through a

process of Notch-mediated lateral inhibition. Differentiating hair
cells express Notch ligands to suppress a hair cell fate in neighboring
cells, which then differentiate as supporting cells (Basch et al., 2016;
Brown and Groves, 2020). Below, we discuss evidence for
conservation of these developmental events in the formation of
coronal sensory cells in tunicates.

4.2 What elements of vertebrate placode
development are shared in tunicates?

The presence of thickened, placode-like structures in tunicates
was first suggested by a study of the neurohypophysial duct, which
generates the neural gland rudiment and migratory cells that
contribute to the cerebral ganglion (Manni et al., 2005; 2001;
1999). The discovery of secondary hair cell-like cells in the
coronal organs of Botryllus and Ciona (Burighel et al., 2003;
Manni et al., 2005) suggested they may also derive from placodal
structures. Subsequent analyses identified four thickened placodal-
like structures or “proto-placodes” in tunicate larvae: (1) the rostral
proto-placode which will form the larval adhesive organ and its
associated sensory neurons, and the adult stolon (Section 2.4), (2)
the stomodeal proto-placode that will give rise to the oral siphon
including the coronal organ, (3) the afore-mentioned
neurohypophysial proto-placode, and (4) the atrial proto-placode
which will form the atrial siphon and atrial chamber wall, containing
primary mechanosensory cells of the cupular organs (Manni et al.,
2004; Gasparini et al., 2013b); (Figure 6A). Subsequent studies
analyzed the expression of vertebrate placodal patterning gene
orthologues in the developing tunicate proto-placodes at the
embryonic, larval, and juvenile stages of Ciona and Botryllus
(Mazet and Shimeld, 2005; Gasparini et al., 2013b). The Ciona
orthologs of AP2a and Sox2/3, Tfap2-r.b and Sox1/2/3, respectively
promoted epidermal and neural fate of ectoderm cells (Imai et al.,
2017). Members of the Six and Eya families were expressed in both
the anterior (stomodeal/neurohypophysial) and posterior (atrial)
proto-placodes, with Six1/2 marking both structure placodes and
Six3/6 being confined to the anterior proto-placode. Tunicate FoxI
orthologues were expressed in the posterior atrial proto-placode
(Mazet and Shimeld, 2005; Gasparini et al., 2013b); (Figure 6B).

Based on these studies of two evolutionarily distant tunicate
species, it has been proposed that the tunicate anterior proto-
placodes resemble the vertebrate olfactory/lens/hypophyseal
placodes, and the tunicate posterior proto-placode resembles the
vertebrate otic/epibranchial/lateral line placodes (Gasparini et al.,
2013b). However, in vertebrates only the posterior otic and lateral
line placodes produce hair cells (Groves and LaBonne, 2014;
Piotrowski and Baker, 2014), whereas in tunicates coronal
sensory cells that most closely resemble vertebrate hair cells are
derived from the anterior proto-placode. Only the primary
mechanosensory cells of the cupular organs are derived from the
posterior placode (Gasparini et al., 2013b). Since Six and Eya genes
are initially expressed throughout the vertebrate pre-placodal
domain (Streit, 2007; Schlosser, 2014), it is likely that additional
transcription factor combinations are required to divide this domain
more precisely into individual placodes, or that individual placodes
are specified at different times. In this regard, it is interesting to note
that vertebrate Foxi1/3 genes are initially expressed throughout the
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FIGURE 6
Comparison of vertebrate placodal and tunicate proto-placodal development and vertebrate hair cell and tunicate coronal sensory cell structures.
(A) Schematic of vertebrate placodes compared to tunicate proto-placodes. The anterior placodes include the olfactory, anterior pituitary, and lens
placodes. The posterior placodes include the trigeminal, epibranchial, and otic placodes. Tunicates have three anterior proto-placodes:, the rostral,
stomodeal, and neurohypophysial placodes. Tunicates have two posterior atrial proto-placodes. Following metamorphosis, the stomodeal proto-
placode will give rise to the oral siphon and the atrial proto-placodes will fuse to form the atrial siphon. (B) Conservation of genes expressed during
vertebrate placodal and tunicate proto-placodal development. Several key genes involved in placode development appear to be conserved. (C)
Comparison of hair cells from vertebrates and coronal sensory cells from tunicates. Vertebrate hHair cells (tan) are flanked by supporting cells (gray).
Sensory cells possess kinocilium (red) and stereovili (purple) that are connected together by different links.
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pre-placodal domain, at a time when all parts of the pre-placodal
domain are competent to generate the otic placode (Solomon et al.,
2003a; 2003b; Ohyama and Groves, 2004; Birol et al., 2016) and are
gradually downregulated in an anterior-posterior direction (Khatri
et al., 2014; Birol et al., 2016). However, Foxi1/3 appear to be
required for the development of only the posterior otic,
epibranchial and lateral line placodes in vertebrates (Solomon
et al., 2003a; Hans et al., 2004; Birol et al., 2016). Rigon and
others (Rigon et al., 2018) speculated that the common ancestor
of vertebrates and tunicates may have generated mechanosensory
cells from both anterior and posterior placode-like structures, with
the ability to generate such cells being lost from the anterior placodes
in vertebrates and from the posterior ptoto-placodes in tunicates.
One possible explanation for this difference is that the evolution of
the tunic covering the exterior surface of the animal placed
constraints on where mechanosensory cells could function,
restricting them to oral structures on the interior of the body
that do not have a tunic covering (Manni et al., 2006).

It should be stressed that the putative homology between a
Foxi1/3 and Pax2/8-expressing atrial primordium and the vertebrate
“otic-epibranchial progenitor domain” is still far from settled
(Graham and Shimeld, 2013; Patthey et al., 2014). A n alternative
explanation for this paradox is that the posterior region of the
tunicate larval head that expresses Six and FoxI genes does not give
rise to sensory structures at all. Vertebrate Six and Foxi1/3 genes are
also expressed in the developing pharyngeal arch region of
vertebrates at a slightly later stage than their expression in the
pre-placodal domain (Ohyama and Groves, 2004; Khatri and
Groves, 2013; Edlund et al., 2014; Birol et al., 2016; Ankamreddy
et al., 2023), and they are required for correct formation of the
pharyngeal arch structures (Solomon et al., 2003a; Nissen et al.,
2003; Edlund et al., 2014). Interestingly, FoxI and Six orthologues
are also expressed in the branchial fissures (stigmata) of the tunicate
atrium where peribranchial and branchial epithelium contact each
other and fuse (Gasparini et al., 2013b). This expression pattern is
reminiscent of the requirement for Foxi1/3 in the vertebrate
pharyngeal pouches and clefts that form by fusion of pharyngeal
ectoderm and endoderm (Edlund et al., 2014; Hasten and Morrow,
2019). Thus, while Six and FoxI genes mark the posterior atrial
proto-placode in both Ciona and Botryllus, it is possible that these
genes are acting to regulate formation of the atrium itself, rather
than the cupular mechanosensory cells in the atrial walls. It may be
possible to test the function of tunicate Six and FoxI orthologues by
CRISPR-based loss-of-function studies to determine if they are
necessary for the formation of primary cupular mechanosensory
cells in the atrium or only for the formation of the branchial fissures.

As discussed above, vertebrate placodes acquire their unique
identity by expression of different Pax family genes. Ciona has six
Pax family genes, and, although several are expressed in regions of
the larval central nervous system, most do not appear to be
expressed in any of the proposed proto-placode structures
identified in tunicate larvae (Mazet et al., 2003; Imai et al., 2004;
Hudson and Yasuo, 2005). Of the Pax genes in Ciona, Pax2/5/8.a is
expressed in the larval atria and stomodeum cavities, and Pax2/5/8.b
is expressed weakly in the invaginating stomodeum (Mazet et al.,
2003; Mazet and Shimeld, 2005). It remains an open question
whether any other Pax genes play a role in the formation or
patterning of other placode-like structures in tunicates. For

example, Pax6 gene family members are well known to regulate
eye development across most animal phyla (Kozmik, 2008). In
vertebrates, Pax6 has also been co-opted to regulate the
formation of the lens through its expression in the lens placode
(Cvekl and Ashery-Padan, 2014). Ciona Pax6 is expressed in parts of
the brain associated with the photoreceptive ocellus and has the
three “lens” cells lying above the ocellus, although they are not
believed to be homologous to vertebrate lens cells. These “lens” cells
do not express Pax6, nor do they express beta-crystallin (Shimeld
et al., 2005). Moreover, vertebrate Pax6 genes have a lens-specific
enhancer that is not present in tunicates (Irvine et al., 2008),
suggesting that the co-option of Pax6 to regulate development of
a lens structure occurred after vertebrates and tunicates diverged.
Clarification of the role of other Pax genes in tunicate placode
derivatives will require more sensitive tools to localize their
transcripts, such as single cell RNA-seq and in situ hybridization,
and to test gene function using loss of function approaches such as
CRISPR-Cas9.

4.3 What elements of vertebrate hair cell
development are shared in tunicates?

As described above, vertebrate inner ear and lateral line hair cells
develop from patches of prosensory tissue marked by Sox2, a
member of the SoxB transcription family (Neves et al., 2013).
SoxC family members, such as Sox4 and Sox11 then act within
these patches to provide competence for differentiation of hair cells
and supporting cells (Gnedeva and Hudspeth, 2015; Wang et al.,
2023). Cells within this expression domain upregulate the proneural
transcription factor Atoh1, which initially marks the progenitors of
both hair cells and supporting cells (Yang et al., 2010; Li et al., 2022).
ATOH1, which is both necessary and sufficient for hair cell fate, is
quickly restricted to differentiating hair cells through Notch-
mediated lateral inhibition (Jarman and Groves, 2013; Cai and
Groves, 2015). ATOH1 regulates other transcription factors, such
as GFI1 and POU4F3, to establish a hair cell gene regulatory
network (Iyer and Groves, 2021; Iyer and Groves, 2021).
GFI1 can act with ATOH1 to positively promote the expression
of hair cell genes and can also act alone to inhibit expression of
neuronal genes (Jen et al., 2022; Jen et al., 2022). Since ATOH1 is
also responsible for the differentiation of neurons in the cerebellum,
brainstem, and spinal cord (Ben-Arie et al., 1997; Lai et al., 2011;Wu
et al., 2023), it is possible that secondary mechanosensory receptor
cells co-opted Gfi1 to repress neuronal gene networks during
evolution. POU4F3 also promotes hair cell differentiation by
acting as a feed-forward pioneer factor: it is first induced by
ATOH1 and then binds to many other ATOH1 target genes to
make them transcriptionally accessible (Yu et al., 2021). The
combined action of ATOH1, GFI1, and POU4F3 promotes a hair
cell fate, and these transcription factors are also capable of
reprogramming embryonic stem cells, fibroblasts, or non-sensory
cells of the ear to a hair cell fate (Costa et al., 2015; Menendez et al.,
2020; Iyer et al., 2022).

Several lines of evidence suggest that these three transcription
factors have an evolutionarily conserved role in the differentiation of
mechanosensory cells. Drosophila orthologues of Atoh1, Gfi1, and
Pou4f3 (atonal, senseless and acj6 respectively) are expressed in
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developing chordotonal organs that have mechanosensory functions
in proprioception, hearing, and balance (Jarman et al., 1993; 1995;
Nolo et al., 2000; Lee and Salvaterra, 2002). Significantly, Atoh1 and
Gfi1 can functionally replace atonal and senseless in Drosophila, and
atonal can functionally replace Atoh1 in mice (Ben-Arie et al., 2000;
Wang et al., 2002; Acar et al., 2006). Orthologues of Atoh1, Gfi1 and
Pou4f3 have also been identified in Caenorhabditis elegans (Atonh1/
lin-32, Gfi1/pag-3, and Pou4/unc-86) and are necessary for the
formation of AVM/PVM mechanosensory neurons (Baumeister
et al., 1996; Zhao et al., 2020). A Class IV POU gene orthologue
has also been shown to be necessary for the development of
cnidarian (sea anemone) hair cell-like cells, although it is not
known whether atonal-like factors regulate this gene in sea
anemones (Ozment et al., 2021). Finally, Atoh1, Gfi1, and Pou4f3
are all expressed in the touch-sensitive Merkel cells of the skin
(Lumpkin et al., 2003; Haeberle et al., 2004; Yu et al., 2021), and
Atoh1 and Pou4f3 are both necessary for the differentiation of these
cells (Maricich et al., 2009; Yu et al., 2021). Significantly, the
inductive and pioneer feed-forward relationship between Atoh1
and Pou4f3 seen in hair cells is also conserved in Merkel cells,
even though they regulate overlapping but distinct sets of genes in
these two different mechanosensory cell types (Yu et al., 2021).

It is interesting to speculate on what gene networks are regulated
by Atoh1, Gfi1, and Pou4f3 orthologues in the different kinds of
mechanosensory cells described in the previous paragraph. In a very
simplified view, a mechanosensory cell requires (1) membrane
specializations to detect mechanical force (such as vertebrate
stereovilli or arthropod ciliated dendrites); (2) membrane
components to develop a receptor or axon potential; (3) a
synaptic apparatus to allow propagation of the mechanosensory
stimulus to downstream neurons. These functional modules are
created by gene networks expressed during development and then
homeostasis. When comparing the molecular identity of cell types, it
is important to functionally contextualize homologous genes across
species. For example, gene networks regulating synaptic
specializations are likely to be more highly conserved between
different mechanosensory cells compared to networks regulating
the more varied types of force-detecting machinery in these different
cell types. Supporting this idea, a recent study comparing vertebrate
hair cells and Merkel cells found that genes directly regulated by
ATOH1 and POU4F3 in both cell types tended to be associated with
synapses, cation channels and potassium channels (Yu et al., 2021).
While some modules expressed by an ancestral mechanosensitive
cell type may have been conserved, it is also possible that comparable
modules were convergently evolved. At present, we have little
information on how the development of tunicate
mechanosensory cells is regulated. There is currently no evidence
that the coronal sensory cellscells and supporting cells of the coronal
organ derive from a SoxB/SoxC-expressing domain analogous to the
prosensory patches of vertebrates. Atonal and Pou4 orthologues are
present in Ciona and are expressed in larval ciliated epidermal
sensory neurons; in these cells CiAtonal has been reported to be
epistatic to CiPouf4 (Tang et al., 2013). The coronal organs of Ciona
express an Atonal orthologue, as well as members of the Notch
pathway (Rigon et al., 2018), but these genes have yet to be
definitively localized to coronal sensory cells or supporting cells.
With the advent of molecular techniques such as single cell RNA-seq
and CUT&RUN/CUT&Tag, it will become feasible to identify gene

networks expressed in mechanosensory cells of different species and
to identify the direct targets of transcription factors such as ATOH1,
GFI1, and POU4F3 within these networks.

As discussed above, the development of tunicate coronal organ
sensory cells from the anterior, stomodeal proto-placode differs
from that of hair cells of the vertebrate inner ear and lateral line,
which develop from posterior (otic and lateral line) placodes.
Although evolutionary scenarios have been proposed to account
for this difference (Rigon et al., 2018), the limited data on expression
of downstream placodal and prosensory genes in tunicates makes it
hard to define the pathways by which coronal sensory cells form in
the developing coronal organ. Indeed, it is possible that expression of
Atonal orthologues in the coronal organ epithelium is sufficient to
generate coronal sensory cells and supporting cells without the need
to pass through a pre-placodal, placodal or prosensory state. In
support of this idea, the chordotonal organs of Drosophila are
generated by upregulation of atonal in embryonic ectoderm to
form sensory organ precursors, and over-expression of atonal or
Atoh1 is sufficient to generate ectopic chordotonal organs in
embryonic ectoderm (Jarman et al., 1993; 1995; Ben-Arie et al.,
2000). Merkel cells of the vertebrate skin are generated directly from
keratin-expressing epidermis without passing through a Sox2+
prosensory phase; here SOX2 appears to control the maturation
of Merkel cells, rather than their specification (Lesko et al., 2013;
Perdigoto et al., 2014). Finally, activation of Atoh1, Gfi1, and Pou4f3
in primary mouse fibroblasts is sufficient to induce many aspects of
the hair cell gene regulatory network without prior activation of
SoxB or SoxC factors (Menendez et al., 2020). Localization of Atoh1
and Sox2/SoxB orthologues in developing and mature coronal organ
tentacles may help to address some of these questions and to more
accurately identify the stages of differentiation of these cells.

4.4 What elements of vertebrate hair cell
regeneration are shared in tunicates?

Many vertebrate inner ear and lateral line hair cells undergo
gradual turnover and replacement in mature animals, and non-
mammalian vertebrates can also robustly regenerate new hair cells
after the endogenous hair cells are killed (Stone and Cotanche, 2007;
Kniss et al., 2016). In non-mammalian vertebrates, new hair cells are
generated by the upregulation of Atoh1 in supporting cells, which
then trans-differentiate to a hair cell fate (Stone and Cotanche,
2007). This can occur with or without supporting cell division, but
ultimately leads to full replacement of hair cells and functional
recovery. The one exception to this is mammals, where the cochlea is
unable to regenerate new hair cells after the onset of hearing and the
vestibular system is capable of only a modest amount of turnover
and regeneration (Groves, 2010; Bucks et al., 2017). Given the ability
of other vertebrates to regenerate hair cells, it is possible that with the
ancestral form that gave rise to hair cells also had the capacity to
regenerate. If tunicate coronal sensory cells and vertebrate hair cells
have a shared evolutionary origin, do tunicate coronal sensory cells
regenerate? As adult tunicates mature, the tentacles of the oral
siphon continue to grow, implying that there must be some post-
metamorphic mechanism to generate new coronal sensory cells and
supporting cells. Transmission electron microscopy has revealed
rare instances of apparently dividing sensory cells in Pyura haustor
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(Caicci et al., 2007), and analysis of mitosis by PH3 staining in the
coronal organs of adult and juvenile C. intestinalis indicates that
both supporting cells and coronal sensory cells are capable of
creating new coronal sensory cells (Gasparini et al., 2013a).
Recent work suggests that exposure of tunicate coronal sensory
cells to the ototoxic aminoglycoside gentamicin leads to an apparent
loss of some sensory cells from the tentacles and impairs
responsiveness of the coronal organ tentacles to touch (Manni
et al., 2018). However, it is not known whether coronal sensory
cells can be regenerated after such damage, nor whether any new
coronal sensory cells are generated by neighboring supporting cells.
Further studies are required to explore the potential for tunicate
coronal sensory cell regeneration, and whether genes associated with
hair cell regeneration in vertebrates like Atoh1 play a role in
this process.

4.5 A consideration of
mechanotransduction in vertebrate hair sells
and tunicate coronal sensory cells

Vertebrate hair cells are exquisitely sensitive mechanoreceptors;
the human ear can detect sounds that vibrate the eardrum by one
picometer. Hair cells have a hair bundle protruding from their apical
surface consisting of a graded, stair-case-like array of long modified
microvilli termed stereocilia or stereovilli (Vélez-Ortega and
Frolenkov, 2019); (Figure 6C). Vertebrate hair cells develop with
a single true cilium or kinocilium that migrates to an eccentric
position on one side of the apical surface of the hair cell as the hair
bundle develops (Frolenkov et al., 2004). The kinocilium persists in
most mature vertebrate hair cells but degenerates in mammalian
cochlear hair cells prior to the onset of hearing (Wang and Zhou,
2021). The apical tips of all but the longest stereovilli are joined to
the next tallest stereovillus by a tip link consisting of a heterodimer
of a protocadherin, PCDH15, and a cadherin, CDH23 (Vollrath
et al., 2007). A mechanotransduction complex (Qiu and Müller,
2018; Holt et al., 2021), is present in all but the tallest stereovilli and
this complex consists of pore-forming cation channels, TMC1 and/
or TMC2, and two other membrane proteins, TMIE and TMHS/
LHFPL5 which help modulate the pore properties of the channel
[TMIE; (Zhao et al., 2014; Cunningham et al., 2020)] and bind to
PCDH15 [TMHS; (Xiong et al., 2012; Zhao et al., 2014; Ge et al.,
2018)]. Loss of any of these proteins compromises hair cell function
and causes severe hearing loss. Deflection of the hair bundle applies
force to each tip link, leading to an extremely fast (~10 µs) gating of
the mechanotransduction channel (Gillespie and Müller, 2009). An
array of accessory proteins (such as MYOSIN7A, harmonin, and
sans) inside the stereovilli anchors the mechanotransduction
complex to the actin core of each stereovillus (Schwander et al.,
2010), and mutations in these proteins, or in CDH23 or PCDH15,
lead to hereditary deaf-blindness known as Usher syndrome
(Cosgrove and Zallocchi, 2014; Whatley et al., 2020). In addition,
a second mechanosensitive ion channel, PIEZO2, lies at the base of
the hair bundle and is responsible for what have been termed
reverse-polarity currents (Beurg and Fettiplace, 2017; Wu et al.,
2017), although precise function of PIEZO2 in hair cell
mechanotransduction and bundle integrity is still unclear (Qiu
and Müller, 2018).

As discussed in Section 3.4, the coronal sensory cells of tunicates
show a far greater degree of diversity in different taxa than those of
vertebrates (Manni et al., 2006; Caicci et al., 2010a; Rigon et al.,
2013). This diversity is seen in the number of cilia, which can vary
from just one or two in some groups, to multiple cilia that can be
present in single or multiple rows (Table 1; Figure 4B; Figure 6C).
The cilia can be located centrally or eccentrically as in vertebrates.
Short microvilli can be present or can be elongated to appear more
like stereovilli. In most tunicate taxa the stereovilli are of the same
length, but in some groups the stereovilli have a more graded
morphology reminiscent of a vertebrate hair bundle. Multiple
different morphologies of sensory cells can occur in the coronal
organs of some taxa, again reminiscent of the different hair cell types
seen in vertebrate sensory organs, such as inner and outer hair cells
of the mammalian cochlea, type I or type II vestibular hair cells, or
the tall and short hair cells of the bird hearing organ, the basilar
papilla. Unlike vertebrates, tunicate sensory cells do not appear to
have clear tip links connecting their stereovilli, but some taxa show
evidence of lateral connections between stereovilli, or between
stereovilli and cilia (Burighel et al., 2003; Caicci et al., 2007;
Rigon et al., 2013); (Table 1). Such links have some resemblance
to the side links, ankle links, shaft connectors and top connectors
that are present between stereovilli and between stereovilli and the
kinocilium (Richardson and Petit, 2019).

What types of stimulus gate tunicate sensory cells? As discussed
in Section 3.5 above, gentle stimulation of the oral tentacles by direct
touch, vibration, or electrical shocks can lead to contractions of the
atrial and oral siphons known as the crossed response, with stronger
stimuli evoking a squirt response caused by strong contractions of
both siphons and the body wall (Mackie et al., 2006; Manni et al.,
2018). Similar responses can be evoked by particulate matter such as
polystyrene beads or ground vegetable matter (Mackie et al., 2006),
suggesting that at least one function of the coronal organ is to
mediate particle expulsion in response to direct mechanical
stimulation. This does not preclude other functions for sensory
cells; in this regard it is intriguing that the bundle morphology of
some tunicate sensory cells resembles that of electroreceptors seen in
many fish and some amphibians (Baker, 2019). Elucidating the types
of stimuli that tunicate coronal sensory cells respond to requires
more electrophysiology studies such as whole-cell voltage clamp
recordings from sensory cells or using fluid jet stimulation to evoke
and measure mechanotransduction currents. Additionally, CRISPR
may be used to create transgenic tunicates expressing a membrane-
localized calcium sensor to detect mechanotransduction and
presynaptic activity in hair cells.

It is currently unknown how coronal sensory cells respond to
mechanical force, nor the range of forces that can evoke synaptic
release. The wide variety of tunicate sensory bundle types, together
with the absence of apical tip links in coronal sensory cells suggests it
is unlikely that CDH23/PCDH15-mediated gating of a
mechanotransduction channel of the sort seen in vertebrates is
occurring in tunicates. However, the presence of side links
between stereovilli and between stereovilli and cilia suggest an
alternative method of mechanoreceptor gating. Indeed, such
kinociliary links have been shown to mediate
mechanotransduction in developing zebrafish hair cells before
being replaced by stereovilli-based mechanotransduction in
mature hair cells (Kindt et al., 2012). Insect chordotonal organs
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facilitate mechanotransduction with members of the TrpN and
TrpV channel family (Li et al., 2018). Although vertebrate hair
cells seem to use TMC and PIEZO2 channels for
mechanotransduction (see above), TrpN channels may also be
required for mechanosensation in some cases (Sidi et al., 2003).
The TRPA1 channel was originally proposed as candidates for the
vertebrate mechanotransduction channel (Corey et al., 2004), but
data from knockout mice suggests that neither TRPA1 nor 32 other
Trp channels are necessary for mechanotransduction in mouse hair
cells (Kwan et al., 2006; Wu et al., 2016). A Ciona orthologue of
TrpA1 is expressed in coronal sensory cells (Rigon et al., 2018), but
its role in mechanotransduction has yet to be tested. PIEZO2 is
another possible candidate for the tunicate mechanotransduction
channel; it is located at the base of the hair bundle in vertebrate hair
cells (Wu et al., 2017) and therefore does not require tip-link based
mechanotransduction. PIEZO2 also mediates Merkel cell
mechanotransduction without the need for elaborate stereovilli or
tip link-based machinery (Maksimovic et al., 2014; Woo et al., 2014;
Nakatani et al., 2015).

4.6 Are vertebrate hair cells and tunicate
coronal sensory cells homologous?

During chordate evolution, some cell types remain tightly
conserved while others have been either lost or convergently
evolved across different species. The concept of a “core
regulatory complex” (CoRC) of transcription factors has been
useful in devising evolutionary scenarios for cell types (Arendt
et al., 2016) and as discussed above, mechanosensory cells across
vertebrate and invertebrate taxa appear to share factors such as
atonal/Atoh1, senseless/Gfi and Pou4 factors. Several models for the
evolution of chordate mechanosensory cells have been proposed (for
example, Schlosser, 2021). These models propose some form of basal
primary sensory cell giving rise to two distinct cell types: a primary
sensory neuron that is not mechanosensitive and defined by
neurogenin-like transcription factors, and a mechanosensitive cell
defined by atonal-like transcription factors and which either lacked
an axon altogether (hair cells and coronal sensory cells) or just a
short axon (caudal epidermal neurons; see 2.1 above).

At present, only atonal/Atoh1 expression has been characterized
in the tunicate coronal organ and has not yet been localized to the
coronal sensory cells. Nevertheless, the presence of both hair cell-
like cells adjacent to supporting cells, the expression of Notch
pathway genes in these cell types and their derivation from
proto-placodal structures make a reasonable case for homology
between these cell types. However, this conclusion is complicated
by the fact that tunicates undergo metamorphosis, which prevents a
clear visualization of the transition from tunicate “proto-placodal”
structures to a sensory organ. This transition can be readily observed
in vertebrates as the pre-placodal domain gives rise to individual
placodes, some of which produce hair cells.

Resolving the question of homology between vertebrate hair
cells and tunicate coronal sensory cells will be helped by three recent
technical advances. First, single cell transcriptional analysis will be
able to determine whether the CoRC transcription factors present in
vertebrate hair cells and supporting cells are also expressed in
coronal sensory cells and their associated supporting/accessory

cells. Second, the advent of CRISPR has facilitated loss-of-
function studies in many new model and non-model organisms,
and disruption of tunicate CoRC mechanosensory transcription
factors will allow testing of their necessity for coronal sensory
cell differentiation. Finally, it may be possible to perform lineage
tracing experiments to determine tunicate proto-placodal cells do
indeed contribute to coronal sensory cells following metamorphosis.
Resolving these questions could elucidate the ancestral
mechanosensory hair cell gene regulatory network or could
uncover novel mechanisms of creating mechanosensitive hair
cell-like cells in different species.
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