
Advances in understanding the
reproductive toxicity of
endocrine-disrupting chemicals
in women

Jinguang Wang1, Chunwu Zhao2, Jie Feng3, Pingping Sun1,
Yuhua Zhang1, Ailing Han1, Yuemin Zhang1 and Huagang Ma1*
1Reproductive Medicine Center of Weifang People’s Hospital, Weifang, China, 2Gastrointestinal Surgery
Center of Weifang People’s Hospital, Weifang, China, 3Gynecology and Obstetrics Department, Fangzi
District People’s Hospital, Weifang, China

Recently, there has been a noticeable increase in disorders of the female
reproductive system, accompanied by a rise in adverse pregnancy outcomes.
This trend is increasingly being linked to environmental pollution, particularly
through the lens of Endocrine Disrupting Chemicals (EDCs). These external
agents disrupt natural processes of hormones, including synthesis,
metabolism, secretion, transport, binding, as well as elimination. These
disruptions can significantly impair human reproductive functions. A wealth of
animal studies and epidemiological research indicates that exposure to toxic
environmental factors can interfere with the endocrine system’s normal
functioning, resulting in negative reproductive outcomes. However, the
mechanisms of these adverse effects are largely unknown. This work reviews
the reproductive toxicity of five major environmental EDCs—Bisphenol A (BPA),
Phthalates (PAEs), Triclocarban Triclosan and Disinfection Byproducts (DBPs)—to
lay a foundational theoretical basis for further toxicological study of EDCs.
Additionally, it aims to spark advancements in the prevention and treatment of
female reproductive toxicity caused by these chemicals.

KEYWORDS

environmental pollution, endocrine disrupting chemicals, reproductive health,
reproduction toxicity, exposure

1 Overview of research on endocrine disruptors

In recent years, the relentless advance of industrialization has dramatically escalated
environmental pollution, casting a long shadow over public health. A significant and
growing body of evidence has illuminated the detrimental effects of endocrine disrupting
chemicals (EDCs) on female reproductive health, including several conditions such as
infertility (Karwacka et al., 2019). EDCs, a class of exogenous chemicals, disrupt the natural
hormone synthesis and metabolic processes in organisms, triggering a cascade of adverse
outcomes, as well as impacting embryogenesis and fetal development (Dutta et al., 2023).
The ubiquity of human exposure to these environmental pollutants is a pressing concern,
occurring through ingestion, inhalation, or dermal absorption (Yilmaz et al., 2020).
Research underscores that adverse environmental influences across the entire spectrum
of a woman’s life can exert profound and enduring effects on reproductive health (Ma et al.,
2019; Panagopoulos et al., 2023).
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Based on the prevalence and ubiquity, emerging concerns and
the relevance to female reproductive health, this article embarks on a
comprehensive review of five pivotal EDCs: Bisphenol A (BPA),
Phthalic acid esters (PAEs), Triclocarban (TCC), Triclosan (TCS),
and Disinfection byproducts (DBPs). (Table 1). These compounds
were chosen due to their widespread presence in the environment
and their high potential for human exposure. For instance, BPA is
commonly found in plastics and resins, whereas PAEs are prevalent
in various consumer products, including personal care items and
plastics. Some of these chemicals, such as TCC and TCS, represent
emerging contaminants of concern. Their inclusion reflects the
evolving nature of environmental health research and the need to
address less studied, but potentially significant, threats. Each of these
chemicals has been linked to various degrees of interference with
hormonal function, underscoring the need for a nuanced
understanding of their toxicological profiles. This review not only
lays a foundational theoretical framework for the ongoing study of
EDCs but also aims to shed light on potential strategies for
mitigating female reproductive toxicity and fostering preventive
health measures.

2 Reproductive toxicity of bisphenol A

As a prevalent component of the bisphenol (bis-hydroxyphenyl)
group, Bisphenol A (BPA) is extensively utilized in the
manufacturing of high molecular weight materials, such as
polycarbonates and epoxy resins (Hananeh et al., 2021). Its
widespread application in food and beverage packaging, baby
bottles, safety equipment, and medical devices has raised
concerns (Abraham and Chakraborty, 2020). There are various
ways in which humans are exposed to BPA, with oral exposure
being the primary route, although it can also be inhaled through the
respiratory tract or percutaneous absorption (Sonavane and
Gassman, 2019). BPA exists in various biological samples,
including blood, urine, breast milk, umbilical cord blood,
amniotic fluid, and placental tissue, among others (Zhang et al.,
2020). BPA undergoes metabolism in the form of glucuronide and
sulfate conjugates, with a biological half-life of approximately 6 h
(Ougier et al., 2021). Currently, the United States Environmental
Protection Agency sets the maximum acceptable dose of BPA at
0.05 mg/kg.bw, but the actual doses that humans are exposed to may

TABLE 1 Summary of female reproductive toxicity of endocrine-disrupting chemicals in human and animal.

Chemical Human Animal

Bisphenol A ↓Number of ovarian follicles, mature oocytes, and fertilization rate ↓ Number of primordial follicles, preantral follicles, and antral follicles

↓Granulosa cell aromatase expression in PCOS patients Meiotic division defects in mouse oocytes

↑Expression of endometrial ER promotes EMT development Lipid peroxidation and free radical generation lead to cell apoptosis

↓GnRH Disruption of steroidogenesis and interference with the aromatase receptor pathway

Affecting HPO axis function, disrupting gonadal and gamete function Dysregulation of cell cycle regulators

Abnormal proliferation of endometrium, affecting embryo implantation

PAEs ↑ Miscarriage rate ↓ Quality of mouse oocytes, embryonic development capability

↓ Oocyte retrieval, MII rate, pregnancy rate, and live birth rate ↓ Hormone secretion and lowers expression of steroidogenic enzymes

Affects female reproductive prognosis and ovarian function Affects organelles and epigenetic modifications in mouse oocytes to diminish their
maturation and fertilization ability

Associated with metabolic disturbances in PCOS patients Disrupts ovarian function, leading to extended estrous cycles

Alters signal transduction pathways affecting the occurrence and
development of EMT

TCC/TCS ↑ Risk of fetal malformations ↑ Mortality and malformation rates in zebrafish embryos

↓ Gestational age ↓ Hatching and shortened body length

↓ Fertility ↓ Progesterone biosynthesis may disrupt the implantation process

Disruption of the biosynthesis of steroid hormones and the dynamic
balance of hormones

Abnormal embryonic development in zebrafish

Induction of early embryonic epigenetic modifications, leading to oxidative stress
and DNA damage in mouse early embryos

DBPs ↑ Risk of preterm birth, stillbirth, low birth weight, and adverse
pregnancy outcomes with birth defects

↓ Hatching rate, reduced tail length, and increased malformation rate in zebrafish

↓ Ovarian reserve, oocyte maturation, fertility, and embryo
development

↑ ROS levels, disruption of organelles, affecting mouse oocyte maturation

Causes changes in reproductive hormone levels, menstrual cycle
disturbances

Affects HPO axis function, inhibits preantral follicle growth, lowers E2 levels,
causing ovarian toxicity

Impacts rat fertility, pre-conception survival rate, and postnatal survival rate
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be higher, raising widespread concern among researchers and the
general public.

2.1 Epidemiological research

In recent years, increasing evidence suggests that BPA has
adverse effects on the female reproduction. The molecular
structural characteristics of BPA give it a “weak” estrogenic
effect, allowing it to selectively bind to estrogen receptors (ER)
subtypes, activate ER-dependent signaling pathways, and regulate
cell growth-related genes expression (Wang et al., 2021). BPA has
been shown to be associated with the onset of various endocrine
disorders, including female fertility, polycystic ovarian syndrome
(PCOS), and endometriosis, affecting the morphology and function
of the Hypothalamic-Pituitary-Ovary (HPO) axis (Stavridis et al.,
2022). Regulation of cell growth-related gene expression.

In women undergoing assisted reproductive treatment, a
significant correlation has been observed between elevated
urinary BPA levels and reduced antral follicle count, decreased
oocyte quantity, lower fertilization rates, and implantation
failures (Pivonello et al., 2020). Furthermore, PCOS women
exhibit significantly higher total serum BPA exposure compared
to the control group (PCOS: 167.04 ± 9.44 IU/mL, control: 31.94 ±
3.57 IU/mL), suggesting that higher BPA level in the follicular fluid
of PCOS patients (PCOS: 440.50 ± 63.70 pg/mL, control: 338.00 ±
57.88 pg/mL) may play a crucial role in its pathogenesis by reducing
aromatase expression in granulosa cells (Wang et al., 2017; Prabhu
et al., 2023). Epidemiological meta-analyses have found an
association between endometriosis development and BPA
exposure due to its influence on epigenetics (Xue et al., 2021).
BPA exposure can also directly or indirectly impact the HPO axis,
disrupting gonadal and gamete functions, reducing the secretion of
gonadotropin-releasing hormone (GnRH), subsequently decreasing
ovarian steroid production, inhibiting ovulation, and leading to
infertility (Santoro et al., 2019). Additionally, BPA can traverse
the placental barrier to enter the amniotic fluid, leading to higher
risks of macrosomia and prematurity (Loukas et al., 2023).

2.2 Animal experimental research

BPA is an ovarian toxicant that may exert its effects through
multiple pathways, including lipid peroxidation, oxidative stress,
and apoptosis (Mukherjee et al., 2024). In animal models, BPA
reduces fertility, decreases the number of follicles, induces
premature ovarian failure, and disrupts steroidogenesis.

In mice model, Hunt et al. (Patel et al., 2017) first reported that
exposure to BPA during prenatal development led to the
suppression of germ cell breakdown in F1, increased estradiol
levels, and decreased the number of primordial, primary, and
antral follicles on postnatal day 21. Furthermore, BPA exposure
can lead to elevated urinary BPA levels, precocious puberty, altered
estrous cycles, and changes in hypothalamic Kiss1 methylation
status in F1 and F2 (Huang et al., 2022). Prolonged exposure to
low doses of BPA inhibits the activation of ERα-induced AVPV-
kisspeptin neurons, resulting in extended estrous cycles and reduced
ovulation in adult female mice (Tang et al., 2020). BPA exposure can

lead to meiotic division defects in mouse oocytes by disrupting gap
junction communication between oocytes and granulosa cells and
regulating the expression of cell cycle protein B1 in GVBD oocytes
(Li et al., 2023). However, BPA-induced inhibition of follicle growth
is likely mediated by its interruption of steroidogenesis, interference
with the aromatase receptor pathway, and dysregulation of cell cycle
regulators (Pan et al., 2021). BPA can dose-dependently regulate the
function of granulosa cells in mouse ovarian preantral follicles and
may impact pregnant mice and female offspring (Liang et al., 2021).
Perinatal exposure of female rats to BPA results in early puberty
onset, significantly thinner uterine lining, and activation of
inflammation and aberrant autophagy in the offspring through
TLR4/NF-κB and mTOR signaling pathways (Meng et al., 2020).
Long-term exposure to BPA impairs the PGR-HAND2 pathway,
leading to abnormal proliferation of uterine epithelium and adverse
effects on embryo implantation and pregnancy (Li et al., 2016).

While the body of evidence linking BPA exposure to
reproductive health issues continue to grow, inconsistencies in
research findings necessitate further investigation. The observed
PCOS-like abnormalities and endometriosis pathogenesis associated
with BPA exposure, alongside adverse outcomes in assisted
reproductive technologies, highlight the urgent need for
comprehensive studies. Future research should focus on
elucidating the complex interactions between BPA exposure and
female fertility, considering the variability in exposure levels,
biological responses, and environmental factors. Addressing these
research gaps will be pivotal in developing targeted strategies to
mitigate BPA’s reproductive toxicity and safeguard female
reproductive health.

3 Reproductive toxicity of Phthalic
acid esters

Phthalic acid esters (PAEs), commonly recognized as
plasticizers, are integral to enhancing the flexibility and durability
of plastic polymers (Paluselli and Kim, 2020). PAEs include high-
molecular-weight compounds such as diisodecyl phthalate (DIDP)
and diisononyl phthalate (DINP); intermediate compounds like
butyl benzyl phthalate (BBP) and di(2-ethylhexyl) phthalate
(DEHP); and low-molecular-weight compounds including diethyl
phthalate (DEP) and di-n-butyl phthalate (DAP) (Kıralan, 2020).
PAEs contaminate the air, soil, and natural water, and exposure to
PAEs can occur through ingestion, inhalation, or skin absorption
(Wang et al., 2023). The biological half-life of PAEs is short (<24 h),
and the rapid biotransformation of PAEs into biologically active
monoesters, which exhibit greater toxicity than their parent
compounds, raises concerns regarding their short-term effects
and long-term implications on human health, particularly in the
realm of female reproductive health. (Zhang et al., 2021; Puri
et al., 2023).

3.1 Epidemiological research

3.1.1 Ovarian function and oocyte quality
PAEs have been identified as potential endocrine disruptors,

capable of significantly impacting female reproductive health
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through the alteration of hormone levels and endogenous steroid
hormone signaling. Exposure to PAEs can adversely affect hormone
levels, affecting the female reproduction and even leading to adverse
pregnancy outcomes (Zhang et al., 2023). Through the assessment of
the correlation between PAEs metabolite concentrations in urine
and assisted reproductive outcomes, it has been observed that
decreased oocyte yield, reduced MII rates, lower clinical
pregnancy rates, increased risk of implantation failure, and
decreased live birth rates are all associated with PAEs exposure
(Hauser et al., 2016). PAEs and their metabolites disrupt ovarian
function by reducing the production of 17β-estradiol and inhibiting
the growth of antral follicles. Messerlian et al. found that lower antral
follicle counts were associated with higher PAEs exposure, and as
metabolite concentrations increased, the mean antral follicle count
significantly decreased (Messerlian et al., 2016). Evidence suggested
that DEHP affect female reproductive prognosis and ovarian
function (Yi et al., 2023). However, the connection between PAEs
exposure and polycystic ovary syndrome (PCOS) remains
controversial. Akın et al. assessed the correlation between PAEs
and PCOS, finding that DEHP and DBP levels were significantly
higher in PCOS patients than in the control group, suggesting an
association between PAEs and PCOS (Akın et al., 2020). On the
other hand, Akgül et al.’s study found no correlation between DEHP
and its metabolites in the urine of PCOS patients and the control
group (Akgül et al., 2019).

3.1.2 Uterine effects
PAEs and their metabolites also playing a crucial role in the

formation of endometriosis (Cai et al., 2019). Women with long-
term occupational exposure to PAEs show associations with
reduced pregnancy rates, increased miscarriage rates, and a
significantly elevated risk of implantation failure in women
undergoing infertility treatments (Mu et al., 2015).There is a
positive correlation between exposure to PAEs or their
metabolites and the risk of endometriosis, it can alter the
transmission of related signaling pathways to influence the
occurrence and development of endometriosis (Kim and Kim,
2020; Sirohi et al., 2021). Huan et al. found that exposure to PAEs,
especially DEHP, was associated with the occurrence of
endometriosis (Yi et al., 2023). In a meta-analysis, Conforti
et al. found that endometriosis was associated with increased
urinary levels of MBP/MnBP, MEOHP, and MEHHP, but not
for others (Conforti et al., 2021).

3.2 Animal experimental research

In animal models, it has been found that exposure to PAEs is
associated with a decrease in fertility. More research found that
exposure to PAEs resulted in abnormal ovarian function in animal
models, but no in vivo evidence has shown adverse effects on the
endometriosis. Female mice from F1, F2, and F3 generations with
uterine exposure to DEHP (0, 0.05, and 5 mg/kg/d) showed reduced
oocyte quality and decreased embryonic development ability
compared to the control group. Among the F1 female
descendants, estrogen levels decreased before estrus, FSH levels
increased before and during estrus, and the granulosa cell layer
significantly decreased. F3 generation female mice exhibited an

overall decrease in body weight, a decrease in pregnancy rate,
and an increase in litter size (Meltzer et al., 2015).

PAEs also have adverse effects on the development and
maturation of oocytes. DEHP reduces the maturation and
fertilization ability of mouse oocytes through impacts on
cytoskeletal dynamics of oocytes, oxidative stress, early cell
apoptosis, meiotic spindle morphology, mitochondria, ATP
content, Juno expression, DNA integrity, and epigenetic
modifications (Lu et al., 2019). Another study found that DEHP,
by increasing reactive oxygen species levels, disrupting the
expression of glutathione peroxidase (GPX), and antioxidant
superoxide dismutase 1 (SOD1), induces oxidative stress, leading
to the suppression of antral follicle growth (Liu et al., 2021). DEHP
can disrupt ovarian function by 17β-HSD signaling pathway, leading
to prolonged estrous cycles, increased follicular atresia, inhibition of
hormone secretion, decreased expression of steroidogenic enzymes,
and promotion of apoptosis in GCs associated with ovarian
dysfunction (Li et al., 2020).

DEHP also targets the ovaries through its metabolite mono(2-
ethylhexyl) phthalate (MEHP), mediating the impact of DEHP on
accelerated follicle development by overactivation the PI3K
signaling pathway. Additionally, it inhibits steroidogenesis by
reducing the level of steroidogenic enzymes (Hannon et al.,
2015). DEHP exposure promotes the generation of reactive
oxygen species (ROS) through triggering the CNR1/CRBN/YY1/
CYP2E1 signaling axis, inducing DNA damage, cell cycle arrest, and
apoptotic cell death in ovarian granulosa cells in mice (Wu
et al., 2023).

In summary, PAEs have a structure similar to steroid hormones,
which is necessary for their interaction with steroid receptors, and
this interaction is associated with endocrine disruption. Female
exposure to PAEs can increase the risk of reproductive diseases
such as premature ovarian failure, reduced fertility, and adverse
pregnancy outcomes. At the hormonal level, PAEs interact with the
activity of the HPG axis, which is crucial for normal reproductive
development both prenatally and postnatally. Insufficient or
excessive hormone levels may lead to reproductive disorders.
Additionally, they might act as agonists and antagonists,
interfering with nuclear receptors such as AR, ER, and PPAR (Lv
et al., 2022). PAEs might also regulate hormone and metabolites
balance in the body through the placenta (Fang et al., 2023).

The pervasive use of PAEs and their environmental stability call
for an urgent reassessment of their implications on female
reproductive health. Future research should prioritize the
investigation of the cumulative and synergistic effects of mixed
PAE exposures, reflecting the diverse and complex environmental
contamination scenarios. Understanding the nuanced mechanisms
of PAEs’ reproductive toxicity will enable the development of
targeted strategies to mitigate their impact, safeguarding female
reproductive health against the insidious effects of environmental
pollutants.

4 Reproductive toxicity of Triclocarban
and Triclosan

Triclocarban (TCC) and Triclosan (TCS) are commonly used
antibacterial agents, primarily applied in daily hygiene products
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such as soap, toothpaste, preservative detergents, as well as various
medical disinfectants and toys (Asimakopoulos et al., 2016). TCC
and TCS have been identified as globally prominent pollutants and
are widely present in rivers, lakes, soil sediments, as well as human
blood, urine, amniotic fluid, and placenta (Halden, 2014; Huang
et al., 2016). Ingestion, as well as absorption through the skin and
mucous membranes, are the primary pathways of exposure to
these chemicals.

Currently, the adverse effects of both TCC and TCS on the
ecological environment and human reproductive health have
garnered public attention. Although TCC and TCS are often
discussed and studied together, their chemical structures differ,
suggesting they may have distinct biological activities. Both have
been confirmed to exert acute and chronic health impacts, including
developmental and reproductive toxicity, endocrine-disrupting
toxicity, and in vivo genotoxicity (Bai et al., 2020).

4.1 Epidemiological research

Research confirms that TCC and TCS exhibit estrogenic activity
by acting as estrogen receptor agonists through ER, and
downregulating the expression of ERα (Huang et al., 2014). In
the human body, TCC can be metabolized into sulfate and
glucuronic acid conjugates, accelerating absorption and
elimination. Currently, there is limited research data on the
impact of TCC on human female reproduction. The
concentration of TCC in the serum of pregnant women in China
ranges from 47.4 to 598 ng/mL, and it has been detected in biological
samples such as umbilical cord blood and breast milk. There is
evidence suggesting that prenatal exposure to TCC is associated with
reduced gestational age. TCC can be transferred to offspring through
breastfeeding by mothers exposed to it, reducing offspring survival
rate (Kennedy et al., 2015; Enright et al., 2017). The study found that
TCC and TCS in maternal and umbilical cord blood are associated
with an increased risk of fetal abnormalities (Wei et al., 2017).

TCS is considered a particularly effective competitive inhibitor
of mammalian placental estrogen sulfotransferase, which may
interfere with the maintenance of pregnancy. Exposure to TCS
may have adverse effects in the early stages of human
reproduction, and prolonged exposure may lead to decreased
fertility (Jurewicz et al., 2020). Research by Du et al. found that
TCS exposure disrupts the biosynthesis of steroid hormones and the
dynamic balance of hormones, thereby affecting reproductive
development (Zhu et al., 2022). TCS has direct or indirect
estrogenic effects, possibly by competing with estrogen receptors
and disrupting steroidogenic enzymes, disrupting the synthesis of
follicle-stimulating hormones, luteinizing hormones, and
testosterone, thereby affecting hormone secretion and function
(Yoon and Kwack, 2021). The study revealed a significant
elevation of TCS levels in the urine of infertile women with
PCOS, while in non-PCOS patients, serum TCS levels were
positively correlated with luteinizing hormone and the luteinizing
hormone/follicle-stimulating hormone ratio (Ye et al., 2018).
However, Belén et al. did not observe an association between
TCS and infertility; nevertheless, ovarian reserve was affected by
TCS (Daza-Rodríguez et al., 2023).

4.2 Animal experimental research

TCC has been identified as an endocrine disruptor in many
species, affecting embryonic development, body weight, hormones,
gene expression, and mouse pup mortality (Rochester et al., 2017).
In zebrafish, TCC can stimulate the expression of aromatase,
increase estrogen levels, and cause abnormal embryonic
development and endocrine disruption (Shi et al., 2019). In a
recent study (Costa et al., 2020), pregnant Wistar rats exposed to
TCC (0.3, 1.5, and 3.0 mg/kg/day) from gestation day 0 to lactation
day 21 showed a decrease in estradiol levels in F1 female offspring.
Additionally, in the adult TCC 3.0 mg/kg group, progesterone levels
decreased, pre-implantation loss increased, and the reduced
synthesis of progesterone may interfere with the implantation
process. In vitro, exposure of mouse oocytes to TCC showed that
TCC disrupts oocyte maturation by affecting the cell cycle process,
oxidative stress, early cell apoptosis, cell cytoskeleton dynamics,
mitochondrial function, and histone modification (Ding et al.,
2020a). Acute exposure to TCC affects early embryonic
development, disrupting early embryo gene expression,
interfering with ZGA and maternal gene degradation, inducing
changes in early embryo epigenetic modifications, leading to
oxidative stress and DNA damage in mouse early embryos (Ding
et al., 2023). TCC exposure upregulates circSGOL1 in the mother,
affecting the activity and localization of hnRNP A1 protein, thereby
promoting the overexpression of pro-apoptotic genes, ultimately
causing cell apoptosis during early embryo development (Wang
et al., 2024). Exposure to TCC in utero and during lactation
adversely affects follicles and puberty in rat offspring, reducing
the number of antral follicles, increasing the atresia index of
granulosa cells, inducing cell apoptosis, and disrupting the
oxidative/antioxidant balance in the body, affecting the embryo
implantation process (Mandour et al., 2021).

In vitro studies also found that TCS can impair the proliferation,
migration, and dedifferentiation of endometrial stromal cells. Stoker
et al. administered different doses of TCS to rats during early and
pre-pregnancy, resulting in a significant advancement of vaginal
opening time compared to the control group, indicating TCS’s
estrogen-like effects (Bitencourt et al., 2019). When mammals are
exposed to low concentrations of TCS, it can be absorbed into
placental tissue through the placental channel due to the limited
chemical barrier function of the placenta (Wang et al., 2015).
Furthermore, TCS exposure (10 and 100 mg/kg/day) increased
mouse abortion rates and decreased live birth rates. TCS
exposure impairs the maturation and early embryo development
of porcine oocytes by inducing DNA damage, oxidative stress, and
mitochondrial dysfunction (Kim et al., 2020; Park et al., 2020). TCS
damages pre-implantation mouse embryo development by
triggering the miR-134/Nanog axis, leading to a reduced
blastocyst formation rate (Yang et al., 2022). Exposure of
zebrafish to TCS revealed that prolonged exposure to TCS can
lead to disruption of the endocrine system, resulting in a reduction
in the number of normal reproductive cells and a decrease in
hatching and survival rates of offspring (Stenzel et al., 2019; Qiao
et al., 2022). High doses of TCS induce oxidative damage in zebrafish
ovaries and promote reactive oxygen species-dependent cellular
apoptosis (Wang et al., 2020; Liu et al., 2022a).
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Although there are various studies on the reproductive toxicity
of TCC and TCS at different stages, the research focuses vary, and
the possible toxic mechanisms are summarized as follows:

Firstly, the structures of TCC and TCS are like non-steroidal
estrogen diethylstilbestrol, exhibiting endocrine-disrupting activity.
They can interfere with the estrogen signaling system, and enhance
the expression of estrogen receptor-responsive genes dependent on
estradiol, but do not exhibit estrogenic activity themselves. Secondly,
in vivo, exposure to TCC and TCS can cause disruptions in
substance energy or hormone metabolism, affecting pregnancy
outcomes. Thirdly, TCC and TCS may affect placental
morphology and maintenance-related gene expression through
the placental barrier, thereby influencing fetal development.

Currently, most research on the reproductive toxicity of TCC and
TCS in females comes from animal and epidemiological studies. In
addition, human exposure pathways and dosage ranges differ from
animal studies, making it challenging to establish a direct correlation
between the observed negative effects in experimental animals and the
decline in human reproductive health. Therefore, it is necessary to
conduct comprehensive studies on their reproductive developmental
toxicity, deepen the understanding of their toxicological mechanisms,
and reduce the harm to female reproductive health.

5 Reproductive toxicity of disinfection
by-products

Water is the most crucial component of living organisms, and the
safety and quality of water are fundamental to human development.
Contaminants present in water can harm the reproductive functions of
both humans and animals. People use disinfectants in drinking water to
kill pathogens, thereby preventing the spread of related diseases. While
disinfectants eliminate pathogens, they also undergo various chemical
reactions with natural organic matter in water, inevitably producing
disinfection by-products (DBPs). Currently, over 700 types of DBPs
have been detected (Feng et al., 2019). The diverse categories of DBPs
include trihalomethanes (THMs), haloacetonitriles (HANs), haloacetic
acids (HAAs), halides (chlorides, chlorates, and bromates), and newly
discovered halobenzoquinones (HBQs). Epidemiological studies
suggest that populations are widely and continuously exposed to
various DBPs, leading to adverse health effects through respiratory,
digestive, and skin absorption during prolonged exposure. DBPs exist in
the general population, as well as pregnant women, such as blood, urine,
and exhaled air (Chen et al., 2019). Some of these DBPs can have
detrimental effects on reproduction and exhibit cytotoxicity,
genotoxicity, and carcinogenicity (Zuo et al., 2017).

5.1 Epidemiological research

DBPs have been demonstrated to be associated with adverse
pregnancy outcomes (Säve-Söderbergh et al., 2020; Summerhayes
et al., 2021). Iszatt et al. found a significant correlation between
exposure to DBPs and a very low birth weight rate (Cao et al., 2016).
Rivera et al. observed associations between preterm birth, reduced
birth weight, and estimated exposure to DBPs in mid-to-late
pregnancy (Iszatt et al., 2014). The study found a negative
correlation between urinary DBPs and anti-Müllerian hormone

(AMH) and antral follicle count (Deng et al., 2022). In women
undergoing assisted reproductive technology treatments, exposure
to DBPs in drinking water can lead to changes in reproductive
hormone levels, menstrual cycle disruptions, reduced ovarian
reserve, inhibition of oocyte maturation, decreased fertilization
capacity, and impaired embryo development (Gonsioroski et al.,
2020; Liu et al., 2022b; Deng et al., 2023). However, some
epidemiological studies have not found a connection between
DBP exposure and adverse pregnancy outcomes. A study by
Manolis and colleagues, which assessed the exposure levels of
DBPs in the water supply area concerning adverse delivery
outcomes during pregnancy, found no statistically significant
association between exposure levels and preterm birth, very
preterm birth, or small for gestational age (SGA) (Kogevinas
et al., 2016). Another study by Villanueva and colleagues
combined tap water testing data with individual drinking water
habits, providing a comprehensive assessment of DBP exposure in
pregnant women. The results showed no statistically significant
association between DBP exposure and SGA, low birth weight,
and preterm birth (Sun et al., 2020).

5.2 Animal experimental research

Animal toxicology experiments indicate that DBPs exhibit
reproductive toxicity in females, disrupting the production of
ovarian steroid hormones and altering reproductive hormone
levels. Exposure to DBPs has been shown to significantly inhibit
the growth of antral follicles and reduce estradiol levels, resulting in
ovarian toxicity. DBPs exposure can lead to developmental and
genetic toxicity in zebrafish, significantly reducing tail length and
increasing the rate of deformities (Ding et al., 2020b; Chaves et al.,
2020). A study using a zebrafish embryo model to assess the
developmental toxicity of DBPs found that brominated and
iodinated DBPs often have greater toxicity than their chlorinated
counterparts. Exposure to halogenated quinones was found to
induce the production of ROS in zebrafish embryos, leading to
embryonic death, body deformities, DNA oxidative damage, and cell
apoptosis (Wang et al., 2018). In addition, in vivo experiments in
rats, mice, and pigs have also demonstrated the reproductive toxicity
of DBPs. Research indicates that exposure to DBPs interferes with
the maturation of mouse oocytes by increasing ROS levels,
disrupting spindle assembly, inducing DNA damage, and causing
meiotic arrest (Jiao et al., 2021).

Exposure to DBPs can affect the function of the HPO axis,
significantly inhibiting antral follicle growth and reducing estradiol
levels, resulting in ovarian toxicity (Jeong et al., 2016; Gonzalez et al.,
2021). Prenatal and lactational exposure to DBPs affects mouse
vaginal opening, anogenital distance, ovarian weight, percentage of
atretic follicles, and hormone levels in the F1 generation
(Gonsioroski et al., 2022). Exposure to environmentally relevant
concentrations of bromodichloromethane can induce changes in the
transcriptome and epigenome, adversely affecting blastocyst
formation rates and alterations in the estradiol pathway (Pagé-
Larivière et al., 2016). Although some studies suggest an
association between DBPs and adverse reproductive outcomes,
Narotsky et al. did not observe any impact on fertility, pregnancy
maintenance, prenatal survival, postnatal survival, or birth weight in
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parent, F1, and F2 generations of rats exposed to a regulated mixture
of DBPs (Narotsky et al., 2015).

The inconsistencies between epidemiological research and animal
experiments can be attributed to several factors: 1. Differences in
ExposureAssessment:Discrepanciesmay arise due to variations in the
methods used to assess exposure. Multiple sampling occasionsmay be
required to enhance the accuracy of exposure assessment. 2.
Variability in Experimental Animals: The species, strains, and
individual differences among experimental animals can impact the
reproducibility and uniformity of experimental results.

As DBPs are widely present pollutants in drinking water, the
long-term risks associated with their exposure to reproductive
health remain a subject of significant concern. While both
toxicological and epidemiological studies suggest that higher
concentrations of DBPs may pose a risk to fetal growth and
development, the specific mechanisms are still under
investigation. Therefore, conducting additional toxicological and
epidemiological research is crucial. This research can provide a
better understanding of the potential harm to reproductive health
caused by long-term exposure to DBPs, offering a theoretical basis
for the prevention of reproductive diseases.

6 Summary and prospect

EDCs are widely distributed and can directly or indirectly affect
the female reproductive system, impairing development and fertility.
EDCs can cause damage to the reproductive organs such as the
pituitary gland, ovaries, and uterus during follicle development,
embryonic formation, puberty, and reproductive periods, leading
to reproductive dysfunction and the occurrence of related diseases.
This article reviews the research progress on the relationship between
five major EDCs and female reproduction, assessing their impact on
female reproductive potential, including irregular estrous cycles,
hormonal disruptions, reduced follicle numbers, decreased ovarian
function, reduced pregnancy rates, and lower offspring survival rates.
EDCs exhibit biological effects similar to endogenous hormones in the
body and can generate toxic effects through the activation of receptors
such as estrogen receptors, aryl hydrocarbon receptors, and
peroxisome proliferator-activated receptors. Delving deeper into
the molecular mechanisms of reproductive toxicity related to
specific EDCs exposure presents a critical area for future research.
Furthermore, identifying particular cellular signaling pathways or
biomarkers to ascertain the effects of EDCs on the female
reproductive system is indeed paramount for advancing our
understanding and developing targeted interventions.

Further research is needed to explore the direct effects of EDCs
on the hypothalamus, pituitary gland, ovaries, and uterus, as these
organs regulate female fertility and are associated with the onset of
reproductive aging. However, not all studies have reported a
significant association between exposure to chemical substances
and adverse reproductive outcomes in humans. This may be
related to differences in study populations, sample sizes, methods
of measuring exposure levels, and the high variability in measured
reproductive outcomes between studies.

Additionally, most studies have only reported the reproductive
toxicity effects of individual substances, without considering the
potential interactions between different substances. Over the past

decade, the impacts of exposure to various chemicals on human
health have garnered increasing attention. In the realm of statistics,
methodologies such as Weighted Quantile Sum Regression (Carrico
et al., 2015), Bayesian Kernel Machine Regression (Bobb et al., 2015),
and Quantile-Based g-Computation (Keil et al., 2020) have been
continuously refined, facilitating the evaluation of combined effects
from multiple exposures. To date, only a few of studies have focused
on the effects of PAEs mixtures on ovarian function, including
aspects such as ovarian cycle, hormone levels, and implications for
fertility rates (Laws et al., 2023; Safar et al., 2023). The combined
effects of exposure to multiple chemicals on female fertility warrants
further investigation.

Few studies have evaluated risk factors that may affect the
concentration of such substances in the female reproductive
system and other reproductive parameters. The impact of EDCs
on women’s reproductive health needs to consider the influence of
other substances and lifestyle factors, as the toxicity of different
substances depends on exposure levels, duration, exposure routes,
types of toxins, workplace conditions, medical history, and other
physiological factors. Further clarification of the exact mechanisms
of reproductive toxicity caused by EDCs will provide a theoretical
basis for preventing and treating reproductive diseases.
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