
TYPE Original Research
PUBLISHED 24 March 2025
DOI 10.3389/fcell.2025.1549811

OPEN ACCESS

EDITED BY

Jianhua Luo,
University of Pittsburgh, United States

REVIEWED BY

Stathis Hadjidemetriou,
University of Limassol, Cyprus
Jian Wei Tay,
University of Colorado Boulder, United States

*CORRESPONDENCE

Jian Wang,
wangjian0724@126.com

Jiong Mu,
jmu@sicau.edu.cn

†These authors have contributed equally

to this work

RECEIVED 22 December 2024
ACCEPTED 03 March 2025
PUBLISHED 24 March 2025

CITATION

Li J, Niu Y, Du J, Wu J, Guo W, Wang Y, Wang J
and Mu J (2025) HTRecNet: a deep learning
study for efficient and accurate diagnosis of
hepatocellular carcinoma and
cholangiocarcinoma.
Front. Cell Dev. Biol. 13:1549811.
doi: 10.3389/fcell.2025.1549811

COPYRIGHT

© 2025 Li, Niu, Du, Wu, Guo, Wang, Wang and
Mu. This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that
the original publication in this journal is cited,
in accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

HTRecNet: a deep learning study
for efficient and accurate
diagnosis of hepatocellular
carcinoma and
cholangiocarcinoma

Jingze Li1†, Yupeng Niu1,2†, Junwu Du3†, Jiani Wu1,
Weichen Guo1,2, Yujie Wang1, Jian Wang4,5* and Jiong Mu1,2*
1College of Information Engineering, Sichuan Agricultural University, Ya’ an, China, 2Artificial Intelligence
Laboratory, Sichuan Agricultural University, Ya’ an, China, 3Department of Hepatobiliary
Pancreaticosplenic Surgery, Ya ‘an People’s Hospital, Ya’ an, China, 4Department of Neurology, Ya’an
People’s Hospital, Ya’ an, China, 5Department of Neurology, The Affiliated Hospital, Southwest Medical
University, Luzhou, China

Background: Hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA)
represent the primary liver cancer types. Traditional diagnostic techniques, reliant
on radiologist interpretation, are both time-intensive and often inadequate for
detectingthe lessprevalentCCA.There isanemergentneedtoexploreautomated
diagnostic methods using deep learning to address these challenges.

Methods: This study introduces HTRecNet, a novel deep learning framework
for enhanced diagnostic precision and efficiency. The model incorporates
sophisticated data augmentation strategies to optimize feature extraction,
ensuring robust performance even with constrained sample sizes. A
comprehensive dataset of 5,432 histopathological imageswas divided into 5,096
for training and validation, and336 for external testing. Evaluationwas conducted
using five-fold cross-validation and external validation, applying metrics such
as accuracy, area under the receiver operating characteristic curve (AUC), and
Matthews correlation coefficient (MCC) against established clinical benchmarks.

Results: The training and validation cohorts comprised 1,536 images of normal
liver tissue, 3,380 of HCC, and 180 of CCA. HTRecNet showed exceptional
efficacy, consistently achieving AUC values over 0.99 across all categories. In
external testing, the model reached an accuracy of 0.97 and an MCC of 0.95,
affirming its reliability in distinguishing between normal, HCC, and CCA tissues.

Conclusion:HTRecNet markedly enhances the capability for early and accurate
differentiation of HCC and CCA from normal liver tissues. Its high diagnostic
accuracy and efficiency position it as an invaluable tool in clinical settings,
potentially transforming liver cancer diagnostic protocols. This system offers
substantial support for refining diagnostic workflows in healthcare environments
focused on liver malignancies.
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hepatocellular carcinoma (HCC), cholangiocarcinoma (CCA), deep learning,
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1 Introduction

Liver cancer stands as a significant contributor to global
mortality from cancer (McGlynn et al., 2024; Oh and June 2023),
with Hepatocellular Carcinoma (HCC) and Cholangiocarcinoma
(CCA) emerging as the predominant forms of primary liver cancer
(Choi and Thung, 2024; Gurzu et al., 2024). HCC arises from
hepatocytes and constitutes the majority (70%–85%) of liver cancer
cases, often linked to chronic liver conditions such as hepatitis
B or C infections, cirrhosis (Kinsey and Lee, 2024; Rich, 2024;
Mak et al., 2024; Wang and Deng, 2023), among others. Conversely,
CCA, originating from epithelial cells within the bile ducts,
encompasses intrahepatic and extrahepatic cholangiocarcinoma
subtypes (Moris et al., 2023; Yang and Zhang, 2023). Despite its
lower incidence, timely and precise diagnosis of CCA is critical for
enhancing patient outcomes.

Presently, liver cancer diagnosis heavily relies on radiologists’
visual interpretation of imaging scans. However, this approach
is prone to subjectivity, potentially leading to misdiagnosis or
overlooked cases (Singh et al., 2023; Chatzipanagiotou et al., 2024).
Moreover, conventional image analysis techniques exhibit limited
sensitivity and specificity, particularly in early-stage liver cancer
detection and the identification of rare CCA variants, posing
significant challenges (Bakrania et al., 2023). Thus, the imperative
lies in developing an efficient, accurate, and automated diagnostic
solution to enhance early detection rates and diagnostic precision in
liver cancer cases.

In recent years, the application of artificial intelligence (AI)
technology, particularly Deep Learning (DL) (Nazir et al., 2024;
Rai et al., 2024), in medical image analysis has revolutionized liver
cancer diagnosis. Convolutional Neural Networks (CNNs), a pivotal
component of DL, exhibit remarkable capabilities in image analysis
(Iqbal et al., 2023). By autonomously extracting intricate visual
patterns and structural details from original images through multi-
level feature learning, CNNs can identify disease-specific features.
Studies have demonstrated CNNs’ superiority in tumor diagnosis
(Lakshmipriya et al., 2023), cardiovascular disease (Lopez et al.,
2023), and other domains compared to human experts, offering a
more objective and precise foundation for clinical decision-making.
Nevertheless, existing classification methods for Hepatocellular
Carcinoma (HCC) and Cholangiocarcinoma (CCA) suffer
from drawbacks like high model complexity and demanding
computational resources.

Given the significance of early liver cancer diagnosis and
the challenges in image interpretation, there’s a growing focus
on developing objective, efficient, and accurate deep learning-
based diagnostic tools. These tools aim to automatically detect
subtle pathological changes in medical images using techniques
such as CNNs, thereby reducing reliance on operator expertise,
enhancing diagnostic accuracy and consistency, and facilitating
early identification and intervention for liver cancer to improve
patient outcomes. This study endeavors to devise a deep
learning model for the automatic differentiation of HCC, CCA,
and Normal Liver Tissue (Norm-L). By employing innovative
model design and optimized image enhancement techniques,
this research aims to overcome the limitations of individual
models and enhance diagnostic accuracy and generalization
capabilities [Figure 1].

Specifically, the innovations of this study include.

(1) Model Design Innovation: This study pioneers the
development of an efficient CNN model tailored
specifically for the recognition of liver and its associated
structural changes. The aim is to enhance the model’s
sensitivity and specificity towards Hepatocellular
Carcinoma (HCC) and Cholangiocarcinoma (CCA).
The model design intricately focuses on optimizing
both structural and feature extraction aspects to better
accommodate feature expression and facilitate accurate
recognition of these cancer types.

(2) Image Enhancement and Optimization: Leveraging
advanced image enhancement and image broadening
techniques, this study enhances the model’s capability to
discern minute pathological changes within the images
(Gong et al., 2024; Mumuni and Mumuni, 2022). These
techniques not only improve the model’s performance but
also ensure its stability across images of varying qualities.

(3) Model Validation Rigor: To ascertain the robustness
and generalizability of the proposed model, a
rigorous validation strategy is implemented. This
includes comprehensive five-fold cross-validation
and independent external test set validation
(AG et al., 2024; Hassan et al., 2024). Such meticulous
validation procedures ensure the stability of the model
across diverse datasets, further substantiating its reliability
and potential for clinical deployment.

(4) Heat Map Visualization: Employing heat map
visualization techniques, this study elucidates the feature
extraction outcomes of the model across different
types of liver cancer. By offering interpretability of
the diagnostic process, these visualizations enhance
clinicians’ trust and comprehension of the model’s
functionality (Gu, 2022; Nazir et al., 2023).

In summary, this study endeavors to markedly enhance the
accuracy and efficiency of early liver cancer diagnosis through
groundbreaking deep learning methodologies. By furnishing
clinicians with more dependable diagnostic tools, it aims to
significantly improve patient outcomes.

2 Materials and methods

2.1 Data collection

The liver tumor classification dataset utilized in this study
was sourced from the Roboflow Universe platform, comprising
192 images of Cholangiocarcinoma (CCA), 3,604 images of
Hepatocellular Carcinoma (HCC), and 1,636 images of normal liver
tissue (Norm-L) (Gowtham, 2024). This dataset was divided into
two parts: a training and validation set, and an external independent
testing set. Specifically, 180 CCA images, 3380 HCC images, and
1,536 Norm-L images were used for training and validation, while
the external independent testing set consisted of 12 CCA images,
224 HCC images, and 100 Norm-L images, totaling 336 images. The
external independent testing set was selected from the same overall
dataset but was strictly separated from the training and validation
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FIGURE 1
Workflow diagram.

set to ensure unbiased evaluation of the model’s generalization
capability. This separation strategy was designed to accurately assess
the model’s performance on unseen data, simulating real-world
diagnostic scenarios more effectively.

To ensure heterogeneity and minimize the risk of overfitting,
the images were obtained from different liver samples from multiple
patients. Specifically, the HCC and CCA images were sourced from
distinct liver samples from different patients, while the Norm-L
images were obtained from both varied regions of the same liver and
different healthy donors, offering a comprehensive representation
of normal liver morphology. All images were acquired using the
Aperio AT2 high-resolution digital pathology scanner at 20× to
×40 magnification with a resolution of approximately 0.25 µm per
pixel, ensuring sufficient detail for robust feature extraction. The
images were stained using a standard Hematoxylin and Eosin (HE)
staining protocol, which provides clear contrast between cellular
structures.

Notably, there exists a significant data imbalance within this
dataset, particularly evident in the limited number of CCA samples.
To address this challenge, a series of image enhancement and

augmentation techniques, such as rotation, scaling, and panning,
were employed during data preprocessing (Maharana et al., 2022).
These techniques aimed to enhance data diversity and facilitate
more robust model training. Moreover, the high-resolution images
underwent standardization to ensure uniformity and reliability
of the data (Seoni et al., 2024). Each image was meticulously
annotated by domain experts to ensure accuracy. The diversity and
superior quality of this dataset render it well-suited for supporting
automated classification studies of liver cancer.

2.2 Data preparation

In this study, meticulous preprocessing and enhancement of
the collected raw data were undertaken to optimize the feature
recognition and classification capabilities of hepatocyte images.
Initially, to ensure consistency and computational efficiency of
model inputs, all images were uniformly resized to a standard size of
224 × 224 pixels, which refers to the fixed input dimensions required
by the convolutional neural network rather than the physical
resolution of the images.This resizing operation ensures that images
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FIGURE 2
Examples of data augmentation and augmentation techniques. (A) Image enhancement: The image processed by gamma correction and median
filtering, (B) Image augmentation: images processed through elastic transformation, horizontal and vertical flipping, and random cropping.

of different original dimensions can be processed in a unified
manner without affecting their diagnostic features. Additionally,
image augmentation techniques, including random cropping, were
applied before resizing. Random cropping was performed on
original images to generate different feature variations, after which
the cropped regions were resized to 224 × 224 pixels. This ensures
that augmented samples maintain compatibility with the model’s
input requirements while enhancing feature diversity and model
robustness.

To further augment the learning performance of the model, a
series of advanced data enhancement techniques were employed
to enhance the diversity and robustness of the training set.
Gamma correction was applied to adjust brightness and contrast,
ensuring that details in both dark and bright regions remained
distinguishable (Dash et al., 2023). To prevent excessive contrast
reduction, the gamma value was selected based on the image
intensity distribution, maintaining a balance between enhancement
and preservation of diagnostic features. This adjustment facilitated
the recognition of fine pathological details, contributing to improved
sensitivity and specificity. Median filtering was used to suppress
random noise, particularly fine texture noise in histopathological
images (Samanta et al., 2023). A kernel size of 3 × 3 was
employed to ensure noise reduction while preserving critical tissue
structures, minimizing the risk of texture loss. Empirical evaluation
confirmed that this approach effectively enhanced image quality
without compromising diagnostic information. To address concerns
regarding smooth shading, enhancement parameters were fine-
tuned to prevent over-smoothing while maintaining the visibility
of essential pathological structures. The combination of gamma
correction and median filtering was optimized to retain feature
integrity, ensuring that diagnostic elements remained distinct
throughout the preprocessing pipeline. The application of these
techniques is illustrated in (Figure 2A).

In this study, additional image augmentation techniques
including elastic transform, horizontal and vertical flipping, and
random cropping were employed to further diversify the data

samples and replicate various shooting conditions and perspectives.
Each training image underwent augmentation multiple times with
randomized transformations, ensuring that the model encountered
the same base image in different augmented forms across different
epochs.This approachmaximized data diversity without overfitting,
as no two epochs presented the exact same augmented images.

Elastic Transform applies elastic deformation to the image,
simulating different levels of stretching and compression. This
allows the model to learn image features under varying deformation
conditions, thereby enhancing its generalization capability.
Horizontal and Vertical Flip involves flipping the image in
different directions to increase diversity and prevent bias during
model training. Random Cropping selects random regions within
the image for cropping, ensuring the model’s robustness to
positional variation and enabling better generalization across
different viewpoints and in the presence of occlusions. The
implementation of these augmentation and broadening techniques
is illustrated in (Figure 2B).

The combination of these data enhancement methods not
only enhances image quality but also improves the model’s ability
to identify features associated with Hepatocellular Carcinoma
and Cholangiocarcinoma. This establishes a robust foundation
for the model’s generalization and diagnostic accuracy. These
meticulous data preparation steps ensure the model’s proficiency in
extracting crucial information from hepatocyte images, providing
an efficient and reliable tool for the automated diagnosis of
liver cancer.

2.3 Model construction

This study aims to balance model complexity and accuracy
to effectively address the demands for efficiency and precision in
liver cancer diagnosis. ResNet50 was selected as the benchmark
model due to its well-established effectiveness in medical image
classification tasks (Pisarcik et al., 2024). With its deep hierarchical
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structure and residual connections, ResNet50 provides a robust
framework for feature extraction while mitigating vanishing
gradient issues, making it a suitable choice for histopathological
image analysis.

However, standard ResNet50 lacks specialized mechanisms for
handling fine-grained pathological variations in HCC and CCA. To
enhance the model’s capability in distinguishing these liver cancer
subtypes, two complementary modifications were introduced:
SPConv and CBAM. SPConv improves computational efficiency
by reducing redundant feature computation while preserving
essential information,which is particularly beneficial given the high-
resolution and complex nature of histopathological images. CBAM
enhances feature selection by introducing spatial and channel
attention, allowing the model to focus on diagnostically relevant
regions. The combination of these two modules provides a balance
between efficiency and accuracy, addressing both computational
constraints and feature discrimination challenges specific to liver
cancer classification.

2.3.1 Improvement A: ResSPNet
The initial enhancement in this study involves integrating the

SPConv module into the benchmark model to further refine its
performance. SPConv (Split-based Convolution) is employed to
reduce computational complexity while upholding model efficacy.
This is achieved by partitioning the input feature map into two
components: a representative part and a redundant part. These
components undergo separate convolution operations, thereby
decreasing computational complexity while preserving model
performance (Wang et al., 2021). The representative part utilizes a
traditional 3 × 3 convolutional kernel for feature extraction, whereas
the redundant part employs a lightweight 1 × 1 convolutional kernel
to address subtle feature distinctions (Figure 3A).

The SPConv module is specifically devised to tackle the
issue of redundancy within feature map patterns inherent in
convolutional operations. Research indicates that numerous feature
maps exhibit considerable similarity in pattern, thus redundancy can
be mitigated by retaining representative features and employing less
computational resources to handle redundant features.Through this
split-fusion approach, the SPConv module effectively diminishes
parameters and computation, while simultaneously maintaining or
enhancing model accuracy.

The SPConv module initially divided the input channels into
two segments: a representative part and a redundant part. The
representative segment underwent feature transformation through
a 3 × 3 convolutional kernel to extract intrinsic information, while
the redundant segment was processed by a lightweight 1 × 1
convolutional kernel to capture subtle complementary details. To
integrate these two feature types effectively, a parameter-free feature
fusion module was employed. Instead of simple concatenation or
element-wise addition, this fusion mechanism leveraged global
average pooling (GAP) to extract channel-wise statistics, followed
by a soft attention operation to compute feature importance weights.
The final fused representation was obtained through a weighted sum
of the representative and redundant features, allowing the network to
dynamically adjust the contribution of each feature type to enhance
information representation and model expressiveness.

By integrating the SPConv module into the model, this
study effectively maintains diagnostic accuracy while significantly

reducing computational complexity. This innovative convolution
module design opens up new possibilities for developing efficient
and precise liver cancer diagnostic models.

2.3.2 Improvement B: ResCBANet
The study’s second enhancement focuses on enhancing the

feature recognition capabilities for Hepatocellular Carcinoma
(HCC) and Cholangiocarcinoma (CCA) by proposing an innovative
model refinement strategy that integrates the Convolutional Block
Attention Module (CBAM) into the baseline model ResNet50
(Clausen et al., 2021). CBAM, known for its lightweight and effective
attention mechanism, significantly enhances the representation
capabilities of convolutional neural networks (Figure 3B).

The CBAM module executes adaptive feature reconstruction
by sequentially deducing attention maps in both channel and
spatial dimensions, and subsequently multiplying these maps with
the input feature maps. Specifically, CBAM initiates by generating
two distinct spatial context descriptors in the channel dimension
through average pooling and maximum pooling (Zafar et al., 2022)
operations. These descriptors are then channeled through a shared
multilayer perceptron (MLP) (Zafar et al., 2022) to compute the
channel attention map. Following this, the input feature maps
undergo weighting using the channel attention maps to emphasize
crucial features while suppressing unnecessary ones.

After generating the channel attention map, CBAM proceeds
to generate a spatial attention map. This involves creating two
2D feature maps through average pooling and maximum pooling
operations in the channel dimension. These feature maps are then
combined in the channel dimension, and a convolutional layer is
employed to produce the final spatial attention map. This process
aids the network in focusing more effectively on critical regions
within the image, thereby enhancing the model’s representation and
classification performance.

Incorporating the CBAM module into the benchmark model
leads to a significant improvement in the model’s diagnostic
accuracy while maintaining low computational complexity.
Experimental results demonstrate that the CBAM-enhanced
network surpasses the benchmark model in tasks such as
image classification and target detection, underscoring its broad
applicability and effectiveness. This enhancement holds substantial
importance for augmenting the accuracy and efficiency of early liver
cancer diagnosis. By integrating the CBAM attention mechanism,
the refined model becomes adept at handling intricate features
present in liver cancer images, thereby augmenting its capability to
identify HCC and CCA. Consequently, this advancement furnishes
a more precise and dependable tool for the early diagnosis of
liver cancer.

2.3.3 HTRecNet
In this study, a novel and efficient deep learning model,

HTRecNet, was devised by introducing structural refinements
to the ResNet50 backbone, incorporating two previously
mentioned enhancements: the CBAM attention mechanism
and the SPConv module (Figure 3). The modifications aim to
optimize feature representation and computational efficiency while
preserving the residual learning framework of ResNet50, thereby
facilitating accurate and efficient classification of Hepatocellular
Carcinoma (HCC) and Cholangiocarcinoma (CCA).
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FIGURE 3
HTRecNet architecture diagram. (A) The backbone of HTRecNet based on ResNet50. (B) Illustrates the integration of the SPConv module, which
replaces the conventional 3 × 3 convolution in residual blocks with a split-based feature processing mechanism. (C) Depicts the incorporation of the
CBAM attention mechanism, positioned immediately before the residual connection.

To elaborate, HTRecNet restructures the feature transformation
pathway within each residual block to enhance information
selectivity. The conventional 3 × 3 convolution was replaced with
SPConv, which partitions feature processing into representative and
redundant components. This structure preserves key discriminative
features while reducing unnecessary computations, thereby
balancing computational complexity and model expressiveness.
Additionally, CBAM was incorporated before the residual
connection to refine feature importance through channel and
spatial attention, ensuring that diagnostically relevant patterns are
emphasized before merging with the residual pathway.

The revised residual block structure follows the sequence: 1 × 1
convolution → 3 × 3 SPConv→ 1 × 1 convolution →CBAM→ residual
connection, maintaining the hierarchical feature extraction benefits
of ResNet50 while introducing improved feature calibration and
computational efficiency. These refinements collectively enhance
HTRecNet’s capability to capture fine-grained pathological features
with improved robustness and reduced computational overhead,
making it a strong candidate for early diagnosis and precision
medicine applications in liver cancer.

2.4 Model evaluation

In order to comprehensively evaluate the performance of deep
learning models in diagnosing Hepatocellular Carcinoma (HCC)

and Cholangiocarcinoma (CCA), a multi-dimensional evaluation
system was constructed in this study. The system integrates several
key metrics, including Accuracy (ACC), Precision, Recall, F1
Score, Matthews Correlation Coefficient (MCC), Area Under the
Curve (AUC), Confusion Matrix, and Floating Point Operations
(FLOPs) to thoroughly assess predictive accuracy, classification
comprehensiveness, computational complexity, and consistency
with actual diagnoses.

Accuracy reflects the overall correctness of the model’s
classification and is calculated as:

Accuracy = TP+TN
TP+TN+ FP+ FN

Where TP (True Positive) is a true case, TN (True Negative) is a
true negative case, FP (False Positive) is a false positive case, and FN
(False Negative) is a false negative case.

Precision and recall are employed to evaluate classification
performance, particularly in scenarios where class imbalance exists.
For the three-class classification task in this study, thesemetrics were
extended using micro-average and macro-average approaches.

During training, the micro-average approach was used, which
aggregates true positives, false positives, and false negatives across
all classes before computing overall metrics:

Precisionmicro =
∑TP

∑(TP+ FP)
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Recallmicro =
∑TP

∑(TP+ FN)

Thismethod provides a global assessment ofmodel performance
by considering all classes equally, thus effectively handling class
imbalance.

During testing, bothmicro-average andmacro-averagemethods
were employed to ensure a balanced evaluation. The macro-average
approach calculates precision and recall for each class independently
and then takes the arithmetic mean:

Precisionmacro =
1
N

N

∑
i=1
 

TPi
TPi + FPi

Recallmacro =
1
N

N

∑
i=1
 

TPi
TPi + FNi

where N is the number of classes. The macro-average method treats
all classes equally regardless of their sample sizes, offering an overall
evaluation of model performance across all categories.

By employing both micro-average and macro-average
approaches, this study ensures a comprehensive evaluation of the
model’s capability in handling imbalanced data during training and
testing phases.

F1 Score is the harmonic mean of precision and recall, making
it particularly suitable for handling class imbalance, calculated as:

F1Score = 2× Precision×Recall
Precision+Recall

A high F1 score shows that the model has a good balance
between precision and recall.

The Matthews correlation coefficient (MCC) is a robust
categorical quality metric that is particularly suitable for unbalanced
data. Its value ranges from −1 to +1, with +1 indicating perfect
agreement between predictions and true labels, 0 indicating no
correlation between predictions and true labels, similar to random
classification, and −1 indicating a perfectly inverse relationship,
where every prediction is the exact opposite of the true label. The
calculation formula is:

MCC = TP×TN− FP× FN

√(TP+ FP)(TP+ FN)(TN+ FP)(TN+ FN)

MCC more objectively reflects the model’s performance in
unbalanced data.

The area under the curve (AUC), derived from the Receiver
Operating Characteristic (ROC) curve, quantifies the overall
performance of a classifier across all decision thresholds. A high
AUC value, nearing 1, signifies strong discriminative ability among
different categories, making it suitable even for three-classification
problems. In such cases, separate ROC curves for each category
relative to the others can be calculated and combined to assess
the model’s overall performance. AUC offers a comprehensive
evaluation perspective, reflecting the model’s performance under
varying decision thresholds.

The Confusion Matrix (CM) provides a visual representation
of the relationship between the model’s predictions and the actual
labels, highlighting error patterns through True Positives (TP), True
Negatives (TN), False Positives (FP), and False Negatives (FN). CM

aids in identifying issues like overfitting, underfitting, and skewing,
thus guiding model adjustments and optimizations.

Floating Point Operations (FLOPs) measure the total number
of floating point calculations required for a single forward pass
through the model. FLOPs provide a quantitative evaluation of the
model’s computational cost and efficiency, offering insights into its
deployment feasibility on resource-constrained devices. A lower
FLOPs value indicates a more efficient model with faster inference
times and reduced energy consumption, making it particularly
suitable for real-time clinical applications. In this study, FLOPs were
calculated using the “ptflops” package in PyTorch, which analyzes
each layer’s architecture and operations to accurately compute
the floating point operations. This approach ensures consistent
and reliable measurement of computational complexity across all
models compared.

Through this multidimensional assessment system, the study
comprehensively evaluates the model’s performance in diagnosing
Hepatocellular Carcinoma and Cholangiocarcinoma, ensuring its
practical applicability. This comprehensive assessment approach
not only offers an in-depth analysis of the model’s classification
performance but also identifies potential issues in real-world
application, thus guiding further model refinement.

3 Results

3.1 Experiments

The experimental setup of this study aims to comprehensively
evaluate the performance of the proposed model in liver cancer
diagnosis. To ensure the stability and generalization ability of the
model, the experiments were evaluated using a five-fold cross-
validation combined with an independent external test set. The five-
fold cross-validation divides the dataset into five equal parts, four
of which are selected for training and one for validation each time.
This process is repeated five times, and the average value is taken to
evaluate the model performance. The independent external test set
is then used for the final performance evaluation to ensure that the
model performs well on unknown data.

All models underwent parameter optimization using a
combination of random and grid search techniques to determine the
best hyperparameter combinations. Hyperparameter optimization
includes adjusting parameters such as learning rate, batch size,
and weight decay. An Early Stopping mechanism was employed
during training to prevent overfitting, and the optimal model
parameters were recorded. Each model underwent 100 iterations
to ensure convergence. The application of data preprocessing, data
enhancement, and image augmentation techniques played a crucial
role in the training process.These techniques significantly improved
the robustness and generalization of the models, contributing to
more accurate and reliable results.

The experiments were conducted on a high-performance
computer equipped with NVIDIA GeForce RTX 4090 GPUs,
Intel(R) Xeon(R) Gold 6230R CPUs @ 2.10GHz, and 256 GB of
RAM. These hardware configurations were chosen to ensure the
efficiency and accuracy of model training and evaluation. Python
3.8 was selected as the programming language, and PyTorch 1.9.0
was utilized as the deep learning framework. These specific tool and
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FIGURE 4
(A) Performance distribution: Box plots showing the distribution of key performance metrics across all epochs for each model. (B) Confusion matrices:
Classification results across the three categories (CCA, HCC, Norm-L) for each model.

version choices were made to facilitate smooth model development
and experimentation.

With the aforementioned experimental setup and details, this
study ensures the robustness and efficiency of the model across
different environments and datasets, thereby providing a reliable
diagnostic aid for liver cancer.

3.2 Comparison experiments

In this study, model metrics were compared through ablation
experiments to evaluate the performance of different models.
The performance and stability of each model across different
iteration periods are illustrated in (Figure 4A). Unlike the Baseline
model, HTRecNet not only achieves high performance but
also demonstrates superior stability and lightweight efficiency
by balancing data distribution and high performance. The
box plots in [Figure 4A] are generated from the data across all
training epochs, representing the overall distribution of model
performance rather than a single endpoint value.

The final training results are presented in (Table 1), showcasing
the best performance of each model after five-fold cross-validation.
HTRecNet achieves the highest scores across all key metrics, with
Accuracy (0.98) being 0.01 higher than the Baseline’s 0.97. This
indicates that HTRecNet correctly identifies approximately 98 out
of every 100 images, compared to 97 for the Baseline. Although
this difference may seem small, in real-world clinical scenarios with
thousands of samples, even a 1% increase in accuracy can translate
to a significantly higher number of correct diagnoses, thus reducing
misdiagnosis rates.

The confusion matrices in (Figure 4B) further illustrate
HTRecNet’s advantages, showing a higher number of true positive
and true negative cases compared to other models. This confirms

the model’s ability to accurately differentiate between categories and
highlights its reliability in clinical applications.

Additionally, the PR curves in (Figure 5) demonstrate that
HTRecNet consistently achieves the highest AUC-PR values across
all categories. The model maintains a strong balance between
precision and recall, showing enhanced robustness when handling
imbalanced class distributions, which ultimately contributes tomore
reliable diagnostic outcomes.

In summary, HTRecNet demonstrates high accuracy and robust
stability across all key performance indicators during five-fold
cross-validation. It consistently achieves superior Accuracy, Recall,
Precision, F1, MCC and AUC-PR compared to other models,
highlighting its precise classification capability. Additionally, the
model shows greater stability across different iterations, maintaining
consistent performance with minimal fluctuation. These strengths
underscore its significant potential and practical application value
in liver cancer diagnosis.

HTRecNet has not only demonstrated notable advancements
across various metrics such as accuracy but has also exhibited
impressive performance concerning model complexity. Upon
comparing the model complexity parameters, it becomes
evident that HTRecNet surpasses the benchmark model in
terms of FLOPs and the number of parameters (Params). The
specific comparative results are illustrated in (Table 2), where
HTRecNet showcases approximately a 30% reduction in both
computational requirements and the number of parameters
compared to the benchmark model. This substantial improvement
significantly enhances the computational efficiency and resource
utilization of the model.

In the iterative performance analysis of the models, HTRecNet
demonstrates remarkable stability and rapid convergence during
training, underscoring its outstanding performance.
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TABLE 1 Performance comparison of different models.

Model Accuracy Precision Recall F1 MCC

Baseline 0.98862 0.97227 0.98172 0.97457 0.97593

ResCBANet 0.9912 0.98432 0.97616 0.97875 0.98127

ResSPNet 0.98629 0.9606 0.97819 0.96247 0.97163

HTRecNet 0.99325 0.98958 0.9837 0.98531 0.9857

Bold values indicate the performance metrics of HTRecNet, the proposed method in this study, highlighting its comparative results against other models.

FIGURE 5
PR curves with micro-average AUC values for each model across the three categories (Norm-L, HCC, CCA).

Firstly, in the iterative plots depicting the five-fold cross-
validation accuracy of each model, HTRecNet showcases
minimal variance in the later iterations of each fold, indicating
consistency across different data subsets. HTRecNet swiftly attains
a stable and high level of accuracy in the later iterations while
maintaining minimal variance across folds, thereby highlighting
its excellent generalization performance across diverse data
divisions (Figure 6A).

Secondly, HTRecNet displays a favorable convergence
trend in Accuracy, Precision, Recall, F1 Score, and MCC
across all key metrics during both training and validation.
This trend suggests that the model not only enhances its
performance during training but also consistently and steadily
optimizes on the validation set. Such behavior serves to

verify HTRecNet’s effectiveness and its robust generalization
capability (Figure 6B).

Finally, the loss value of HTRecNet gradually decreases
and stabilizes in the iterative loss plots of both training and
validation. This indicates the model’s effective reduction of
prediction error and achievement of a well-fitted state during
training, underscoring HTRecNet’s maintenance of efficient
learning ability and stable convergence throughout the training
and validation process (Figure 6C).

In summary, HTRecNet’s performance during the iterative
training process, evidenced by the stability of the five-fold cross-
validation accuracy, convergence of various metrics, and loss
function, fully demonstrates its superiority in learning efficiency
and generalization performance. The model swiftly achieves
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TABLE 2 Comparison of complexity of different models.

Model Params(G) FLOPs(G)

Baseline 23.51 8.22

ResCBANet 24.46 8.51

ResSPNet 16.31 5.86

HTRecNet 17.25 5.94

Bold values indicate the performance metrics of HTRecNet, the proposed method in this
study, highlighting its comparative results against other models.

convergence at different iteration stages and consistently performs
on the validation set, thereby proving the robustness and efficiency
of HTRecNet in the liver cancer diagnosis task.

3.3 External independent testing

Evaluation results on an external independent test dataset
demonstrate the outstanding performance of HTRecNet in real-
world applications. The model excelled across several metrics,
showcasing its potential in liver cancer diagnosis.

Firstly, via radar plot visualization of data for each index
across the three categories of CCA, HCC, and Norm-L, HTRecNet
showcased exceptional performance. All indexes within each
category surpassed the 90% mark, with many exceeding 95%,
Among them, MCC is 0.95 and Accuracy is 0.97 (Figure 7A).
This performance underscores the robustness and high accuracy of
HTRecNet on external data. Particularly noteworthy is HTRecNet’s
strong performance in key metrics such as Accuracy, Precision,
Recall, and F1 Score, crucial for practical clinical applications.

Secondly, the Precision-Recall (PR) graphs across the three
categories, along with their micro and macro average metrics,
further affirm HTRecNet’s excellent performance (Figure 7B).
Each AUC-PR value exceeded 0.99, demonstrating the
model’s outstanding precision-recall trade-off across different
categories. These high AUC-PR values reflect HTRecNet’s
capability to maintain high precision and recall simultaneously,
effectively distinguishing Hepatocellular Carcinoma (HCC),
Cholangiocarcinoma (CCA), and Normal Liver Tissue (Norm-L)
even under imbalanced data conditions. This reliable precision-
recall balance not only highlights the model’s superior performance
in identifying key diagnostic features but also underscores
its robustness and consistency in practical applications. By
minimizing false positives and missed diagnoses, HTRecNet
provides clinicians with accurate and trustworthy decision
support, thereby enhancing diagnostic accuracy and reducing
clinical risks.

Finally, the confusion matrix diagram clearly illustrates
that HTRecNet achieves exceptional classification results across
each category (Figure 7C). The matrix indicates very high
true-positive and true-negative rates, underscoring the model’s
accuracy and reliability in practical scenarios. A high true-
positive rate signifies the model’s ability to accurately identify
most real cases, while a high true-negative rate demonstrates its

effectiveness in excluding non-cases and reducing misdiagnosis.
These impressive performance metrics highlight HTRecNet’s
potential in liver cancer diagnosis, offering significant support for
clinical practice.

In summary, HTRecNet’s performance on the external
independent test dataset, reflected in high indicator scores, elevated
AUC values in ROC curves, and outstanding confusion matrix
performance, underscores its promising role in liver cancer
diagnosis. These results not only affirm the validity and reliability
of the model but also showcase its practical utility and efficiency in
clinical applications.

3.4 Heat map visualization

To further validate HTRecNet’s feature extraction ability in liver
cancer diagnosis and enhance the interpretability of the diagnostic
process, this study generated heat maps of HTRecNet’s feature
interest across three categories: CCA, HCC, and Norm-L (Figure 8).
The heat maps were generated using the Grad-CAM (Gradient-
weighted Class Activation Mapping) method, which calculates the
gradients of the target category relative to the final convolutional
layer’s feature maps, highlighting regions that contribute most to the
model’s decision. It is important to note that this approach produces
a single class detection per image, rather than generating a spatial
map for every category within the image.

For CCA, HTRecNet accurately identifies abnormal changes
in the bile duct region, showcasing the model’s sensitivity to
subtle pathological features. For HCC, the model predominantly
highlights structural changes and abnormal proliferation areas
of hepatocytes, effectively capturing the typical features of
Hepatocellular Carcinoma. Conversely, in Norm-L’s heat map, the
model focuses primarily on normal structural regions of the liver,
further confirming HTRecNet’s capability to differentiate between
normal and diseased liver tissues.

These generated heat maps not only demonstrate HTRecNet’s
effectiveness in feature extraction across different categories but
also provide high interpretability for the diagnostic process
(Talukder et al., 2022; Poursabzi-Sangdeh et al., 2021). By analyzing
these heat maps, medical professionals can intuitively grasp the
model’s decision-making rationale, thereby increasing trust in the
diagnostic outcomes and aiding clinical decision-making.

In conclusion, HTRecNet’s performance in heat map
visualization underscores its robust feature extraction capability
and efficient classification performance in liver cancer diagnosis,
offering substantial technical support for clinical applications.

4 Discussion

4.1 Research overview

The objective of this study is to develop an efficient and accurate
deep learning model, HTRecNet, to aid in the early diagnosis
of liver cancer. The study incorporates innovative enhancements
to the ResNet50 benchmark model by integrating the SPConv
module and theCBAMattentionmechanism. Experimental findings
demonstrate that HTRecNet excels in classifying HCC, CCA, and
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FIGURE 6
Among them, (A) is the accuracy iteration diagram of five fold cross validation for Baseline, ResCBANet, ResSPNet, HTRecNet, (B) is the accuracy
iteration diagram of various indicators and training for HTRecNet during validation, and (C) is the loss iteration diagram of HTRecNet during training
and validation.

FIGURE 7
Among them, (A) is the radar plots of various indicator data for each category of HTRecNet on an external independent testing dataset, (B) is the
Precision-Recall (PR) curves of HTRecNet under various categories and their micro and macro average metrics on an external independent testing
dataset, and (C) is the confusion matrix diagram of HTRecNet on an external independent test dataset.

normal liver tissues, showcasing exceptional generalization ability
and robustness on external independent test datasets. Additionally,
the model’s feature extraction capability and interpretability are
validated through heat map visualization.

4.2 Novelty and importance

The novelty of this study lies in the development of HTRecNet,
a deep learning framework that incorporates advanced image
processing techniques and model enhancements to improve
performance in liver cancer diagnosis. The introduction of the
SPConv module and the CBAM attention mechanism addresses
key challenges in computational efficiency, feature extraction,
and interpretability. The SPConv module reduces computational
complexity through a split-fusion strategy, which partitions input
features into representative and redundant components. This

design minimizes redundant computations while retaining essential
feature information, enabling efficient model operation without
compromising accuracy.

The CBAM attention mechanism enhances the model’s ability
to focus on important pathological features by sequentially applying
channel and spatial attention. This mechanism improves feature
extraction by emphasizing critical regions in histopathological
images, such as hepatocyte abnormalities in HCC and bile
duct changes in CCA. The integration of SPConv and CBAM
improves classification accuracy and enables robust performance
across datasets, particularly in scenarios with imbalanced and
limited samples.

Additionally, a comprehensive image preprocessing workflow is
implemented, incorporating data enhancement and augmentation
techniques to address the imbalance in the dataset, particularly
for CCA cases. These workflows contribute to improving the
model’s generalization capability, ensuring consistent performance

Frontiers in Cell and Developmental Biology 11 frontiersin.org

https://doi.org/10.3389/fcell.2025.1549811
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Li et al. 10.3389/fcell.2025.1549811

FIGURE 8
HTRecNet’s feature interest heatmap for CCA, HCC, and Norm-L categories. Each pair of images shows the original pathology image (left) and the
corresponding heat map (right), illustrating the model’s attention to key feature regions. Heat maps were generated using Grad-CAM, displaying model
attention with a color scheme from blue (low attention) to red (high attention). Each heat map represents a single class detection per image. This
comparison demonstrates how HTRecNet utilizes critical features to distinguish between categories, highlighting the model’s decision-making basis.

across training and external test datasets. The proposed approach
achieves AUC values above 0.99 and an external test accuracy
of 97%, demonstrating its ability to differentiate between
liver cancer subtypes and normal liver tissues with high
reliability.

To enhance clinical utility, the model provides heat map
visualizations that offer insights into the regions prioritized during
diagnosis, facilitating transparency in the prediction process. This
feature supports the interpretability of HTRecNet, making it a useful
tool for assisting clinical workflows.

Overall, HTRecNet integrates computational efficiency, accurate
feature extraction, and interpretability, offering a methodologically
sound approach for early and accurate diagnosis of liver cancers such
as HCC and CCA.

4.3 Clinical significance

The development of HTRecNet provides an efficient and
accurate approach to early liver cancer diagnosis, addressing
the clinical need for reliable tools to identify Hepatocellular
Carcinoma (HCC) and Cholangiocarcinoma (CCA) at their early
stages. The model’s ability to accurately classify liver cancer
subtypes and normal liver tissues with an external test accuracy

of 97% reduces the risk of misdiagnosis and missed diagnoses,
which are significant challenges in current clinical practice. By
incorporating advanced image processing techniques and a carefully
designed workflow, HTRecNet ensures robust performance even
with imbalanced datasets, particularly for the less common CCA
cases. This capability enhances its potential utility in a wide range of
clinical settings.

The interpretability of HTRecNet is strengthened through
the use of heat map visualizations, which provide clear insights
into the regions of histopathological images that are prioritized
during diagnosis. This transparency not only enables clinicians to
understand the model’s decision-making process but also fosters
trust in the outcomes of AI-assisted diagnostic tools. Such features
make HTRecNet suitable for integration into existing diagnostic
workflows, supporting clinicians in confirming diagnoses and
streamlining decision-making processes.

Additionally, the efficient design of HTRecNet, achieved
through the integration of the SPConv module and the CBAM
attention mechanism, ensures that the model operates effectively
even in resource-constrained environments, such as smaller clinics
or remote healthcare facilities. This makes the model adaptable to
diverse healthcare settings, broadening its potential impact on liver
cancer diagnosis and patient outcomes.
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4.4 Limitations

Despite the significant progressmade in liver cancer diagnosis in
this study, there are still some limitations that need to be addressed
in future research.

4.4.1 Dataset imbalance
The dataset in this study contained significantly fewer CCA

samples compared toHCC andNorm-L samples. Despite employing
various data enhancement and image augmentation techniques
to mitigate this issue, the sample imbalance may still limit the
model’s ability to generalize for CCA recognition. Specifically, data
imbalance can cause the model to favor more common categories,
leading to poorer performance in predicting rare categories such as
CCA. Future studies should focus on collecting more CCA samples
to balance the dataset and enhance themodel’s ability to identify rare
types of liver cancer.

4.4.2 Limited external validation dataset
While this study demonstrated good performance on external

independent test datasets, the number and diversity of these
datasets remain limited. External validation is crucial for assessing
the model’s generalization ability and its effectiveness in real-
world applications. The restricted diversity and quantity of the
datasets used in this study may impact the overall evaluation
of the model’s performance. Therefore, future studies should
conduct validation on larger and multi-center datasets to
ensure the stability and reliability of the model across different
clinical settings.

4.4.3 Model complexity
Although HTRecNet has been optimized in terms of

computational complexity through the introduction of SPConv,
its computational resource requirements remain high. This can
pose a challenge in resource-constrained environments, particularly
in primary care settings or where equipment performance is
limited. Further optimization of the model structure to reduce its
computational resource requirements, thereby enabling efficient
operation even in low-resource environments, will be a crucial area
for future research.

4.4.4 Practical challenges in clinical application
There are numerous challenges associated with integrating AI

models into clinical practice. These include physicians’ acceptance
of AI technology, the complexity of integrating models with
existing healthcare processes, and concerns regarding trust in the
model decision-making process.While heatmap visualization offers
some level of interpretability, additional research and practical
implementation are necessary to enhance the transparency and
interpretability of the model further. This will facilitate widespread
acceptance and trust among clinicians.

4.5 Future prospects

Future research will aim to enhance the performance and
application value of HTRecNet by increasing the number of
CCA samples to balance the dataset and improve the model’s

generalization ability. ValidatingHTRecNet’s performance onmulti-
center datasets will ensure its stability and reliability across various
environments. Additionally, efforts will continue to optimize the
model structure to reduce computational resource requirements,
enabling efficient operation in low-resource settings. Enhancing the
interpretability of the model is crucial. Developing more intuitive
tools will help clinicians better understand and trust the decision-
making process of HTRecNet. Exploring the effectiveness and
potential of HTRecNet in real-world diagnosis within clinical
practice contexts (Piantadosi, 2024), including the development
of optimal AI-assisted diagnostic processes, and assessing their
impact on diagnostic accuracy, treatment decisions, and patient
prognosis, will be imperative. Overall, future research will focus
on dataset expansion, multicenter validation, model optimization,
interpretability enhancement, and clinical application research to
advance the comprehensive application of AI technology in liver
cancer diagnosis.

5 Conclusion

In this study, an efficient and accurate deep learning model,
HTRecNet, was successfully developed for the early diagnosis
of liver cancer. Through the incorporation of the SPConv
module and the CBAM attention mechanism, an innovative
enhancement of the ResNet50 benchmark model was achieved,
improving diagnostic accuracy while significantly reducing
computational complexity. Experimental results demonstrate
that HTRecNet excels in classifying HCC, CCA, and normal
liver tissues, showcasing exceptional generalization ability on
external independent test datasets. The visualization of heat maps
further validates the model’s feature extraction capability and
the interpretability of the diagnostic process, providing crucial
technical support for clinical applications. However, the study faces
some limitations, such as an unbalanced dataset and a restricted
external validation dataset. Future research endeavors will prioritize
expanding the dataset size, conducting multi-center validation,
optimizing the model structure, enhancing interpretability, and
advancing clinical applications to further bolster the performance
and practical application value of HTRecNet. In conclusion,
the outstanding performance and potential application value
of HTRecNet in liver cancer diagnosis have established a
robust foundation for future research and practical clinical
implementations.
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