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Stomatology, Dalian, Liaoning, China, 3Academician Laboratory of Immune and Oral Development &
Regeneration, Dalian Medical University, Dalian, Liaoning, China

Background: Periodontitis is the most prevalent chronic inflammatory disease
affecting the periodontal tissues. PANoptosis, a recently characterized form of
programmed cell death, has been implicated in various pathological processes;
however, its mechanistic role in periodontitis remains unclear. This study
integrates multi-omics data and machine learning approaches to systematically
identify and validate key PANoptosis-related biomarkers in periodontitis.

Methods: Periodontitis-related microarray datasets (GSE16134 and GSE10334)
were obtained from the GEO database, and PANoptosis-related genes
were retrieved from GeneCards. Differential gene expression analysis was
performed using the GSE16134 dataset, followed by weighted gene co-
expression network analysis (WGCNA) to identify relevant gene modules. The
intersection of differentially expressed genes and WGCNA modules was used
to define differentially expressed PANoptosis-related genes (PRGs). Protein-
protein interaction (PPI) networks of these PRGs were constructed using the
STRING database and visualized with Cytoscape. Subnetworks were identified
using the MCODE plugin. Key genes were selected based on integration with
rank-sum test results. Functional enrichment analysis was performed for these
key genes. Machine learning algorithmswere then applied to screen for potential
biomarkers. Diagnostic performance was assessed using receiver operating
characteristic (ROC) curves and box plots. The relationship between selected
biomarkers and immune cell infiltration was explored using the CIBERSORT
algorithm. Finally, RT-qPCR was conducted to validate biomarker expression in
clinical gingival tissue samples.

Results: Through comprehensive bioinformatics analysis and literature review,
ZBP1 was identified as a PANoptosis-related biomarker in periodontitis. RT-
qPCR validation demonstrated that ZBP1 expression was significantly elevated
in periodontitis tissues compared to healthy periodontal tissues (P < 0.05).

Conclusion: This study provides bioinformatic evidence linking PANoptosis
to periodontitis. ZBP1 was identified as a key PANoptosis-related biomarker,
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suggesting that periodontitis may involve activation of the ZBP1-mediated
PANoptosome complex.
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1 Introduction

Periodontitis is a chronic inflammatory disorder of the
periodontal tissues, primarily initiated by a dysbiotic dental
plaque biofilm ecosystem (Kwon et al., 2021). Clinically, it is
characterized by gingival inflammation, clinical attachment loss,
and irreversible alveolar bone resorption (Sanz et al., 2012).Without
timely and appropriate therapeutic intervention, advanced stages
of the disease often lead to tooth hypermobility and eventual
exfoliation (Silva et al., 2019), resulting in significant deterioration
of masticatory function and oral health-related quality of life.
Epidemiological studies indicate that the global prevalence of
periodontitis approached nearly 60% during the past decade
(2011–2020), establishing it as one of the most common chronic
diseases worldwide (Trindade et al., 2023). Moreover, periodontitis
is closely associated with various systemic conditions, including
adverse pregnancy outcomes, cardiovascular and respiratory
diseases, Alzheimer’s disease, and certain cancers (Teles et al., 2022).
These associations underscore the importance of early diagnosis and
intervention in managing periodontitis.

PANoptosis is a recently characterized form of inflammatory
programmed cell death governed by the PANoptosome complex,
which integrates molecular features of pyroptosis, apoptosis,
and necroptosis. Notably, PANoptosis cannot be attributed to
any single classical cell death pathway, highlighting the intricate
crosstalk between these mechanisms (Christgen et al., 2020). The
PANoptosome is composed of three key components: sensors,
adaptors, and effectors (Samir et al., 2020). To date, four distinct
PANoptosome complexes have been identified: the Z-DNA binding
protein 1 PANoptosome (ZBP1-PANoptosome), the absent in
melanoma 2 PANoptosome (AIM2-PANoptosome), the receptor-
interacting protein kinase 1 PANoptosome (RIPK1-PANoptosome),
and the Nod-like receptor family pyrin domain containing
12 PANoptosome (NLRP12-PANoptosome) (Qi et al., 2023).
PANoptosis has been implicated in a wide range of pathological
conditions, including infectious diseases, neurological disorders,
autoimmune diseases, and various cancers.

Recent studies have highlighted the dual role of PANoptosis
in disease progression. On the one hand, it plays a protective role
in anti-tumor immunity. For example, nuclear export inhibitors
such as KPT-8602 can induce PANoptosis in tumor cells by
retaining ADAR1-p150 in the nucleus, thereby alleviating its
suppression of ZBP1-mediated cell death signaling (Camilli et al.,
2023). Additionally, Fusobacterium nucleatum outer membrane
vesicles (Fn-OMVs) combined with oncolytic herpes simplex virus
(oHSV) have been shown to activate ZBP1-dependent PANoptosis,
offering promising therapeutic strategies for cancer treatment
(Wang et al., 2024). On the other hand, dysregulated PANoptosis
can exacerbate inflammation. For instance, in hemolytic conditions
such as malaria and sickle cell disease, heme accumulation

activates the NLRP12-PANoptosome complex, leading to acute
renal tubular necrosis (Navuluri et al., 2025). In allergic diseases
like allergic bronchopulmonary aspergillosis (ABPA), fungal
proteases stimulate the ZBP1-TAK1 axis to drive PANoptosis,
suggesting that necroptosis inhibitors may serve as effective
therapeutic agents (Smallwood et al., 2024). These findings
underscore the context-dependent duality of PANoptosis, which
can mediate both protective and pathogenic outcomes.

Emerging evidence also suggests a potential role for PANoptosis
in periodontitis. Lipopolysaccharides (LPS) derived from
Porphyromonas gingivalis, a keystone periodontal pathogen, have
been shown to significantly upregulate core regulatory proteins of
apoptotic, pyroptotic, and necroptotic pathways in various cell types,
including macrophages, fibroblasts, and stem cells (Zhang et al.,
2024). Additional studies have identified the presence of all three
forms of programmed cell death in rodent models of periodontitis,
with elevated levels of associated key proteins observed in human
periodontitis tissues and gingival crevicular fluid (Jiang et al., 2021).
Collectively, these experimental and clinical findings implicate
PANoptosis as a potential pathogenic mechanism in periodontitis;
however, the specific composition of the PANoptosome involved
remains to be elucidated.

Bioinformatics, an interdisciplinary field combining
mathematics, computer science, and biology, enables the extraction
of meaningful biological insights from large-scale datasets.
It has been extensively applied in biomedical research and
diagnostics (van Kampen and Moerland, 2016). Currently, the
clinical diagnosis of periodontitis largely depends on physical
examination and radiographic evaluation, which are limited by
their reliance on visible disease manifestations and often result in
delayed detection at advanced stages. With continued advances
in genomics and bioinformatics, several molecular biomarkers
have been proposed for the early diagnosis of periodontitis,
offering new avenues for improved clinical outcomes. However,
the utility of PANoptosis-related biomarkers in this context remains
underexplored and requires further investigation.

Therefore, this study aims to identify PANoptosis-
related biomarkers involved in periodontitis using integrated
bioinformatics approaches, with the goal of providing novel insights
for early diagnosis, prevention, and therapeutic intervention in this
prevalent inflammatory disease.

2 Methods

2.1 Data acquisition

Periodontitis-related microarray datasets were obtained
from the Gene Expression Omnibus (GEO) database (https://
www.ncbi.nlm.nih.gov/geo/). The training dataset, GSE16134,
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TABLE 1 PANoptosis related genes.

Gene References

ZBP1 Karki and Kanneganti (2023)

STING1 Cai et al. (2023)

AIM2 Lee et al. (2021)

SAMHD1 Cai et al. (2023)

CASP6 Zheng et al. (2020)

PYCARD Shi et al. (2024)

NLRP3 Oh et al. (2023)

DNM1L Zheng et al. (2024)

NINJ1 Han et al. (2024)

MAPK1 Zhou et al. (2022)

TNF Hao et al. (2024)

CASP8 Li et al. (2024)

NFS1 Lin et al. (2022)

RIPK3 Samir et al. (2020)

MAPK3 Zhou et al. (2022)

CASP1 Christgen et al. (2020)

XIAP Qi et al. (2024)

CDK1 Ren et al. (2022)

MEFV Moghaddas et al. (2017)

FADD Lee et al. (2021)

IFNG Malireddi et al. (2021)

RIPK1 Bynigeri et al. (2024)

TUG1 Yao et al. (2022)

comprises 241 periodontitis samples and 69 healthy control
samples, while the validation dataset, GSE10334, includes 183
periodontitis samples and 64 healthy control samples. PANoptosis-
related genes (PRGs) were retrieved from the GeneCards
database (https://www.genecards.org), and only genes labeled as
“Protein Coding” were selected, yielding a total of 23 PRGs for
subsequent analysis (Table 1).

2.2 Differential gene expression analysis

Differential gene expression analysis between periodontitis and
healthy control samples in the training dataset (GSE16134) was
conducted using the “limma” package in R software (version 4.3.1).
Genes with a P-value <0.05 and |log2 fold change (log2FC)| > 0.5

were considered differentially expressed genes (DEGs). The results
were visualized using volcano plots and heatmaps generatedwith the
“ggplot2” and “pheatmap” packages in R, respectively.

2.3 Gene set variation analysis

Gene Set Variation Analysis (GSVA) is a non-parametric,
unsupervised statistical approach used to evaluate the enrichment of
predefined gene sets in transcriptomic datasets (Hänzelmann et al.,
2013). In this study, the “ssGSEA” function from the “GSVA” package
in R was utilized to transform the gene expression matrix of the
GSE16134 dataset into GSVA enrichment scores for PRGs. The
Wilcoxon rank-sum test was applied to assess differences in GSVA
scores between periodontitis and healthy control groups, thereby
identifying significantly differentially expressed PRGs.

2.4 Weighted gene co-expression network
analysis

Weighted Gene Co-Expression Network Analysis (WGCNA)
was used to identifymodules of highly correlated genes.Thismethod
clusters genes into modules based on expression similarity, helping
to detect potential biomarkers or therapeutic targets (Langfelder
and Horvath, 2008). In this study, the “WGCNA” package in R
was used to construct a weighted gene co-expression network from
the GSE16134 dataset. The module with the highest correlation
coefficient was intersected with the DEGs to obtain the differentially
expressed WGCNA-PRGs relevant to periodontitis.

2.5 Construction of the protein–protein
interaction network

Aprotein–protein interaction (PPI) network of the differentially
expressed WGCNA-PRGs was constructed using the STRING
database (https://string-db.org). The resulting interaction network
was visualized using Cytoscape software (version 3.10.0). To identify
densely connected subnetworks, clustering analysis was performed
using the Molecular Complex Detection (MCODE) plugin within
Cytoscape.

2.6 Identification of key genes and
functional enrichment analysis

The differentially expressed PRGs with significant results from
the rank-sum test were merged with the highest-scoring genes from
the MCODE clustering analysis to identify key genes related to
periodontitis and PANoptosis.

To further investigate the biological functions and signaling
pathways involving these genes, Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment analyses
were performed usingthe “clusterProfiler” package in R. The GO
enrichment analysis was used to study the enrichment of key
genes in biological processes (BP), cellular components (CC),
and molecular functions (MF), while the KEGG analysis aimed
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to identify the relevant signaling pathways of these key genes
(Gaudet et al., 2021; Kanehisa and Goto, 2000). Enrichment results
were filtered using a significance threshold of P-value < 0.05.

2.7 Machine learning for screening
potential biomarkers

Machine learning is an automated data analysis method
widely used in clinical research (Deo, 2015). To further identify
potential PANoptosis-related biomarkers in periodontitis, Least
Absolute Shrinkage and Selection Operator (LASSO) regression
and Support VectorMachine–Recursive Feature Elimination (SVM-
RFE) analyses were performed using the “glmnet” and “e1071”
packages in R with 10-fold cross-validation. Additionally, random
forest analysis was conducted using the “randomForest” package.
Candidate biomarkers were selected by intersecting the gene sets
identified through these three machine learning methods.

2.8 Validation of diagnostic ability of
potential biomarkers

To visualize the expression differences of the identified
biomarkers between periodontitis and healthy control groups, box
plots were generated using the “ggpubr” package in R, enabling a
clear comparison of expression levels across both the training and
validation datasets.

The diagnostic potential of the identified potential biomarkers
was further evaluated by constructing receiver operating
characteristic (ROC) curves using the “pROC” package in R.
The area under the curve (AUC) was calculated to quantify
diagnostic accuracy. Potential biomarkers with AUC values ≥0.8
in both the training and validation datasets were considered to
have strong diagnostic value for distinguishing periodontitis from
healthy controls.

2.9 Immune infiltration analysis

Based on the training and validation datasets, the CIBERSORT
deconvolution algorithm was applied to investigate differences in
immune cell infiltration between the periodontitis and control
groups. Additionally, correlations between the identified biomarkers
and various immune cell types were calculated in both datasets.
The results were visualized using the “ggplot2” and “heatmap”
packages in R.

2.10 Real-time quantitative polymerase
chain reaction (RT-qPCR) validation of
biomarker expression

Clinical gingival tissue samples were collected from patients
at the Affiliated Stomatological Hospital of Dalian Medical
University between October 2024 and December 2024. The
control group comprised healthy gingival tissues from patients
undergoing orthodontic treatment or third molar extraction,

TABLE 2 Primer sequences for target genes.

Primer Sequence (5'→3′)

GAPDH
Forward:TGCAACCGGGAAGGAAATGA

Reverse:GCATCACCCGGAGGAGAAAT

ZBP1
Forward:GTCTCTCCGACTCCTTGCAG

Reverse:TGTTCAAGGTGGCCTTCTCT

while the experimental group included tissues from patients with
periodontitis undergoing periodontal surgery or tooth extraction.
A total of twelve samples (six per group) were included in the study.
Ethical approval was granted by the Institutional Review Board of
the Affiliated Stomatological Hospital of Dalian Medical University
(Approval No. 2024005). The inclusion and exclusion criteria were
as follows (Heitz-Mayfield, 2024):

Inclusion Criteria: (1) age between 18 and 70 years; (2) presence
of clinical attachment loss (CAL) on at least two non-adjacent teeth,
or CAL ≥3 mm on the labial/buccal or palatal/lingual surfaces of
at least two teeth; and (3) probing pocket depth ≥3 mm on two or
more teeth.

Exclusion Criteria: (1) the presence of systemic diseases; (2)
pregnancy or lactation; and (3) the use of immunosuppressive
agents, antibiotics, or anti-inflammatory medications within the
past 3 months.

Total RNA was extracted from gingival tissues using the TRIzol
method. Complementary DNA (cDNA) was synthesized from
mRNAusing the EvoM-MLV reverse transcription kit. Quantitative
real-time PCR (RT-qPCR) was conducted using the SYBR Green
Pro Taq HS qPCR kit, with GAPDH serving as the internal
control. Primer sequences are provided in Table 2. Gene expression
was quantified using the 2−ΔΔCt method. Statistical analysis and
visualization were performed using GraphPad Prism version 10.

3 Results

3.1 Differential gene expression analysis

Differential gene expression analysis was conducted on
the training dataset GSE16134, identifying a total of 1,067
differentially expressed genes (DEGs) between periodontitis and
healthy samples. Among these, 673 genes were upregulated
and 394 were downregulated, as illustrated in the volcano plot
and heatmap (Figure 1).

3.2 GSVA analysis

The GSVA analysis revealed that the PRGs-GSVA scores were
significantly higher in the periodontitis group compared to the
healthy control group in the GSE16134 dataset, indicating that the
biological process of PANoptosis is upregulated in periodontitis (P
< 0.05; Figure 2A).

Furthermore, a rank-sum test identified significant differences
for 18 genes—ZBP1, STING1, AIM2, SAMHD1, CASP6, PYCARD,
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FIGURE 1
Differential gene analysis results. (A) Volcano plot of DEGs; (B) Heatmap of DEGs.

FIGURE 2
GSVA analysis results. (A) Boxplot of PRGs-GSVA score differences between the periodontitis group and the healthy control group; (B) Boxplot of rank
sum test for differential expression of PRGs (∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001, ∗∗∗∗P < 0.0001).

NLRP3, DNM1L, NINJ1, MAPK1, TNF, CASP8, NFS1, RIPK3,
MAPK3, CASP1, XAF1, and CDK1—between periodontitis and
healthy control samples (P < 0.05; Figure 2B).

3.3 WGCNA analysis

WGCNA clustered genes with similar expression profiles into
five modules using a cut height of 0.25. Among them, the
MEblue module showed the strongest positive correlation with
both periodontitis and PRGs. Genes from this module were
considered key module genes. By intersecting them with the DEGs,
657 differentially expressed WGCNA-PRGs were identified for
further analysis (Figure 3).

3.4 Construction of the PPI network

The 657 identified WGCNA-PRGs were analyzed for PPI
using the STRING database, and the results were visualized using

Cytoscape. Clustering analysis via the MCODE plugin identified
18 interaction subnetworks, with Cluster 1 exhibiting the highest
interaction score (24.138), comprising 30 genes: ITGB2, IL2RB,
CSF1R, MRC1, CD19, ITGAL, CCL5, ITGA4, CXCR4, CD27,
CD163, SELL, LCK, CCR1, IL7R, CCR2, FCGR3B, SELP, IL2RG,
FCGR2B, KLRB1, CD2, PTPRC, CD48, ENTPD1, CD52, FCGR2A,
TLR9, IRF8, and PECAM1 (Figure 4A).

These 30 genes were merged with the 18 PRGs that showed
significant differential expression between groups, resulting in 48
PANoptosis-related genes in periodontitis. Their interactions were
analyzed using the STRING database, revealing a network with 501
interaction pairs (Figure 4B).

3.5 Functional enrichment analysis of key
genes

Functional enrichment analysis of the 48 key genes was
performed. GO analysis revealed 1,179 significantly enriched terms.
In the BP category, 1,019 terms were enriched, focusing on
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FIGURE 3
WGCNA analysis results. (A) Gene hierarchical clustering diagram; (B) Module correlation heatmap; (C) Venn diagram of WGCNA-PRGs and DEGs
intersection.

FIGURE 4
(A) PPI network of Cluster 1; (B) PPI network of 48 key genes.
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pyroptosis, regulation of innate immune response, andmononuclear
cell migration. In the CC category, 46 terms were enriched,
including canonical inflammasome complex, external side of the
plasma membrane, and secretory granule membrane. In the MF
category, 114 terms were enriched, primarily related to IgG binding,
chemokine binding, and cytokine receptor activity (Figure 5A).
KEGG analysis identified 89 enriched pathways, such as the NOD-
like receptor signaling pathway, cytosolic DNA-sensing pathway,
and pertussis (Figure 5B).

3.6 Identification of potential biomarkers

LASSO regression analysis was applied to the key genes,
and the optimal lambda value yielded 25 biomarker candidates
(Figures 6A,B).SVM-RFE analysis identified 14 feature genes with
the lowest error and highest accuracy in 10-fold cross-validation
(Figures 6C,D).Random forest analysis identified 20 feature genes
with importance scores above 1.5 (Figures 6E,F).

The intersection of these three machine learning
approaches revealed six potential biomarkers associated with
PANoptosis in periodontitis: PECAM1, CXCR4, SELP, IL2RG,
CD48, and ZBP1 (Figure 6G).

3.7 Validation of the diagnostic ability of
potential biomarkers

Box plot analysis confirmed that the expression levels of all six
candidate biomarkerswere significantly upregulated in periodontitis
samples compared to healthy controls, in both the training and
validation datasets (P < 0.05; Figures 7A,C).

ROC analysis showed that all six biomarkers achieved Area
Under the Curve (AUC) values ≥0.8 in both datasets, indicating
strong diagnostic performance (Figures 7B,D). Among these,
SELP and PECAM1 were mainly expressed in endothelial cells
and are involved in angiogenesis and cardiovascular disease
(Liu et al., 2023; Privratsky et al., 2010). CXCR4 and IL2RG
were predominantly expressed in lymphocytes, while CD48 was
present in lymphocytes and other immune cells, contributing
to immune regulation (Elishmereni and Levi-Schaffer, 2011;
Le Floc’h et al., 2023; Nagashima et al., 2017). ZBP1 functions
as an innate immune sensor critical for PANoptosis initiation.
Therefore, ZBP1 was identified as a PANoptosis-related biomarker
in periodontitis.

3.8 Immune cell infiltration analysis

CIBERSORT analysis revealed significantly higher infiltration
levels of plasma cells, activated CD4+ memory T cells, γδ T cells, and
neutrophils in the periodontitis group compared to healthy controls
(P < 0.001; Figures 8A,B).

Correlation analysis demonstrated that ZBP1 was strongly
positively correlated with plasma cells (r = 0.78), neutrophils (r
= 0.22), γδ T cells (r = 0.21), and M0 macrophages (r = 0.17),
while negatively associated with dendritic cells (r = −0.76) and
M1 macrophages (r = −0.42) in the training cohort (P < 0.01;

Figure 8C). These patterns were validated in the validation cohort,
where ZBP1 again showed strong positive correlations with plasma
cells (r = 0.77), γδ T cells (r = 0.21), neutrophils (r = 0.21), and
M0 macrophages (r = 0.19), along with negative correlations with
dendritic cells (r = −0.75) and M1 macrophages (r = −0.33) (P
< 0.01; Figure 8D).

3.9 RT-qPCR validation

RT-qPCR was performed on human clinical gingival tissue
samples. The results showed that ZBP1 expression was significantly
higher in periodontitis tissues than in healthy gingival tissues (P
< 0.01; Figure 9).

4 Discussion

This study employed bioinformatics approaches to investigate
the critical role of PANoptosis in periodontitis. GSVA analysis
of the training dataset GSE16134 revealed upregulation of PRGs
in periodontitis, indicating that PANoptosis is likely promoted in
this condition. Differential gene expression analysis and WGCNA
identified 48 key genes. GO enrichment analysis showed that, in
terms of BP, these geneswere associatedwith immune cellmigration,
adhesion, and regulation of innate immune responses. In the CC
category, these geneswere enriched in the external side of the plasma
membrane, canonical inflammasome complexes, and secretory
granule membranes. In terms of MF, they were primarily involved
in IgG binding, chemokine binding, and cytokine receptor activity.
KEGG pathway analysis indicated that these genes were enriched
in the NOD-like receptor signaling pathway and the cytosolic
DNA-sensing pathway. Collectively, these results suggest that the
identified genes may contribute to the pathogenesis of periodontitis
by activating inflammatory and immune-related pathways and by
modulating the integrity and function of the cell membrane in
periodontal tissues.

Using three machine learning algorithms, we identified
six potential biomarkers. Literature review revealed that
SELP and PECAM1 are associated with angiogenesis and
cardiovascular diseases (Liu et al., 2023; Privratsky et al.,
2010), while CXCR4, IL2RG, and CD48 are primarily involved
in immune responses (Elishmereni and Levi-Schaffer, 2011;
Le Floc’h et al., 2023; Nagashima et al., 2017). ZBP1, in particular,
is closely related to PANoptosis and was thus selected as a potential
biomarker in periodontitis. RT-qPCR validation using clinical
gingival tissue samples confirmed that ZBP1 expression was
significantly higher in periodontitis samples than in healthy controls
(P < 0.01), suggesting its involvement in disease pathogenesis and
highlighting its potential diagnostic value (AUC >0.80).

Z-DNA binding protein 1 (ZBP1), also known as DNA-
dependent activator of interferon-regulatory factors (DAI) or DLM-
1, is an innate immune sensor that plays a pivotal role in PANoptosis
and antiviral immune responses. It was initially identified as a sensor
of Influenza A Virus (IAV) infection (Kuriakose et al., 2016). ZBP1
contains two Z-DNAbinding domains (Zα1 and Zα2), two receptor-
interacting protein (RIP) homotypic interactionmotifs (RHIM1 and
RHIM2), and a C-terminal signaling domain (Zheng et al., 2020).
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FIGURE 5
(A) GO enrichment analysis of key genes; (B) KEGG enrichment analysis of key genes.

The Zα2 domain of ZBP1 recruits key effectors such as RIPK3,
RIPK1, CASP8, and CASP6 to assemble the ZBP1-PANoptosome.
In addition, ZBP1 can form a ZBP1-NLRP3 inflammasome complex
to mediate caspase-1 activation and IL-1β maturation, suggesting
that inflammatory vesicle signalling and PANoptosis may co-
exist in the pathological process of periodontitis (Oh and Lee,

2023; Zheng and Kanneganti, 2020). Recent studies have shown
that oral pathogens such as P. gingivalis can activate ZBP1 in
macrophages, leading to PANoptosis and exacerbated periodontal
tissue destruction (Wu et al., 2025). These findings support the
notion that microbial activation of ZBP1 may serve as a pathogenic
driver of inflammatory cell death in periodontitis. Fusobacterium
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FIGURE 6
Machine learning identification of potential biomarkers. (A) LASSO regression coefficients; (B) Cross-validation curve; (C) SVM result accuracy; (D) SVM
result error rate; (E) Random forest ntree value selection; (F) Variable importance ranking; (G) Venn diagram of the intersection of results from the three
machine learning methods.
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FIGURE 7
Differential expression analysis and ROC evaluation of candidate biomarkers. (A,B) Training set results; (C,D) Validation set results.

nucleatum has also been reported to activate ZBP1, triggering
inflammation in murine models of apical periodontitis (Liu et al.,
2022). Similarly, Sahingur et al. reported that the expression of DAI
in human gingival tissuewas 5.6-fold higher in chronic periodontitis
samples than in healthy controls (Sahingur et al., 2013), consistent
with our findings. Furthermore, rank-sum test analysis in this study
revealed differential expression of key PANoptosome components
such as RIPK3, CASP8, and CASP1, suggesting that periodontitis
may involve ZBP1-mediated PANoptosome formation. However,
further experimental validation is needed to clarify the underlying
molecular mechanisms.

Periodontitis is a chronic inflammatory disease involving both
innate and adaptive immune responses (Becerra-Ruiz et al., 2022).
To further explore the immune microenvironment, CIBERSORT
analysis was conducted. Compared to healthy controls, the
periodontitis group exhibited significantly higher infiltration of
plasma cells, activated CD4+ memory T cells, γδ T cells, and
neutrophils, with plasma cells being the most prominent. Plasma
cells, differentiated from B lymphocytes, are the dominant B cell
type in periodontitis and regulate alveolar bone resorption via IL-
35 and IL-37 production (Jing et al., 2019). Correlation analysis
showed that ZBP1 was most strongly associated with plasma cells.
Previous research has demonstrated that plasma cells express
higher levels of ZBP1 mRNA than other B cell subsets. This co-
expression pattern helps inhibit endogenous retrotransposons
and viral infections, thus protecting the host from pathogen

invasion (Herbert et al., 2022). Activated CD4+ memory T cells
secrete pro-inflammatory cytokines such as IL-17 and IFN-γ,
contributing to tissue destruction and inflammatory bone loss
in periodontitis (Mahanonda et al., 2018). γδ T cells, a non-
classical T cell subset, promote osteoclastogenesis and potentiate
innate immune responses, thereby accelerating alveolar bone
loss (Barel et al., 2022). Neutrophils, as key components of the
innate immune system, are recruited and activated by periodontal
pathogens.They release proteases and cytokines that intensify tissue
damage and inflammation (Bassani et al., 2023). Furthermore,
during Influenza A Virus (IAV) infection, viral replication activates
ZBP1, which then triggers MLKL-mediated cell death. This
form of regulated necrosis promotes neutrophil recruitment,
further amplifying the inflammatory response (Zhang et al.,
2020). The aforementioned studies indicate that both immune
cells and biomarker contribute to the regulation of the immune
microenvironment in periodontitis and play a crucial role in its
pathophysiological processes.

Due to the good diagnostic ability of ZBP1 and its correlation
with immune cells, ZBP1 may serve as a non-invasive biomarker
detectable in salivary or crevicular fluid assays for the early screening
and monitoring of periodontitis. Furthermore, as a core regulator
of PANoptosis, ZBP1 represents a potential therapeutic target;
small molecule inhibitors or pathway-specific modulators could be
designed to suppress aberrant inflammatory cell death and immune
cell recruitment in periodontitis.
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FIGURE 8
Immune infiltration analysis results. (A) Relative percentage of immune cell subpopulations in samples; (B) Differences in immune cell infiltration in
samples (∗P < 0.05,∗∗P < 0.01,∗∗∗P < 0.001,∗∗∗∗P < 0.0001); (C) Biomarker-immune cell correlations (training set); (D) Biomarker-immune cell
correlations (validation set).

FIGURE 9
RT-qPCR results of ZBP1 (∗∗P < 0.01).

Currently, research on ZBP1 as a diagnostic biomarker for
periodontitis is limited. This study preliminarily demonstrates the
diagnostic potential of ZBP1 in periodontitis and its possible
involvement in PANoptosis; however, several limitations remain.
First, the small clinical sample size and the absence of disease
stage stratification may limit the generalizability of the findings. The
dynamic expression profile of ZBP1 warrants further investigation
throughmulticenter, large-scale studies incorporating clinical staging.
Second, although bioinformatics analyses and RT-qPCR indicated
co-expression of ZBP1 with PANoptosis-related genes, direct
experimental evidence—such as immunoprecipitation or multiplex
immunofluorescence staining—is lacking to confirm the formation of
theZBP1-PANoptosome complex in gingival tissues and to determine
its precise localization. Finally, the clinical translational potential of
ZBP1 remains underexplored. Further studies are needed to establish
its utility as a definitive diagnostic and therapeutic target. Collectively,
these limitations highlight the necessity of integrating mechanistic
investigations, technological advancements, and clinical validation to
comprehensively elucidate the functional network and translational
prospects of ZBP1 in periodontitis.
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5 Conclusion

Integrated bioinformatics analysis reveals that PANoptosis-
associated genes potentially drive periodontitis progression through
inflammatory and immune-related pathways. Notably, ZBP1
was identified as a PANoptosis-related biomarker, with disease
pathogenesis potentially involving ZBP1-PANoptosome assembly.
These findings position ZBP1 as a promising diagnostic biomarker
and therapeutic target for periodontitis. However, large-scale
experimental validation across expanded clinical cohorts is required
to confirm these mechanistic insights.
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