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The inevitable presence of uncertain parameters in critical applications of process
optimization can lead to undesirable or infeasible solutions. For this reason, optimization
under parametric uncertainty was, and continues to be a core area of researchwithin Process
Systems Engineering. Multiparametric programming is a strategy that offers a holistic
perspective for the solution of this class of mathematical programming problems.
Specifically, multiparametric programming theory enables the derivation of the optimal
solution as a function of the uncertain parameters, explicitly revealing the impact of
uncertainty in optimal decision-making. By taking advantage of such a relationship, new
breakthroughs in the solution of challenging formulations with uncertainty have been created.
Apart from that, researchers have utilized multiparametric programming techniques to solve
deterministic classes of problems, by treating specific elements of the optimization program
as uncertain parameters. In the past years, there has been a significant number of
publications in the literature involving multiparametric programming. The present review
article covers recent theoretical, algorithmic, and application developments in multiparametric
programming. Additionally, several areas for potential contributions in this field are discussed,
highlighting the benefits of multiparametric programming in future research efforts.

Keywords: multiparametric programming, explicit model predictive control, process systems engineering,
optimization under uncertainty, data science

1 INTRODUCTION

What is the impact of varying parameters in mathematical optimization problems? Optimal
decision-making under parametric uncertainty is a fundamental area of research within the
Process Systems Engineering community since its presence in practical applications is
unavoidable. Reaction kinetic constants, mass transfer coefficients, demand volumes, feedstock
prices, process disturbances, appear in optimization models, and comprise sources of uncertainty in
the form of parameters that can lead to inaccurate or infeasible decisions. As a result, the derivation
of the optimal solution which incorporates uncertainty considerations becomes challenging.

Among the various techniques that have been proposed in the open literature to solve this problem,
multiparametric programming has emerged as a powerful tool to explain how parametric uncertainty and
variability influence optimal decisions. The case of single-parameter problems (i.e. parametric
programming) had been investigated since the 1950s. However, the computational complexity
associated with the presence of numerous parameters in the problem formulation, hindered the
development of algorithms for its solution. In one of these early efforts, Barnett (1968) demonstrated
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how the range of allowable changes of parameters appearing on the
optimal basis of a linear program can be calculated, along with the
form of the optimal solution. Multiparametric programming
attracted significant interest, most notably following the efforts of
Gal and Nedoma (1972), who considered multiple parameters, and
introduced a systematic strategy to solve multiparametric linear
programming problems (mpLPs), and explore all optimal active
sets. In their formulation, the uncertain parameters appear solely
in the right-hand side of the constraints, and the solution of the
aforementioned program offered an explicit relationship between the
decision variables and the varying parameters. This relationship
constitutes the foundation of multiparametric programming and
provides a holistic view to perform uncertainty analysis in
optimization problems. Hence, the optimizer solves a single
mathematical programming problem to describe the impact of the
uncertainty for its whole range, without the assumption of a given
probability distribution. Subsequently, uncertainty in the objective
function was included in the problem definition (Gal, 1975).

The seminal papers by Pistikopoulos et al. (2000) and
Bemporad et al. (2002b) that demonstrated the first exact
strategy for the solution of convex multiparametric quadratic
programming problems (mpQPs) represent another major
milestone. In addition to that, they proved that a model
predictive control problem (MPC), with a quadratic cost
function, can be exactly reformulated and solved as a mpQP. In
this work, the optimal control actions of a system— dictated by a
discrete linear time-invariant state-space model — within a MPC
framework are expressed as affine functions of the initial states
which partially comprise the uncertainty vector of the optimal
control problem. The immediate benefits of the offline nature of the
solution of the multiparametric/explicit model predictive control
(mpMPC) problem are captured by the following statements

(1) The computational burden associated with solving the MPC
problem is dramatically reduced since the online repetitive
solution of a quadratic optimization problem is substituted
by a function evaluation.

(2) The feasible state-space of the control problem is explicitly
created, offering a clear picture of the operability boundaries
of the system to the engineer before the start of a closed-loop
simulation.

(3) The understanding of the impact of the initial states of the
system to the corresponding optimal control law and the
objective function value for any optimal active set.

This research breakthroughmotivated a new research direction in
the process control community due to the capabilities of the approach
for real-time optimization problems, where the computational power
is limited. Nevertheless, the aforementioned benefits of having an
explicit solution come at a cost. Namely, the computational effort in
deriving the full multiparametric solution depends on the number of
decision variables, parameters, and constraints, and as a result, as the
problem size grows, the construction of the full solution becomes
challenging. Additionally, for large-scale problems the procedure of
finding which optimal active set corresponds to a feasible parameter
value — the point location problem — can be complex. Nowadays,
research efforts could be categorized into theoretical developments to

derive and store the solution of new classes of multiparametric
programming problems, the construction of efficient algorithms
for the exploration of the parameter space which is described by
the optimal active sets, and finally, their application in engineering
problems. mpMPC is by far the most well-studied and explored
application of multiparametric programming. Nevertheless, this
exciting field captures a generous number of applications, beyond
process control. To this end, researchers adopted multiparametric
programming to solve other classes of receding horizons problems,
most prominently, process scheduling and moving-horizon
estimation. In recent years, the area of multiparametric
programming has burgeoned with advances that include its
integration with data-driven modeling and optimization
techniques, the interactions of process design, control, and
scheduling, robust MPC, and strategies for multilevel optimization.

Several reviews have been published in thefield ofmultiparametric
programming and mpMPC (Dua et al., 2008; Alessio and Bemporad,
2009; Pistikopoulos, 2012; Oberdieck et al., 2016a). The objective of
this article is to provide an update on the recent developments in
theory, algorithmic strategies, and applications, which have appeared
in the open literature. Additionally, the aim is to also offer a
perspective on potential future research pathways which will utilize
multiparametric programming-based strategies to solve challenging
engineering problems, and act as a roadmap for a researcher in this
field. The remainder of this work is organized as follows: In Section 2,
the fundamentals of multiparametric programming are introduced,
while in Section 3 recent theoretical and algorithmic contributions are
presented. In Section 4 applications which have multiparametric
programming in their core to solve critical engineering problems are
discussed. Section 5 serves as a future outlook, and in Section 6, we
conclude.

2 BACKGROUND

2.1 Multiparametric Programming
Consider a general multiparametric programming problem,
described by the following formulation

z(θ) � min
x

f (x, θ)
s.t. g(x, θ)≤ 0

h(x, θ) � 0
x ∈ Rn

θ ∈ Rm

(1)

where x is the vector of the decision variables, θ the vector of the
uncertain parameters, and g(x, θ) and h(x, θ) the inequality and
equality constraints respectively. Multiparametric programming is
founded on the assumptions and principles of the Basic Sensitivity
Theorem as presented in Fiacco (1983). Based on that, the active set
in the neighborhood of a nominal parameter vector, θ*, with a
corresponding optimal solution and Lagrange multipliers (x*, λ*) of
an optimization program, remains unchanged. Consequently,
parametric areas with the same active set are created — critical
regions — each characterized with a distinct set of Karush-Kuhn-
Tucker (KKT) conditions. Since the optimality conditions remain
the same, the resulting system of equations derived from the KKT
conditions can be analytically solved, and hence the optimal solution

Frontiers in Chemical Engineering | www.frontiersin.org January 2021 | Volume 2 | Article 6201682

Pappas et al. Multiparametric Programming in Process Systems Engineering

https://doi.org/10.3389/fceng.2020.620168
www.frontiersin.org
www.frontiersin.org


with respect to the varying parameters for thewhole parameter space
is explicitly constructed. This statement can be expressed as

x*(θ) �

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x1(θ), if θ ∈ CR1

x2(θ), if θ ∈ CR2

.

.

.
xv(θ), if θ ∈ CRv

(2)

where the ith critical region, CRi, corresponds to the parameter
space described by the ith active set. Consequently, the full
solution of this optimization problem is obtained beforehand,
and by identifying a given parameter value, the optimal solution is
reduced to a simple function evaluation. The procedure of finding
in which region a measured value of parameters lies, is termed as
the point location problem. A schematic of a map of critical
regions is shown in Figure 1.

Depending on the structure of problem 1, the functions
describing the multiparametric solution and the structure of the
critical regions can drastically change. General closed-forms for the
optimal solutions are known for mpLPs, mpQPs, and their mixed-
integer counterparts (mpMILPs, mpMIQPs). Specifically, assume
the following mpMIQP that includes both continuous optimization
variables, x, and binary variables, y

z(θ) � min
x,y

(Qω +Hθ + c)Tω
s.t Wix + Eiy ≤ bi + Fiθ

Wex + Eey � be + Feθ
x ∈ Rn, y ∈ {0, 1}p,ω � [xTyT]T
θ ∈ Rm

(3)

where the problem is defined by the matrices of appropriate
dimensions.

Table 1 demonstrates the properties of the multiparametric
solution depending on the problem type. Please note that
problem 3 includes all the aforementioned problem formulations.

2.2 Connecting Multiparametric
Programming and Model Predictive Control
A model predictive control problem, whose goal is to drive the
system to the origin, can be described by the following
formulation, assuming that x̂k is the vector of the states of the
system, ŷk the outputs, and ûk are the control actions to be found
at time instant k

min
û0 ,...,̂uN−1

x̂TNPx̂N + ∑
N−1

k�0
x̂Tk QRx̂k + ûTk Rûk

s.t. x̂k+1 � Ax̂k + Bûk k � 0, . . . ,N

ŷk � Cx̂k k � 0, . . . ,N

x̂k ∈ X k � 0, . . . ,N

ûk ∈ U k � 0, . . . ,N − 1

x̂0 � x̂(0)
x̂N ∈ T

(4)

where QR and R are the weights of the objective function, and P is
the stabilizing matrix derived by the solution of the Riccati
equation for discrete systems, and N is the prediction horizon
of the problem. It is assumed that the sets X,U, and T are
compact, thematricesQR and P are positive semi-definite, while R
is positive definite. Problem 4 is dictated by a discrete linear state-
space model. Hence, future state vectors can be expressed as a
function of the initial state of the system and the control actions,
by utilizing the following relationship

x̂k � Akx̂0 +∑
k−1

q�0
AqBûk−1−q (5)

Assuming that the initial state vector x̂0 is a vector of uncertain
parameters, problem 4 can be reformulated to 3, and the optimal
control policy can be calculated as an affine function of this
uncertainty vector. Through mpMPC additive disturbances,
setpoints, and outputs can also be part of the problem
formulation.

3 THEORETICAL AND ALGORITHMIC
DEVELOPMENTS

The benefits of multiparametric programming-based solutions in
practical applications have created a dynamic interest by the
research community over the years, and resulted in multiple
theoretical and algorithmic developments. Specifically, these
contributions were focused on 1) the solution of new classes
of multiparametric programming problems, and 2) the derivation
of algorithms for the exploration of the parameter space.

3.1 Multiparametric Nonlinear
Programming
The need to tackle more complex problems, described by
nonlinear functions, is a central area of research within the
multiparametric programming community. Even though linear
models are shown to perform well in a wide range of optimization
applications, such as model predictive control, various processes
are inherently nonlinear. Apart from that, the required
fluctuations in operation, together with stricter environmental
and financial targets, lead to the need of incorporating nonlinear
terms in these optimization formulations. Researchers focused on
the impact of a single parameter to calculate how that would affect
the behavior of a nominal solution of general nonlinear programs
(Kojima, 1979; Benson, 1982; Kojima and Hirabayashi, 1984).
The foundations of modern algorithms in nonlinear
multiparametric programming have been based on the results
of Fiacco and their coworkers, who provided local regularity and
local sensitivity conditions for the general case involving multiple
parameters (Fiacco, 1976; Fiacco, 1983; Fiacco and Kyparisis,
1986). More recent efforts in multiparametric nonlinear
programming problems (mpNLPs) concentrated on developing
approximations of the mpNLP to a form that exact solution
strategies exist, by creating linear or quadratic approximations of
the objective function and linearization of the constraints (Dua
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and Pistikopoulos, 1999; Johansen, 2002; Domínguez and
Pistikopoulos, 2013). Apart from that geometric-based
strategies have been utilized by creating parameter space
approximation through hypercubes, simplicies, and
hyperrectangles (Johansen, 2004; Bemporad and Filippi, 2006;
Narciso, 2009), the utilization of a partially offline solution
(Fotiou et al., 2006), or the approximation of the solution
manifold based on the Fritz John conditions of optimality
(Hale and Qin, 2004; Hale, 2005).

Dua (2015) considered general multiparametric mixed-integer
nonlinear programming problems (mpMINLPs) described by
polynomial functions. The author derived and solved the
system of polynomial equations resulting from the KKT
conditions, where the integer variables are treated as uncertain
parameters. Since the problems include integer and nonconvex
functions, the solutions of the KKT system are checked to identify
whether the inactive inequality constraints, the slack
complementary slackness and the constraint qualifications are
satisfied. In Charitopoulos and Dua (2016) hybrid nonlinear
model predictive control problems were considered, and the
problem is reformulated as a mixed-integer polynomial
programming problem. The algorithmic approach is based on
the analytical solution of the system of equations arising from the
KKT conditions. After performing feasibility and constraint
qualification investigations of the solutions, a dominance
check is performed for overlapping critical regions, leading to
an exact multiparametric solution.

In another contribution, the focus was on controlling spatially
distributed systems described by partial differential equations
(PDEs) (Petsagkourakis and Theodoropoulos, 2018). A reduced-
order digital twin of the process was constructed using proper
orthogonal decomposition followed by a neural network. Given
the challenges of directly solving the resulting mpNLP, multiple
linearizations of the nonlinear problem were created, resulting in
mpQPs. A model approximation checking mechanism was also
employed that verifies whether the produced approximation
error bound was satisfied, or further refinement of the model
was required. A different perspective in solving mpNLPs in the
form of mpMPC was given in Bayer et al. (2016). The authors
created a grid of the state-space and assume a control law
parametrization. A suboptimal control law, valid for a set of
initial conditions, is computed through robust tube-based MPC
techniques (Langson et al., 2004). As a result, hyperrectangular
regions are created. However, the proposed approach has also an
online cost, associated with finding the region with the desired
control law.

In contrast to other efforts which consider general mpNLPs, in
Diangelakis et al. (2018); Pappas et al. (2020b) the authors
restricted themselves to multiparametric quadratically
constrained quadratic programming problems (mpQCQPs),
motivated by the applications described by this class of
problems. However, the given structure of the problem
allowed them to systematically show how the explicit solution
for this class of problems can be generated without a post-
processing step. The approach is based on a second-order
Taylor approximation of the Basic Sensitivity Theorem, which
allows for the existence and derivation of the multiparametric

solution. In addition to the case where only convex constraints
are included in the problem description, the authors expanded to
the case where nonconvex constraints are part of the optimization
formulation. The incorporation of quadratic terms in the
constraints results in the construction of nonlinear and
nonconvex critical regions. Hence, the adoption of a geometric
strategy is challenging due to the absence of facets to utilize to
explore new critical regions. For this reason, the authors utilize an
active set-based exploration algorithm to guarantee the complete
characterization of the parameter space. A crucial point in this
procedure is also the fact that the comparison of overlapping
critical regions is avoided, since the resulting Lagrange function is
guaranteed to be convex. This development has been utilized for
the solution of quadratically constrained model predictive control
problems and the flexibility index problems with quadratic
constraints and design considerations (Pappas et al., 2020a;
Pappas et al., 2020b).

Based on the presented solution strategies for mpNLPs, there
are two main routes that this class of problems has been
approached. Firstly, an approximate solution, founded on a
mpLP or mpQP, can be derived which has advantages in
solving larger-scale problems. However, an approximation step
will potentially encompass inaccuracies that can lead to
undesirable behavior or infeasibility when applied to an actual
problem. On the other hand, exact solution approaches result into
an accurate solution. The fundamental challenge with exactly
dealing with mpNLPs is the required analytical solution of the
resulting system of nonlinear equations derived from the KKT
conditions, which will express the decision variables as a function
of the uncertain parameters. In Dua (2015); Charitopoulos and
Dua (2016); Pappas et al. (2020b), Gröbner bases have been
utilized—which scale with the number of decision variables— to
build the parametric solution. However, among the
computational algebra techniques, they have shown to be
effective in solving nonlinear equations analytically, and
further developments in parallel computing will encourage
their wider adoption in multiparametric programming.

3.2 Parameter Space Exploration
A critical point in the multiparametric programming solution
construction process is the efficiency of exploring the parameter
space. Strategies to achieve that still remains an active area of
research. Initially, approaches that solely observe the parameter
space had been suggested. Namely, assuming that a single critical
region is discovered, these exploration algorithms identify
geometrically adjacent critical regions. The procedure is
repeated until all regions are found. On the other hand, active
set-based strategies exploit the fact that the optimal solution is
defined by the active constraints, and hence by considering every
active set in the parameter space, all critical regions are found. As
the former techniques scale unfavorably with the number of
parameters of the problem, and the latter with the number of
decision variables and constraints, the selection of the exploration
algorithm depends on the structure of the optimization problem.
Moreover, note that that geometric-based techniques do not
guarantee the full parameter space exploration. In the past
three years, hybrid algorithms that blend the benefits of both
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approaches have been published, and have been extensively used
in various applications. In Table 2 the algorithms that can solve
the classes of problems that have general closed-form solutions
are presented.

Ahmadi-Moshkenani et al. (2018) proposed a hybrid
multiparametric exploration approach for mpQPs, in a similar
spirit to the one proposed by Oberdieck et al. (2017b). In
particular, the devised algorithm is an active set-based in its
core, and as a result, assumes a candidate active set to be
potentially optimal. Subsequently, it asks the question whether
there is a parameter vector value that the optimality assumption
holds true. Additionally, to reduce the computational complexity,
the authors take advantage of the facet-to-facet property, which
states that two adjacent critical regions differ by a single
constraint in their active set. Hence, for an already explored
critical region, they add or remove a constraint in the
construction of the optimality conditions and verify if that holds.

In Akbari and Barton (2018), multiparametric programming
was studied through the lenses of metabolic networks and flux
balance analysis. A key focus of this contribution is primal
degeneracy and multiplicity of mpLPs. By exploiting the
structure of the studied problems, the authors show that the

issue of having an overdetermined KKT system with respect to
the decision variables can be solved through generalized inverses,
with enhanced computational complexity to the already
published approaches. Moreover, the case where there are
multiple primal solutions was addressed through an auxiliary
objective or by solving a lexicographic linear program. An
extensive discussion in degeneracy in multiparametric
programming, and ways to tackle it is also presented in
Oberdieck et al. (2016a).

Burnak et al. (2020b) proposed a space exploration algorithm
for mpLPs, mpQPs, and mpMILPs. Their approach is facilitated
by constructing simplices of the parameter space through
Delaunay triangulation. Deterministic optimization problems
are solved at the vertices of these simplices based on which
parameter areas described by the same optimality conditions
are identified. As a result, optimal parameter space partitions are
created. Furthermore, it is shown that through the proposed
algorithm volumetrically significant critical regions are
prioritized to be discovered.

4 APPLICATIONS

Multiparametric programming theory has been utilized to tackle
various challenging problems. In this section, application areas
that have utilized multiparametric programming at their heart for
their solution are presented.

4.1 Multiparametric/Explicit Model
Predictive Control
Multiparametric/explicit model predictive control is the most
well-studied application of multiparametric programming. Since
its inception (Pistikopoulos et al., 2000; Bemporad et al., 2002b),
countless implementations and variations of the approach have
been published in the literature both in simulations and in
practical applications, which contribute to the thousands of
citations of the original papers. Extensive reviews in mpMPC
have been published in the literature to capture the use of
multiparametric programming in process control (Dua et al.,
2008; Alessio and Bemporad, 2009; Pistikopoulos et al., 2015). It
is to be highlighted that large-scale industrial applications have
utilized and will continue to utilize an online optimization
algorithm for MPC. These implementations are used to
control slow processes such as oil refineries and chemical
manufacturing plants, which have already invested in
installing a form of online MPC (Qin and Badgwell, 2000; Qin

Figure 1 | Schematic representation of critical regions resulting from the
solution of a multiparametric programming problem. Each region is described
by a different optimal active set.

Table 1 | Properties of multiparametric programming problems that have general closed-form solutions.

Problem type Multiparametric solution,
x(θ)

Objective function, z(θ) Critical regions, CRi

mpLP Piecewise affine Piecewise affine Polytopic
mpMILP Piecewise affine Piecewise affine Polytopic/Nonlinear
mpQP Piecewise affine Piecewise quadratic Polytopic
mpMIQP Piecewise affine Piecewise quadratic Polytopic/Nonlinear
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and Badgwell, 2003). Also, the scale of the problem for such
implementations makes the derivation of the full multiparametric
solution substantially challenging, given that they are comprised
by a significant number of variables, states, and constraints.
Nevertheless, the benefits of mpMPC are amplified in small to
medium-scale applications. In these cases, there might exist some
control hardware and software infrastructure to achieve the
control objective, but due to lack of computational power or
other constraints (e.g. power requirements, cost), the use of
online MPC is not suitable. For such processes, whose
dynamics are typically fast, mpMPC (or MPC-on-a-chip) can
be an advantageous choice (Alessio and Bemporad, 2009;
Pistikopoulos, 2009). Hence, numerous applications of
mpMPC on simulation and real-life laboratory and pilot
problems have been recorded in the published literature. The
latter include biomedical systems (Dua, 2005), separation units
(Grancharova et al., 2004; Mandler et al., 2006), automotive
systems (Di Cairano et al., 2008; Naus et al., 2008), power

electronics (Linder and Kennel, 2005; Mariéthoz and Morari,
2008), and energy systems (Arce et al., 2011). Accounting to its
potential and recent advancements, mpMPC has continued to be
applied in several fields and realistic problems, that are
highlighted on Table 3.

It is expected that mpMPC, similarly to the online MPC, will
continue to find success and applicability in various fields
(Mayne, 2014). Particular emphasis will be paid on areas that
do not have the capability of having a powerful computer
machine to perform online calculations to solve the optimal
control problem.

4.2 Design, Control, and Scheduling
The Process Systems Engineering community has considered the
seamless integration of process design and operational decisions a
vital direction to achieve improved process efficiency and
reliability (Burnak et al., 2019b). Conventional techniques for
process decisions are usually isolated from each other with a
hierarchical order in the time scales they span. Such isolation
yields suboptimal, even infeasible operations when the decisions
are applied in real time, due to lack of perfect information flow
across different decision layers (Mohideen et al., 1996;
Pistikopoulos and Diangelakis, 2016; Caspari et al., 2020). The
integrated problem is mathematically casted as a multilevel
dynamic optimization problem, hence conventional global
optimization techniques are unable to solve this class of
problems without simplifying assumptions or approximations.
Furthermore, the time scale differences between each level
exacerbate the tractability of the integrated problem (Rafiei
and Ricardez-Sandoval, 2020). Multiparametric programming
has been shown to be an effective tool to develop a
simultaneous framework for here-and-now design decisions
and operational decisions including process control,
scheduling, and planning. The explicit solution set, described
by Eq. 2, provides an offline map of optimal operational decisions
that can be integrated in a dynamic optimization problem that
governs longer time horizons. Therefore, the faster time scale
decisions can be formulated as a multiparametric programming
problem, where the unrealized system parameters at their
respective levels can be explicitly accounted for, and
incorporated into an overarching optimization problem with
slower process dynamics (Burnak et al., 2020a).

Sakizlis et al. (2003) presented one of the first significant
attempts to use multiparametric programming for the integration
of process design and operational optimization problems. The
authors integrated the explicit solution of an mpMPC into a
mixed integer dynamic optimization problem that
simultaneously minimizes the capital and operating costs.
Although the approach proposed by Sakizlis et al. (2003) was
shown to be effective as showcased on a binary distillation
column and an evaporator, it relied on repetitive linearizations
and solving a multiparametric programming problem at every
iteration. Diangelakis et al. (2017) improved this approach by
deriving a “design dependent offline controller”, which accepted
the design variable as a parameter in the mpMPC problem,
allowing for the formulation of a single mixed integer
dynamic optimization formulation to determine the optimal

Table 2 | Multiparametric programming algorithms for the solution of mpLPs,
mpMPs, mpMILPs, and mpMIQPs.

mpLP mpMILP mpQP mpMIQP

Gal and Nedoma (1972) X
Gal (1975) X
Yuf and Zeleny (1976) X
Schechter (1987) X
Acevedo and Pistikopoulos (1997) X X
Pertsinidis et al. (1998) X X
Pistikopoulos et al. (2000) X X
Dua and Pistikopoulos (2000) X X
Bemporad et al. (2002b) X X
Dua et al. (2002) X X X X
Bemporad et al. (2002a) X
Baotic (2002) X X
Tøndel et al. (2003) X X
Filippi (2004) X
Jia and Ierapetritou (2006) X X
Spjøtvold et al. (2006) X X
Jones et al. (2007) X
Li and Ierapetritou (2007) X X
Faísca et al. (2009) X X
Mitsos and Barton (2009) X X
Patrinos and Sarimveis (2010) X X
Li and Ierapetritou (2010) X X X X
Gupta et al. (2011) X X
Feller et al. (2013) X X
Wittmann-Hohlbein and Pistikopoulos
(2013)

X X

Oberdieck et al. (2014) X X
Wittmann-Hohlbein and Pistikopoulos
(2014)

X X

Axehill et al. (2014) X X X X
Bemporad (2015) X X
Herceg et al. (2015) X X X X
Oberdieck and Pistikopoulos (2015) X X X X
Charitopoulos et al. (2017) X
Oberdieck et al. (2017b) X X
Charitopoulos et al. (2018) X X
Ahmadi-Moshkenani et al. (2018) X X
Akbari and Barton (2018) X
Burnak et al. (2020b) X X X
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design and closed loop control strategies. Tian et al. (2020)
showed that a similar systematic approach is also applicable
for much more complex intensified systems, namely a reactive
distillation process.

On the integration of the operational decisions, Zhuge and
Ierapetritou (2014) integrated the explicit MPC expressions in
a continuous time, event point based scheduling problem for a
batch process. Burnak et al. (2018) derived the offline
expressions both for the scheduling and the MPC problems,
and addressed the time scale gap by developing offline scale
bridging models. Charitopoulos et al. (2019) incorporated
nonlinear mpMPC, and extended the problem to include
the planning problem.

A complete theory and framework for the integration of
process design, scheduling, and control decisions was recently
proposed by Burnak et al. (2019a), where the authors derived
design dependent offline control and scheduling strategies that
are embedded exactly in a mixed integer dynamic design
optimization problem via multiparametric programming.
Burnak and Pistikopoulos (2020) extended this framework to
batch processes, where the scheduling of the multipurpose batch
units is represented by a State Equipment Network (SEN).

4.3 Multilevel Optimization
Optimization problems involving a set of nested optimization
problems over a single feasible region are referred to as multilevel
programming problems. The control over the decision variables is
divided among different optimization levels, but all decision
variables can affect the objective function and constraints of
all optimization levels. This class of problems has attracted
considerable attention across a broad range of research
communities, including economics, sciences, and engineering,
and has been applied to many diverse problems that require
hierarchical decision making.

Since the early 1980s, many algorithms have been proposed for
the solution of continuous bilevel problems with many
approaches exploiting the KKT optimality conditions of the
lower level problem, to transform the multilevel problem into
a single level problem. The main idea behind the development of

multiparametric algorithms for the solution of multilevel
programming problems came out through the observation that
in a multilevel optimization setting, the lower level optimization
problems are parametric in terms of the upper level variables
(Dempe, 2002). This observation gave rise to the development of
several algorithms for the solution of multilevel problems with the
key idea to solve the lower level problem parametrically in terms
of the upper level variables and transform the multilevel problem
into a set of single-level reformulations.

Bilevel programming has attracted the most attention amongst
other classes of multilevel programming problems due to its
simplicity (compared to other multilevel problems) and great
applicability. Multiparametric programming-based approaches
for the solution of linear and quadratic bilevel problems were
firstly introduced (Ryu et al., 2004; Faísca et al., 2007; FaÃsca
et al., 2011). For classes of problems where the lower level
problems also involve discrete variables, multiparametric
solution algorithms can alleviate the need for global
optimization methods and offer the exact global solution to
bilevel mixed-integer linear and quadratic optimization
problems (Domínguez and Pistikopoulos, 2010; Oberdieck
et al., 2017a; Avraamidou and Pistikopoulos, 2019d).

The solution of optimization problems with more than two
optimization levels has been addressed only for a restricted
class of problems, mainly continuous trilevel linear problems,
with only a few attempts to solve problems with more than
three optimization levels or integer variables. The developed
algorithms mainly fall in two categories: 1) data driven
approaches (Pramanik and Roy, 2007; Sakawa and Matsui,
2014) that cannot guarantee neither feasibility nor optimality,
and 2) multiparametric based approaches (Faísca et al., 2009;
Kassa and Kassa, 2013; Kassa and Kassa, 2016; Avraamidou
and Pistikopoulos, 2019b; Avraamidou and Pistikopoulos,
2019c) that can find the exact global optimum for mixed-
integer linear and quadratic optimization problems.

The extension to multilevel problems with multiple followers
has not received a lot of attention from the research community
with some attempts to solve the linear and quadratic continuous
case (Faísca et al., 2009), and limited heuristic approaches for the

Table 3 | List of recent real-life laboratory and pilot-scale applications of multiparametric/explicit model predictive control.

Area Contribution Description

Automotive Emekli and Güvenç (2016) Pressure control of a diesel engine
Vadamalu and Beidl (2016) Energy management of hybrid vehicles
Theunissen et al. (2019) Suspension systems with road prediction
Tavernini et al. (2018) Wheel control of an electric vehicle
Tavernini et al. (2019) Antilock breaking system for breaking
Lee and Chang (2019) Autonomous steering control

Energy Lasheen et al. (2019) Pitch angle control in wind turbines
Ogumerem and Pistikopoulos (2019) Temperature control for metal-hydrides
Ogumerem and Pistikopoulos (2020) Water electrolysis for hydrogen production
Drgoňa et al. (2017) Water/methanol distillation column
Ziogou et al. (2018) Polymer electrolyte membrane fuel cell

Power electronics Klaučo et al. (2017) Magnetic levitation control
Jia et al. (2019) Current control of a synchronous motor

Biomedical Scaglioni et al. (2019) Control of a flexible magnetic endoscope
Robotics Ettefagh et al. (2019) Vibration control of flexible joints
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solution of nonlinear mixed-integer multifollower problems
(Kassa and Kassa, 2017; Avraamidou and Pistikopoulos, 2018).

Most recently, Avraamidou and Pistikopoulos (2019a) have
developed a freely accessible toolbox for the solution of bilevel
and trilevel, continuous and mixed-integer, linear and quadratic
optimization problems through multiparametric programming,
and presented applications in hierarchical model predictive
control (Avraamidou and Pistikopoulos, 2017a), supply chain
planning (Avraamidou and Pistikopoulos, 2017b) and planning
and scheduling integration (Avraamidou and Pistikopoulos,
2018).

4.4 Integration of Machine Learning and
Multiparametric Programming
Apart from the aforedescribed developments, the explosion of
interest in state-of-the-art data science strategies has been
translated into the multiparametric programming community,
making it arguably one of the most active research areas in the
field. One major category of efforts are focused on approximating
an MPC policy through machine learning techniques (Parisini
and Zoppoli, 1995; Åkesson and Toivonen, 2006). It is crucial to
note that in these types of methodologies, even though an explicit
form of the control law can be created such as through a neural
network, they do not capture all benefits of mpMPC, such as the
development of a map of solutions. In Shokry et al. (2016), Shokry
et al. (2017), the authors utilized sampling strategies to pass
various parameter values to the optimizer whose output is
collected. Subsequently, machine learning algorithms are used
to learn optimal decisions as a function of the varying parameters.
Another strategy to use data-driven techniques to approximate
the explicit optimal control law of a MPC problem is presented in
Chen et al. (2018). Deep reinforcement learning is applied to train
a deep neural network with rectified linear units (ReLU) which is
used to approximate the optimal piecewise control law. Karg and
Lucia (2020) utilized ReLU-based neural networks to represent
the piecewise affine law of a linearly constrained mpMPC.
Lovelett et al. (2020) presented a framework to learn the
optimal control policy as a function of the system by using
diffusion maps. The authors demonstrate that the proposed
approach can be used to control both linear and nonlinear
models.

The impact of machine learning models to approximate
nonlinear functions for modeling purposes in the context of
mpMPC has also been explored. Most notably, Katz et al.
(2020b) presented a framework for the integration of deep
neural networks with ReLU as activation functions and
multiparametric programming. Given that a ReLU-based neural
network includes max operators which are challenging to be
introduced in multiparametric optimization formulation, the
authors reformulated the neural network as a mixed-integer linear
model that can be readily solved through existing multiparametric
programming algorithms. Because the neural network to the mixed-
integer linear reformulation is exact, no information is lost in the
approximation step (Grimstad and Andersson, 2019), which assists in
achieving a high-quality optimal multiparametric solution. The
authors also applied the approach to a solar field (Katz et al., 2020a).

Apart from that, multiparametric programming has been
coupled with machine learning techniques for process
monitoring, in a contribution by Onel et al. (2019). In
particular, support vector machine feature-based selection and
modeling is used to identify potential faults that exist in a given
process. This information is then processed by a random forest
algorithm that calculates the magnitude of the present fault.
Additionally, these faults are treated in the mpMPC design
stage as uncertain parameters, and consequently, the controller
acts accordingly based on the existence/absence and the
magnitude of a process fault, resulting to an enhanced closed-
loop performance of the system.

Finally, multiparametric programming has found application
as a means to enhance the capabilities of machine learning itself.
A connection between hyperparameter optimization strategies,
where the aim is to optimally find the algorithm parameters that
control how a machine learning model learns from data, and
parametric optimization has been established. Specifically, it has
been shown that there is a piecewise linear parametric
relationship of the model weights and the regularization term
in LASSO regression (Efron et al., 2004) and support vector
machine (SVM) classification (Hastie et al., 2004). Extensions for
the case of multiple parameters in hyperparameter optimization
problems have subsequently been presented in Karasuyama et al.
(2012); Zhou and Spanos (2016). In a more recent effort,
Tso et al. (2020) demonstrated that K-fold cross-validation
in hyperparameter optimization can be cast as a
bilevel optimization program, and exactly solved in a
single formulation through multiparametric programming
(Avraamidou and Pistikopoulos, 2019a). One of the key
benefits of the aforementioned technique is that it can be
applied to any machine learning problem that is described by
a LP/QP/MILP/MIQP model.

Machine learning and data science techniques will continue to
be a major part of future developments in the field of
multiparametric programming. Data-driven techniques can
provide assistance in solving mpNLPs, reducing the
complexity from a derived multiparametric solution, solving
large-scale problems, and many more.

5 FUTURE OUTLOOK

5.1 Software
Rapid progress in computational hardware has led to a
widespread adoption of parallel programming and
heterogeneous compute in the last 2 decades (Fang et al.,
2020). Multi-core and many-core compute paradigms will be
essential for performance improvements to be realized for new
software. Multiparametric solvers will need to be written so that
they are able to scale with hardware. Recently there has been
activity in the use of parallel techniques in a multiparametric
programming context (Oberdieck and Pistikopoulos, 2016; Jiang
et al., 2020), however these are the solitary examples that integrate
multiparametric programming and parallel computing in the
open literature. There is still a large amount of work to be
done in developing parallel algorithms to utilize multicore
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CPUs, as well as algorithms that distribute work across multiple
compute nodes. Currently, the literature on Field Programmable
Gate Arrays (FPGA) MPC is based on solving the optimization
problem online (McInerney et al., 2018). Software support of
heterogeneous compute platforms such as FPGA and Application
Specific Integrated Circuits (ASIC) for accelerating the solution of
the point location problem has an opportunity to surpass the
fastest MPC implementations by exchanging the optimization
problem with the point location problem.

The major multiparametric solvers, POP and MPT3
(Oberdieck et al., 2016b; Herceg et al., 2013), are both written
in MATLAB. This presents challenges with inter-operability of
leading software packages in data science. Implementing code
generation techniques that allow the multiparametric solver to
export solutions to different code environments for example C
code for microcontrollers, Javascript code for scripting interfaces,
or Python for software interfacing. The MPT3 solver implements
C and Python generation (Takács et al., 2016). This is an
important feature as it allows for the deployment of
multiparametric solutions to multiple different hardware and
software platforms.

Region-free multiparametric programming solutions are
based on storing the active set combinations defining solution
and not constructing the explicit critical regions. Instead of a
more typical point location algorithm, a direct enumeration of the
primal and dual constraints of each active set is carried out, as
opposed to checking the reduced primal constraints in typical
point location problem (Kvasnica et al., 2015). This approach
makes a trade off between memory required to store the solution
and the computational requirement to solve the region-free
online point location problem. Methods like this could be
effective for multiparametric programming on memory
constrained systems.

5.2 Complexity Reduction
The complexity in deriving the full multiparametric
programming solution is non-polynomial in nature, due to the
possible combinatorial number of critical regions that define the
solution of multiparametric programming problems. However,
for many multiparametric programming problems the number of
fully-dimensional critical regions usually not scale
combinatorially, such as in generating mpMPCs. Recent
algorithmic developments are based on reducing the number
of deterministic optimization subproblems that need to be
considered (Gupta et al., 2011). The graph-based algorithms of
(Oberdieck et al., 2016a) and (Ahmadi-Moshkenani et al., 2018)
greatly reduce the required number of subproblems, however
they both have cases where a combinatorial number of
subproblems would need to be considered for the construction
of a single critical region. The development of a multiparametric
programming algorithm that is output sensitive to the number of
solution critical regions without the aforementioned behavior
would be a significant development for the field. For specific
multiparametric programming problem types, there are possibly
ways to exploit the problem structure to reduce the number of
deterministic optimization subproblems required to fully solve
the problem, in a similar manner to the exploitation of

symmetries in the constraint matrix in (Feller et al., 2013).
Additionally, the online cost associated with multiparametric
methods is primarily derived from solving the point location
problem. There are promising results that reduce the algorithmic
complexity of this operation by using bounding volume
hierarchies (Tøndel and Johansen, 2002), or hash functions
(Bayat et al., 2010). Further exploration of different
hierarchical data structures or mathematical reformulations of
the point location problem could further these results. Results
from the universal approximation theorem show that any
piecewise affine function can be represented by a ReLU neural
network of sufficient depth (Hanin and Sellke, 2018). Advances in
machine learning has enabled the construction of ReLU-based
well fitting approximations of multiparametric programming
solutions (Chen et al., 2018; Karg and Lucia, 2020), that will
continue to be part of future developments.

5.3 Robust Optimization and Robust Model
Predictive Control
Multiparametric programming theory has assisted in developing
solution algorithms for other classes of optimization problems
under uncertainty. Classical robust optimization (RO) assumes
that all decisions must be made before the realization of
uncertainty, a strategy that may be overly conservative, as it
aims to immunize against any uncertainty. A less conservative
approach is adjustable robust optimization (ARO) which involves
recourse decisions (i.e. reactive actions after the realization of the
uncertainty) as functions of the uncertainty (Ben-Tal et al., 2004).
Solving ARO problems is challenging, therefore ways to reduce
the computational effort have been proposed, with the most
popular being the affine decision rules, where the recourse
decisions are approximated as affine adjustments of the
uncertainty (Kuhn et al., 2011); an approximation which can
be overly conservative for general ARO problems.
Multiparametric programming has been used to develop the
exact and optimum generalized piecewise affine decision rule
for mixed-integer linear ARO problems with a decision
dependant uncertainty set (Avraamidou and Pistikopoulos,
2020). This offered a theoretical justification – via
multiparametric programming – on why affine rules can be
suboptimal (or even optimal at limited cases).

Applications of RO techniques have also been used in
mpMPC. Model predictive control, being a model-based
control technique, requires an accurate process to drive a
given system to the desired state. Nevertheless, the underlying
model in the MPC application includes uncertainty in its
dynamics, since it will never be an exact representation of the
real process Mohideen et al. (1997). For this reason, robustness
considerations have been introduced in mpMPC studies to
address this issue, as a means to hedge against model
uncertainty (Kothare et al., 1996; Bemporad and Morari, 1999;
Mayne et al., 2005). The field of robust MPC through
multiparametric programming has not seen extensive
developments due to the inherent computational complexity
stemming from the need to obtain feasible operation. Sakizlis
et al. (2004) included a feasibility constraint in the mpMPC
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formulation assuming linear models with additive uncertainty,
and 1/∞ or quadratic performance indices. Tejeda-Iglesias et al.
(2019) utilized ARO to develop a mpMPC policy for discrete
linear state-space plants with additive disturbances. On the other
hand, Bemporad et al. (2003) considered linear uncertain systems
(problems with multiplicative uncertainty) with a linear objective
function. Kouramas et al. (2013) proposed a solution for
uncertain linear systems with a quadratic performance
criterion, using dynamic programming, which required the
solution of a multiparametric programming problem at each
stage of the prediction horizon. The solution of multiple
multiparametric programs poses a significant challenge in the
derivation of the solution. Hence, an open question in this area is
the development of an approach for robust mpMPC problems
with a quadratic objective function avoiding the need of dynamic
programming. Furthermore, since the robust control formulation
considers a larger number of uncertainty sources compared to the
conventional MPC, solution techniques that would be able to
efficiently manage the complexity stemming from the increased
parameter space dimensionality is needed.

5.4Multiparametric Programming for Online
Optimization
A significant number of researchers have solved multiparametric
programming problems without developing the full map of
solutions. Instead, the utilized concepts of multiparametric
programming theory to shrink the online cost associated with
the solution of the original problem. This strategy has been
preferred in large scale online applications, where the
derivation of the full multiparametric solution is prohibitive.

An approach that utilizes concepts of multiparametric
programming for large-scale optimization applications is
shown in Pannocchia et al. (2007), which is a combination of
online and offline optimization. A table comprised of
multiparametric solutions for multiple parameter values are
created. In the online phase of the algorithm, an optimality
check is performed. If none of the precomputed solutions
satisfy the optimality conditions, an online step is followed to
calculate the optimal solution is found. Ziogou et al. (2013)
utilized multiparametric programming to speed-up the online
solution time of nonlinear MPC. Specifically, an mpQP problem
is formulated, based on which tighter bounds for the nonlinear
program are constructed, which accelerate the computational
performance.

Ferreau et al. (2008) demonstrated this concept for the
solution of convex QPs in MPC. Based on their approach, it is
assumed that the optimal control policy is found for an initial
state vector. Given that 1) the current active set is known, 2) the
optimal control actions are described by known piecewise affine
functions with respect to the initial state vector, 3) a new initial
state vector whose optimal solution is sought, and 4) guaranteeing
primal and dual feasibility hold, the same KKT matrix is used to
find the optimal solution for the new state vector dramatically
reducing the online cost. The authors of the approach extended
their findings and published an open source software package
(Ferreau et al., 2014). The aforedescribed strategy was extended

by Katz and Pistikopoulos (2020), where sampling is employed to
uniformly build multiple critical regions that are used as a hot
start for online MPC. An open question is whether such an
approach can be extended to nonlinear systems, given that they
have an increased complexity compared to convex QPs.

Multiparametric programming has also the potential to be
utilized to solve dynamic optimization problems. To the
knowledge of the authors, this topic has only been explored
and published by Sakizlis (2003). Specifically, for problems
described by a set of linear ordinary differential equations, it is
demonstrated how the explicit continuous-time control laws
can be obtained, as well as the switching points of the solution.
The presented methodology was applied to relatively small-
scale problems. Nevertheless, it can be used as the foundation
for further developments in this field. Unlocking the
capabilities of multiparametric programming in dynamic
optimization is a substantially challenging task, however the
benefits of having an explicit solution are remarkable and
applicable in a wide range of problems in Process Systems
Engineering.

5.5 Multiparametric Distributed Model
Predictive Control
To minimize consumption of scarce resources and energy,
integrated process systems with material recycling streams and
energy integration are designed and operated in the chemical
industry. Control of such systems using multiple single-loop
proportional-integral-derivative (PID) controllers or MPC
controllers by the conventional decentralized control system
(DCS) architecture, will not capture the interactions between
different control loops controlling the different subsystems of the
process. The control system, hence, will not achieve the best
possible closed-loop performance. On the other hand, a
centralized control system, typically a single MPC controller
capturing the interactions through a model, will not be able to
respond within the time limit set by process dynamics and
operating conditions when the number of controlled,
manipulated, or process variables exceeds a particular
threshold. The need to strike a balance between keeping the
number of variables within acceptable limits like in DCS and
capturing inter-loop interactions like in centralized MPC lead to
the development of distributed model predictive control (DMPC)
(Camponogara et al., 2002; Stewart et al., 2010). In this
architecture, the DCS is improved to also pass on actuator
settings of local controller(s) as inputs to controller(s) of other
subsystems in the process. The MPC is the controller of choice as
it takes advantage of a mathematical model. The MPC controllers
in DMPC are not independent but interact with each other to
optimize a centrally driven control objective (Christofides et al.,
2013). Therefore, the model of a local MPC should not only be a
function of the local manipulated variables but also a function of
the variables that are being passed on as inputs from other
controllers. This model can then be used to predict the local
states over a finite time horizon into the future and calculate the
optimal control move of the local controller by the conventional
MPC control algorithm.
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A major challenge in DMPC is the prohibitive online
computational costs of exchanging data and solving the
optimal control problems of the multiple MPC controllers to
converge to a solution. Another challenge is identifying the
optimal distributed control structure based on either
minimizing the number of inter-loop variables, improving
robustness, or enhancing fault tolerant capabilities (Richards
and How, 2007; Venkat et al., 2007; Jogwar, 2019). The
optimal distributed control structure could also change during
process operation as the conditions or operating modes change.
Multiparametric programming helps shift the DMPC control and
decomposition optimization problems offline, thereby keeping
online computational loads manageable. The combined control
algorithm will be referred to as “multiparametric distributed
model predictive control” or mpDMPC.

While there are several studies reported in the literature on
DMPC and on mpMPC, publications on mpDMPC are limited.
Koehler and Borrelli (2013) formulated a one-step explicit DMPC
for a building heating, ventilation and air conditioning (HVAC)
system and compared the control performance against heuristic,
”trim and respond” control. Kirubakaran et al. (2014) studied the
feasibility, disturbance rejection capability, and robustness of
cooperative mpDMPC for a benchmark quadruple tank
problem. The authors reported improved state vector
trajectory tracking, disturbance rejection, and robustness under
cooperative mpDMPC compared to utilizing game
theory DMPC.

The recent advancements in multiparametric programming
algorithms reviewed in this paper and interest from the industry
on energy-efficient integrated processes make mpDMPC a
promising control strategy for applications to such systems
and further research.

6 CONCLUDING REMARKS

In this contribution the background and recent developments in
multiparametric programming have been presented. Advances
focused in multiparametric programming theory, algorithms and
applications have been discussed. In the former group of research
efforts, particular attention has been paid on incorporating
nonlinearity in the constraints of the problem, and solving the

resulting multiparametric nonlinear programming problem. As
far as solution algorithms are concerned, both geometric-based
and active set-based strategies have been proposed. Further
developments on hybrid solution algorithms which balance the
advantages of both approaches will be necessary to tackle large-
scale problems. In the latter group of research contributions,
mpMPC remains the most studied application, motivated by its
benefits in solving online optimization problems. However, it is
highlighted through this paper that multiparametric
programming is much broader than mpMPC, with exciting
applications such as in solving multiscale, and multilevel
optimization programs. Additionally, an outlook in future
developments in the field of multiparametric programming has
been included. The integration of data science and
multiparametric programming, robust optimization and
control, as well as complexity reduction techniques are still
areas of development. It is expected that these fields, together
with the aforedescribed recently published developments, will be
at the heart of research within this fascinating world.
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