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This paper introduces Bayesian statistical methods for studying the kinetics of biomass

hydrothermal carbonization. Two simple, specially developed computer programs

implement Markov-chain Monte Carlo methods to illustrate these techniques’ potential,

long since established in other areas of chemical reaction engineering. A range of

experimental data, both from this study and the literature, test the soundness of a

Bayesian approach to modeling biomass hydrothermal carbonization kinetics. The first

program carries out parameter estimations and performs better or equal than the

traditional deterministic methods (R2 as high as 0.9998). For three out of the 22 datasets,

the program detected the global minima of the parameter space, while the deterministic

least-square found local values. The second program uses Gillespie’s algorithm for the

statistical simulation of the reactions occurring in hydrothermal carbonization. Comparing

six basic kinetic models with literature data tested the stochastic simulation as a tool

for assessing biomass conversion reaction networks rapidly. Among the simple models

discussed, reaction scheme 3 fitted better to the experimental data (R2 > 0.999). The

proposed approach is worth extending to more complex, time-consuming computer

models and could support other techniques for studying hydrothermal conversions.

Keywords: biomass hydrothermal carbonization, kinetic modeling, stochastic methods, Monte Carlo analysis,

Bayesian approach

INTRODUCTION

The increasing worldwide concerns for sustainability push chemical engineers to perfect the
industrial processes according to stringent paradigms. Circular economy, green chemistry,
intensification, clean production, and integration are ubiquitous keywords of the current process
studies (Clark et al., 2016; Avraamidou et al., 2020; Tula et al., 2020). In this scenario, waste
biomasses and biorefinery play a central role to meet both the demands of the economy of scale
and the increasing environmental solicitudes (Larragoiti-Kuri et al., 2017; Sherwood, 2020; Ubando
et al., 2020). Bio-waste feedstocks could integrate efficiently into the chemical supply chain at
the level of medium-scale chemical plants (Guo et al., 2019). A further benefit is that, unlike
other renewable energy sources, biomass conversion into heat, electricity, and fuels could be an
on-demand process (Murele et al., 2020). In many cases, however, the drying of wet bio-residues
and waste is an energy sink that negatively affects the overall efficiency.

Hydrothermal conversions, i.e., biomass processing in hot compressed water, bypass this limit,
and generate fuels and chemicals with lesser energy consumption than other thermal conversions
(Antero et al., 2020). Integrated processes for the biomass-to-energy chain currently include
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hydrothermal reactors (Lee et al., 2019). Among the
hydrothermal treatments, carbonization (HTC) occurs at
the mildest operating conditions, subcritical temperature range,
450–620K, and autogenous pressure. HTC is advisable for non-
energy conversions of mixed wastes (Antero et al., 2020; Zhan
et al., 2020). The literature debates on specialized applications
of the main product, the solid hydrochar (Kruse and Dahmen,
2018). HTC has now reached a level of maturity that allows
researchers to develop process considerations and classify plants
(Ischia and Fiori, 2020).

To comply with the state-of-art of research activity, industrial
HTC reactors should treat various materials, integrate them into
other biorefinery processes, and maximize the yield of valuable
products (Usman et al., 2019).

A prerequisite for the design of optimal reaction conditions
is the availability of numerous experimental data and reliable
HTC kinetic models. Researchers face the challenge of developing
a model valid for different feedstocks, having relatively few
kinetic data (Heidari et al., 2018). The scarcity and heterogeneity
of data motivate to increase the range of investigative tools.
Clear examples of this course are prediction techniques such
as non-linear random forest models (Li et al., 2020), the
design of experiments using surface response techniques (Román
et al., 2020), and the assessment of models using high-pressure
differential scanning calorimetry (Pecchi et al., 2020). The studies
are expanding, aiming to bring the HTC modeling to maturity,
as occurs for other biomass thermochemical conversions, such
as pyrolysis and gasification (Weber et al., 2017; Safarian et al.,
2019). In the authors’ opinion, stochastic techniques could
contribute effectively to perfect kinetic models and analyze
experimental data. This claim is undoubtedly valid for other
biomass conversion processes (Dhaundiyal et al., 2019; Terrell
et al., 2020), and the HTC kinetic studies should benefit from a
stochastic view inside the reaction as well. Bayesian and Markov-
chain methods applied to chemical engineering show a mature
state-of-art, as demonstrated by textbooks and specialized papers
(Beers, 2006; Shields et al., 2021). This introductory paper aims
to bring Bayesian specialists’ attention to the HTC modeling and
stimulate researchers working on the hydrothermal conversion of
biomass to consider stochastic techniques as an additional tool.

A previous study introduced probability as the possible
underlying law that steers the time-course of HTC reactions
network (Gallifuoco and Di Giacomo, 2018). That paper
showed how to use proper cumulative frequency distributions
(CFD) and probability density functions (PDF) for describing
the dynamics of solid and liquid phase transformations. A
more in-depth investigation proved that several HTC kinetic
mechanisms, widely used in the literature, could be modeled
as Markov-chain processes (Gallifuoco, 2019). Another study
enlarged the adoption of CFDs and proposed their use as
a general tool for supporting HTC modeling (Gallifuoco
et al., 2020). The successful accordance between statistic
calculations and experimental data from different residual
biomasses warrants to persevere using the stochastic approach.
In this way, HTC studies could take advantage of the previous
knowledge gained in the statistical analysis of other chemical
engineering systems, particularly chemical reaction engineering

FIGURE 1 | Schematic of the experimental set-up. B1, B2, electrical bands;

PI, pressure gauge; TIC, temperature gauge; V1, three-ways valve; VP,

vacuum pump.

(Erban and Chapman, 2019). The present paper introduces the
novelty of the Bayesian approach andMarkov-chainMonte Carlo
techniques (MCMC) in the HTC studies. The aim is to enlarge
the panoply of methods commonly used for studying the HTC
process. The paper shows the practicality of stochastic techniques
analyzing both literature data and experimental results obtained
on purpose.

MATERIALS AND METHODS

Experimental
Figure 1 depicts a schematic of the experimental set-up. A
more detailed description of the 250mL HTC reactor, the
piping, and the controls appears elsewhere (Gallifuoco et al.,
2017). Silver fir wood (fir) came from a local carpenter’s
shop, potato starch powder (starch) from the surrounding agri-
food industrial district. The reactor liquid phase was ultrapure
deionized water.

Starch was dried in an oven at 60◦C for 48 h and then sieved
to 500–595µm, fir was milled to the same size and then dried at
105◦C for 48 h. The reactor, containing demineralized water and
10 g of biomass (water/biomass weight ratios: 3.5/1, 7/1, 14/1 for
fir, 7/1 for starch), was sealed and evacuated. Experiments run for
six different residence times (0, 10, 15, 30, 60, and 120min), at
200◦C (starch) and 250◦C (fir), and under autogenous pressure
(42.0 and 17.5 bar, respectively). The reactor warm-up took place
at 9◦C/min. The residence time of 0 means that the content was
recovered at the end of the warm-up. The transient affects the
conversion negligibly. The reactor end-point quenching lasted
4min (from 200 to 150◦C by in situ compressed air blowing, up to
30◦C by immersion in a cold-water bath). The gas phase, mainly
CO2, was negligible, accounting for 3.5% of the dry biomass at
the most. Liquid and solid products were separated by filtration,
and the solid was dried at 105◦C up to constant weight.
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Analytical
All measurements were in triplicate, with a standard deviation of
at most 4%. Hydrochar CHNS analyses (PerkinElmer-2440 series
II elemental analyzer) went according to the ASTM D3176-89
standard test method for coal and coke, estimating the oxygen
content by the difference (ash-free base). The liquid phase’s
electrical conductivity was measured with a conductivity meter
(Amel Instruments 96117) using a temperature-integrate probe.

Computer Routines
All the routines were developed under the MATLAB R© platform,
making extensive use of built-in functions. The programs served
the purpose of this introductory and illustrative paper. More
advanced, high-performance routines could derive from the
basic examples directly. The interested reader could refer to
comprehensive books (Tarantola, 2005; Gelman et al., 2013).

The Mersenne twister algorithm generated the necessary
pseudorandom numbers. The programs ran on a standard PC
without human intervention in the intermediate stages. The
most demanding of the runs took 5min of machine time to
reach convergence.

MODELING

General Framework
A survey of HTC kinetics literature reveals that investigations on
the residence time as an isolated parameter seldom appear. Usual
approaches are to reduce model complexity by lumping time
and temperature into the severity parameter and diminishing
the laboratory duty with the design of experiments. However,
only a comprehensive investigation of the time-course could
help design the industrial process with the optimal reactor
productivity. The hydrochar forms with two different stages,
primary and secondary, partially overlapped and occurring at
different rates (Lucian et al., 2019; Jung et al., 2020). The
process exhibits two different characteristic times, and hence
detailed kinetic studies should use time-data to the best of the
experimental availabilities.

In the scarcity of data, the fit of complex, multi-parameter
models with the traditional non-linear optimization methods
could fail to locate the correct values of the kinetic constants.
These iterative procedures do not guarantee per se to explore the
parameter space exhaustively for reaching the global minimum
of the misfit function (sum of squared errors). Moreover, the
estimate of parameter uncertainty makes use of formulas derived
from linear regression theory and gives approximate confidence
regions. Techniques based on MCMC random walks help
address these drawbacks, as already demonstrated in chemical
engineering (Zhukov et al., 2015).

Another possible use of stochastic methods is the study
of HTC reaction patterns. Most HTC models use mass-action
kinetics networks, which lead to systems of ordinary differential
equations solvable via numerical integration. Whenever the
reacting population consists of large numbers of individuals,
this deterministic approach gives satisfactory results. However,
when considering a relatively low number of individuals, the

reactions’ underlying stochasticity could appear and give critical
issues. This situation could well occur for biomass particles
undergoing HTC so that stochastic simulation algorithms (SSA)
could contribute to gain knowledge on the system dynamics and
the distribution of products generated into the reactor. Statistic-
based techniques imply many calculations but, nowadays,
computing power is available at a relatively low cost, making
massive calculation techniques accessible. The Monte Carlo
methods of this study are one example of these number-
crunching procedures. The programs explicitly developed for
this paper demonstrate how to apply these statistical methods to
HTC easily.

Programs
This study uses two different programs to perform regressions
and test reaction networks, respectively referred to as programs
(A) and (B).

Figure 2 is a schematic flow chart of the method adopted in
program (A).

This routine searches for the global optimum performing a
Brownian walk in the parameter space, driven by probability.
The next iteration step depends only on the previous one. Hence,
the process is a Markovian one. To locate the start-point, one
needs a rudimentary knowledge of parameter estimates, typically
coming from previous evidence or traditional fitting. Here, the
start position is determined by altering each initial parameter
estimates through a uniformly distributed random number. A
randommove is always accepted if it improves the fit, i.e., reduces
the current value of the quadratic error function:

Ec (Pc) =
∑

(M (Pc) − D)2 (1)

where Pc is the current estimand vector, D the vector of
depending variable observations, M the model response. The
summation is over all the N experimental observations. The
current values defined by Equation (1) are iteratively compared
to those computed at the previous step (Ep, Pp). Pc is generated
resorting to a jumping distribution. Each element of Pp receives a
uniformly distributed random variation (±0.5%) in the present
case. The program’s core is the Metropolis decision, which
accepts conditionally a fraction of moves that worsen the fit. This
procedure allows the walker to escape from possible local minima
and explore the surrounding portion of the space, searching for
the global optimum. The acceptance check makes use of the ratio
of conditional probabilities:

A =
p (PC|D)

p (PP|D)
(2)

The proper likelihood density functions p in Equation (2) are
the exponentials of the errors (Tarantola, 2005). The jump is
accepted if:

K exp

[

−
1

2

(

Ec − Ep
)

]

> r (3)
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FIGURE 2 | Schematic flowchart of program (A). See the text for details.

where r is a uniformly distributed pseudorandom number
between 0 and 1 and K a tunable scaling factor, whose
correct value leads to an acceptance rate, i.e., the ratio
of passed jumps to the total examined, between 25 and
35% (Gelman et al., 2013). The trial-and-error setting of K
depends on the examined model and is inherent to classical
Metropolis algorithms. More advanced procedures are available
in the literature, not requiring the tuning. The present
simplified form provides reliable results and serves well for this
illustrative paper.

A good practice is to discharge the first half of the
iterations (burn-in) to make the sequences less sensitive to the
starting distribution. The recommended approach to assess the
convergence is to compare different sequences, independent
of each other and originating from different start-points. Let
consider m parallel sequences of equal length n. For each scalar
estimand P, the simulation draws are labeled Pi,j (i = 1,. . . , n; j
= 1,. . . , m). The program computes B and W, the between- and

within-sequence variances, respectively:

B =
n

m− 1

∑m

j=1

(

Pj −
¯̄P
)2

, Pj =
1

n

∑n

i=1
Pij ,

¯̄P =
1

m

∑m

j=1
Pj (4)

W =
1

m

∑m

j=1
sj
2, sj

2 =
1

n− 1

∑n

i=1

(

Pij − Pj
)2

(5)

The monitoring of convergence of the iterative simulation occurs
by estimating the factor by which the scale of the current
distribution might reduce continuing the procedure in the limit
n→ ∞:

R̂ =

√

n−1
n W + 1

nB

W
(6)

Equation (6) defines a reduction factor that tends to 1 as n
→ ∞. As a conservative choice, the program stops once each
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estimand parameter gives values <1.1. The second halves of
all the sequences are collected and treated as a comprehensive
sample from the target distribution. Typically, 30,000 iterations
and 10 walkers were enough for an exhaustive analysis.

Figure 3 reports the schematic procedure for program (B), an
elementary form of the classical Gillespie’s algorithm (Erban and
Chapman, 2019).

First, one defines the network of pseudo-reactions between the
species ruling the HTC kinetics and the relative parameter values.
Although this study analyzes simple, two-reactions mechanisms,
more complex patterns are easily implementable. Once set the
species population variables at time zero (typically, the total
number of individuals equal to 100), the system evolution
simulation proceeds autonomously. For each postulated reaction,
the program recursively computes the propensity functions (α),
i.e., the probability of a reaction to occur in the time interval (t,
t+dt). The propensity is the product of the specific probability
rate and the reaction degeneracy, i.e., the number of distinct
interactions between reacting species. Elementary reactions give
a simple formulation of the propensity. As an example, for the
generic reaction between R1 and R2 to give P:

α =

(

k

V

)

R1 (t)R2 (t) dt (7)

where R1(t) and R2(t) are the instantaneous numerosities of
the two species, k the characteristic frequency of the reaction
per unit volume V. According to Equation (7), all species are
homogeneously distributed within the reactor. The extension to
comprise heterogeneous compartments is not tricky.

In the presence of r simultaneous reactions, the total
propensity αT is simply the sum of all the individual ones:

αT =
∑r

i=1
αi (t) (8)

The total propensity measures the system’s reactivity, i.e., how
likely a reaction is to occur in the infinitesimal time interval dt.
The higher the propensity, the higher the rapidity of reacting
system transformation. The probability that more than one
reaction occurs in the time interval is an infinitesimal of higher-
order and therefore negligible. The program generates the time
elapsed before a reaction occurs (τ ) and selects which one of
the two reactions progresses through two uniformly distributed
pseudo-random numbers between 0 and 1(r1, r2). Equation (9)
computes the time of the subsequent reaction (τ ) sampling from
the exponential distribution:

τ =
1

αT
ln

(

1

r1

)

(9)

The instantaneous total propensity makes the reaction time to
increase stochastically by unequal steps, of arbitrary units of
measurement, according to the Markovian dynamics. The next
reaction to take place at the current time is the first one if the
following inequality verifies:

r2 <
α1

α2
(10)

FIGURE 3 | Schematic flowchart of program (B). See the text for details.

In the opposite case, it is the second reaction that occurs. The
discriminating inequality (10) could be generalized to consider
multiple reaction networks easily. Once identified the active
reaction, the program updates the species balances diminishing
by one the reactants and increasing by one the products involved.
The procedure iterates until a stop criterion verifies, i.e., one of
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TABLE 1 | Synopsis of the data from literature and from this study.

Set Substrate Biomass/

water g/g

Temperature
◦C

Duration

h

Property Phase

1 Miscanthus 1/9 200 0–24 Volatile matter (%) Solid

2 Miscanthus 1/9 200 0–24 Fixed carbon (%) Solid

3 Miscanthus 1/9 250 0–24 Volatile matter (%) Solid

4 Miscanthus 1/9 250 0–24 Fixed carbon (%) Solid

5 a-Cellulose 1/10 200 0–8 Carbon content

(%)

Solid

6 c-Cellulose 1/10 200 0–8 Carbon content

(%)

Solid

7 a-Cellulose 1/10 220 0–4 Carbon content

(%)

Solid

8 c-Cellulose 1/10 220 0–4 Carbon content

(%)

Solid

9 a-Cellulose 1/10 240 0–4 Carbon content

(%)

Solid

10 c-Cellulose 1/10 240 0–4 Carbon content

(%)

Solid

11 Fir 1/14 250 0–2 Conductivity

(mS/cm)

Liquid

12 Fir 1/7 250 0–2 Conductivity

(mS/cm)

Liquid

13 Fir 1/3.5 250 0–2 Conductivity

(mS/cm)

Liquid

14 Fir 1/14 250 0–2 Carbon content

(%)

Solid

15 Fir 1/7 250 0–2 Carbon content

(%)

Solid

16 Fir 1/3.5 250 0–2 Carbon content

(%)

Solid

17 Fir 1/14 250 0–2 Solid yield (%) Solid

18 Fir 1/7 250 0–2 Solid yield (%) Solid

19 Fir 1/3.5 250 0–2 Solid yield (%) Solid

20 Starch 1/7 200 0–2 Conductivity

(mS/cm)

Liquid

21 Starch 1/7 200 0–2 Solid yield (%) Solid

22 Starch 1/7 200 0–2 Yield vs.

conductivity

Solid

Liquid

Literature data references: 1–4: Smith and Ross (2019) and 5–10: Paksung et al. (2020).

a- = amorphous; c- = microcrystalline.

the reactants drops to zero, or the time reaches the predefined
maximum. The program repeats the stochastic simulations for
a number NR of parallel realizations and averages across all the
results to obtain the simulated time-course of all the species.
From 20 to 100 realizations are enough to get a result statistically
significant. The outputs of program (B) furnish a rapid detection
of the system dynamics and select candidate reaction schemes
like the traditional method of numerical integration of the
differential equations. The examples detailed in the discussion of
the results are explanatory of the procedure.

RESULTS AND DISCUSSION

Table 1 summarizes the datasets over which the programs run
and Table 2 details the results of the experiments of this study.

TABLE 2 | Experimental results obtained in this study.

t min C Y s (mS/cm)

Fir 250◦C

Water/biomass weight ratio 3.5/1

0 0.557 0.755 0.940

10 0.651 0.620 1.081

15 0.675 0.605 1.017

30 0.690 0.590 0.935

60 0.698 0.591 0.705

120 0.703 0.589 0.653

Water/biomass weight ratio 7/1

0 0.545 0.765 0.806

10 0.609 0.625 0.916

15 0.637 0.581 0.942

30 0.680 0.558 0.960

60 0.691 0.579 0.811

120 0.715 0.569 0.665

Water/biomass weight ratio 14/1

0 0.544 0.747 0.603

10 0.608 0.599 0.709

15 0.622 0.585 0.671

30 0.677 0.545 0.695

60 0.691 0.560 0.601

120 0.698 0.556 0.529

t min Y s (mS/cm)

Starch 200◦C

0 0.0187 0.329

10 0.0173 0.576

15 0.0206 0.710

30 0.0298 0.991

60 0.128 1.293

120 0.307 1.579

The datasets encompass a wide range of operational
conditions and serve as a stress-test for assessing the routines’
reliability. Substrates are representative of herbaceous biomass
[miscanthus (Smith and Ross, 2019)], model carbohydrates
[cellulose (Paksung et al., 2020)], lignocellulosic materials (fir)
and agro-food industry scraps (potato starch). Temperature
ranges from 200 to 250◦C, reaction duration from 2 to 24 h,
the solid-liquid ratio from 1:3.5 to 1:14. The programs analyzed
the time course of significant properties of the hydrochar, e.g.,
mass yield, volatile matter, total carbon content, and fixed carbon.
The liquid phase electrical conductivity was also studied as it
previously proved to be a convenient lumped parameter for
monitoring the reaction progress (Gallifuoco et al., 2018).

The misfit functions used two different model equations.
For the data referring to the solid phase, the following logistic
equation mostly proved to give the best fitting performances
(Gallifuoco and Di Giacomo, 2018; Gallifuoco, 2019):

M = P1+
(P2− P1)

1+
(

t
P3

)P4 (11)
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FIGURE 4 | Examples of random walks on the space parameter.

The time-course of liquid phase conductivity follows a series
mechanism given by two first-order steps, formation plus
depletion (Gallifuoco et al., 2018). Accordingly, the proper
equation is:

M = P1
[

1− exp (−P2t)
]

+ P3 exp (−P4t) (12)

In both Equations (11, 12), t is the reaction time and P1. . .P4
the estimand parameters. In Equation (11), P3 is the time scale,
P4 a shape factor, and P1 and P2 the final and the initial values,
respectively. Equation (12) has two different time scales, P2 and
P4. The initial value is P3, the final one P1. According to data of
Table 1, the software performed 22 fittings of 4 parameters each,
which sum up to 88 different estimates.

The use of model equations is an entry-level problem
for illustrating the features of program (A). More advanced
applications are possible, such as the inverse problem of fitting
parameters to the system of ordinary differential equations
coming from a hypothesized reaction network.

Themisfit functions associated with Equations (9, 10) lie in the
5-dimensional space, and consequently, complete visualization
of the random walks is not possible. Nevertheless, plots of
any couple of parameters could illustrate the essential features.
Figure 4 shows typical examples of the results and serves well in
the discussion.

The diagrams trace the 10 random walks from the start-point
(�) to the end (♦). By way of comparison, the figure also locates
the non-linear least square estimate (⋆). By inspection of the
left-hand diagram, which refers to dataset 12 of Table 1, one
could observe that the walkers, after the initial wandering in
far, not significant regions, converge on the expected target. The
right-hand diagram (dataset 4) shows more straight tracks that
flow into a specific portion of the parameter plane, crowded
enough to hide the endpoints. The numerical outputs show that
all the walkers hit the same point, coincident with the least square
estimate. The intersection of the two dashed segments locates the

coordinates of the final estimate (0.647, 0.933). The trajectories
in the right-hand diagram signal that the valley surrounding
the minimum has steep walls. Figure 5 shows examples of the
satisfactory accordance of predictions with experimental data.
Figure 6 reports a selection of data vs. time plots and the fitting
lines connected to the parameters’ endpoint estimates.

Other plots, not reported here to avoid crowding the paper,
give similar results, so the discussion of Figure 6 assumes the
character of generality. The adjusted R2s, shown next to the
respective correlation curves, prove that the software works
satisfactorily with both the model equation, whatever the HTC
conditions were. The left diagram refers to Miscanthus at two
reaction temperature and reports the time courses of hydrochar
fixed carbon and volatile matter content. The right diagram refers
to starch and records the evolution of liquid phase electrical
conductivity at three different liquid/solid weight ratios.

Comparing the obtained parameter values with those
coming from the traditional non-linear least-squares
method (Levemberg-Marquardt algorithm) allows testing
the reliability of the MCMC technique. Figure 7 summarizes the
results obtained.

The diagram shows the relative percentage deviation between
the value estimated by the program (MCMC) and that obtained
with least squares (NLS) for each of the 88 parameters. Most
of the points align with unity (full line), indicating substantial
equality between the two estimates. Six values out of the 88
are within a ±2% deviation (dashed lines). The remaining 8
points (full symbol) deserve further discussion. The numbers to
the right of symbols label the dataset to which the parameter
belongs. So, three out of four parameters of dataset 1 differ
significantly from the respective values obtained with the least-
squares method.

Interestingly, in this case, the MCMC method found a global
minimum, whose misfit function assumes a value lower than that
of NLS. This circumstance also occurs for dataset 3, although to a
lesser extent. Datasets 2 and 20 represent opposite cases, in which
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FIGURE 5 | A selection of experimental data and regression lines estimated by program (A). Left, model Equation (11), datasets 1–4. Right, model Equation (12),

datasets 11–13, effect of liquid/solid weight ratio.

FIGURE 6 | Synopsis of all the estimated parameters. Percent deviations

between estimates: NLS, non-linear least-squares; MCMC, Markov chain

Monte Carlo.

NLS performs better than MCMC. The increase of iterations
above 30,000 did not improve the result, and one could conclude
that these two cases deserve further investigation. A more precise
diagnosis would require increasing the number of walkers to
reduce the effect of individual deviations. For this study, however,
one could conclude that the software passed the reliability test
entirely. It can detect global minima that elude the NLS method.

NLS methods are fast algorithms for identifying the misfit
function’s global minimum with models of low dimension.
With the increase in model dimensions, these techniques
become inefficient and vulnerable to finding a local minimum
closest to the starting point rather than the desired global
minimum. To overcome this limit, one could repeat the
optimization with various starting points and monitor if they

all converge to the same solution. This stratagem is prone
to become computationally expensive and troublesome as one
complies with many parameters. Although this study analyzes
few-parameters models, in some cases, NLS failed to find
the global minimum. Changing the routine’s conditioning
and exploring up to 100 different starting points did not
improve the performance. One could expect that the advantage
of MCMC over NLS becomes even more evident with
multi-parameter models. Conversely, the increase of the
model complexity could make the computational cost of
MCMC higher than that of traditional least-square methods.
Hence, to deal with more detailed reaction schemes, one
should resort to more sophisticated MCMC algorithms, well-
established in the literature. It is worth overstepping the
scope of this introductory study and prosecute the research in
this way.

Finally, dataset 19 shows the value of one of its parameters
which differs sensibly (+8.71%) from the corresponding one
estimated by NLS, although the misfit function’s value is
substantially the same with the two methods. This last result
warns not to accept any regression method ipso facto, especially
when the estimated parameters are critical variables for the
subsequent process design. The Bayesian paradigm considers
parameters as random variables whose distributions are updated
by the knowledge of experimental data. The steps after the burn-
in period sample repeatedly from these distributions, and this
furnishes valuable information on each parameter. Table 3 sums
up all the results.

One can observe that all the estimands deviate from the
average value within a very narrow range. The satisfactory
regressions of experimental data (adjusted R-square factors
appear in the last column) reinforce the precision of estimates.
Figure 7 visualizes the near-convergence samplings of
four selected parameters and serves as an example of the
general results.
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FIGURE 7 | Probability density plots and probit plots of a selection of parameters. (A) Dataset 21, parameter P1; (B) dataset 3, parameter P2; (C) dataset 4,

parameter P3; (D) dataset 10, parameter P4.

For reference, each histogram shows the normal probability
distribution. The probit analysis, which uses the cumulative
probabilities to test the normality of the distribution, is
superimposed to the histograms. The more the points align on
a straight line, the more the observed distribution approximates
the normal one. In Figure 7, the most significant deviations
appear in C and D, where the distributions are slightly left-
skewed. More in-depth elaborations are possible, although
beyond the scope of this introductory study.

Program (B) run on reaction networks reported in Table 4.
All the schemes make use of mass-action kinetics between

compartments and respect essential literature findings. As the
amount of gaseous phase generated by the low-temperature
hydrothermal reactions negligible, no compartment for gas
species appear. Hydrochar formation is a two time-scale
process, and accordingly, the networks involve two distinct
pseudo-kinetic constants, k1 and k2. Moieties released in
the liquid by primary hydrochar formation contribute to
build-up secondary hydrochar, and the schemes entail liquid-
phase compartments. As the reaction proceeds, the solid yield
(recovered solid/biomass) should decrease, and hydrochar energy
density should increase.

In the following, B stands for biomass, HC1 for primary
hydrochar, HC2 for secondary hydrochar, and L1 an L2,
respectively, for the corresponding liquid-phases substances.
Scheme 1 is the simplest one. This naïve model, a test bench
for assessing the reliability of program (B), conceives the HTC
as a first-order two-step process and disregards the dynamics
of liquid phases species. The related system of three ordinary
differential equation has a straightforward solution, reported in
Table 4. Figure 8 illustrates the results of the tests.

Diagram A traces 10 simulations of the dynamics of the
secondary hydrochar, each originating from the same initial
condition (t = 0, HC1 = HC2 = 0, B = 100). The
random trajectories follow independent paths, relatively different
from each other, but matching on average the exact solution
(dashed line) reported in Table 4. Expectably, the more the
realizations performed, the higher the precision of the results,
as demonstrated by the other diagrams of the Figure. Each of
them reports the averages across all realizations for the three
species and the corresponding exact solutions. The number of
realizations performed to simulate the system enlarges moving
clockwise from the upper right diagram to the lower left one. One
can easily verify that the precision of the simulations increases,
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TABLE 3 | Statistical properties of the algorithm (A) outputs.

Set P1 P2 P3 P4 Adjusted R2

1 0.0858 ± 0.0003 0.8033 ± 0.0001 0.5913 ± 0.0008 242.70 ± 0.8052 0.99818

2 0.6128 ± 0.0028 0.1604 ± 0.0001 0.6566 ± 0.0014 69.810 ± 1.1441 0.99145

3 0.4568 ± 0.0008 0.6910 ± 0.0001 0.5729 ± 0.0035 1.2320 ± 0.0153 0.99988

4 0.4804 ± 0.0003 0.2790 ± 0.0001 0.6458 ± 0.0029 0.9367 ± 0.0030 0.99988

5 0.5767 ± 0.0023 0.4172 ± 0.00005 2.7580 ± 0.0207 373.96 ± 4.3205 0.99971

6 0.6942 ± 0.0004 0.4325 ± 0.00001 5.8301 ± 0.0160 375.19 ± 0.2434 0.98044

7 0.6876 ± 0.0001 0.4355 ± 0.0001 3.3483 ± 0.0056 98.623 ± 0.0534 0.99674

8 0.6778 ± 0.00005 0.4294 ± 0.00005 4.7557 ± 0.00496 71.660 ± 0.02530 0.99975

9 0.6735 ± 0.00004 0.4310 ± 0.00008 4.1583 ± 0.00638 18.530 ± 0.00848 0.98767

10 0.6943 ± 0.00006 0.4056 ± 0.00008 2.0486 ± 0.00437 11.308 ± 0.00828 0.98974

11 0.5092 ± 0.00013 0.0610 ± 0.00004 0.6055 ± 0.00008 0.0287 ± 0.00003 0.85109

12 0.5769 ± 0.00020 0.0595 ± 0.00003 0.8024 ± 0.00008 0.0186 ± 0.00001 0.97153

13 0.5769 ± 0.00020 0.0595 ± 0.00003 0.8024 ± 0.00008 0.0186 ± 0.00001 0.96307

14 0.7026 ± 0.00009 0.5446 ± 0.00008 1.7661 ± 0.00345 13.605 ± 0.01678 0.98115

15 0.7169 ± 0.00011 0.5447 ± 0.00008 1.4863 ± 0.00411 13.784 ± 0.01437 0.98507

16 0.7017 ± 0.00023 0.5570 ± 0.00009 1.8545 ± 0.04008 7.0722 ± 0.04843 0.99741

17 0.5531 ± 0.00006 0.7469 ± 0.00008 2.1877 ± 0.00747 6.0733 ± 0.01154 0.97298

18 0.5690 ± 0.00009 0.7650 ± 0.00008 4.9491 ± 0.09881 8.3123 ± 0.02200 0.98095

19 0.5892 ± 0.00009 0.7550 ± 0.00008 2.3930 ± 0.04097 5.4399 ± 0.04396 0.99886

20 1.9391 ± 0.00050 0.3270 ± 0.00007 1.1626 ± 0.00044 41.535 ± 0.02477 0.99930

21 0.3495 ± 0.00059 0.0185 ± 0.00005 3.7802 ± 0.01561 72.293 ± 0.10630 0.99987

22 0.4195 ± 0.00150 0.0186 ± 0.00006 9.6209 ± 0.04034 1.4318 ± 0.00138 0.99984

TABLE 4 | Model networks tested with program (B).

Scheme Network Propensity

functions

Exact solution

1 1) BHC1

2) HC1HC2

1) α1 = k1B

2) α2 = k2HC1

B (t) = 100e−k1 t

HC1 (t) =

100 k1
k2−k1

(

ek1 t − ek2 t
)

HC2 (t) =

100
(

1+ k1
k2−k1

ek2 t − k2
k2−k1

ek1 t
)

2 1) B+

HC12HC1+ L1

2) HC1HC2+ L2

1) α1 = k1B · HC1

2) α2 = k2HC1

Available, awkward to handle

(Harko et al., 2014)

3 1) B+

HC12HC1+ L1

2) B+ HC1+

L1HC2+ L2

1) α1 = k1B · HC1

2) α2 =

k2B · HC1 · L1

Not available

4 1) 2BHC1+ L1

2) HC1+

L1HC2+ L2

1) α1 =

k1B · (B− 1)

2) α2 = k2HC1 ·L1

B (t) = 100
1+100k1 t

HC1 (t) : Riccati’s equation,

available

HC2 (t) : not available

5 1) 2BHC1+ L1

2) 2HC1+

L1HC2+ L2

1) α1 =

k1B · (B− 1)

2) α2 = k2HC1 ·
(

HC1− 1
)

· L1

B (t) = 100
1+100k1 t

HC1 (t) : not available

HC2 (t) : not available

6 1) B+

HC12HC1+ L1

2) 2HC1+

L1HC2+ L2

1) α1 = k1B · HC1

2) α2 = k2HC1 ·
(

HC1− 1
)

· L1

Not available

B, biomass; HC1, primary hydrochar; HC2, secondary hydrochar; L1, primary liquid-

phase chemicals; L2, secondary liquid-phase chemicals.

as proved by the reported adjusted R-squares of the worst fitting
among the three of each diagram. One could observe that
10 realizations suffice for obtaining a satisfactory average. The
remaining diagrams demonstrate how the fluctuations reduce
if one performs a higher number of simulations. Diagram D
displays the simulation coming from 10,000 realizations, with
just five seconds of computing time. It appears that program
(B) correctly behaves, since the stochastic simulation tends
to coincide with the exact solution in the limit of infinite
realizations, and the computing task for attaining a satisfactory
approximation is affordable.

The remaining schemes are worth considering as tentative,
more detailed descriptions of the HTC reactions. The literature
remarks on the solid-phase autocatalytic behavior of HTC
(Brown, 1997; Paksung et al., 2020), and the first reaction
of schemes 2, 3, and 6 accounts for this. For activating the
process, a certain amount of HC1 should be present as the
reactions start (time zero, reactor heated up to the setpoint
temperature). Experimental evidence confirms that a partial
biomass transformation occurs during the reactor warmup. The
more the transient lasts, the higher the extent of modification.
For example, in datasets 1–4, the per cent fixed carbon of
native biomass is 12.3, those of time zero are 16.0 and 27.9,
respectively, for 200–250◦C (Smith and Ross, 2019). The finding
is generally evident for lignocellulosic materials, as confirmed
by the experiments of this study. Non-lignocellulosic biomass,
such as starchy materials, could undergo the entire first step in
the warmup. In eventuality, solid yields could increase with the
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FIGURE 8 | The test bench of program (B) with scheme 1. Dashed lines, exact solutions; symbols, simulations. (A) Ten realizations of secondary hydrochar dynamics.

Remaining diagrams (B–D) averages on increasing number of realizations.

reaction time. A cautious choice of the initial conditions could
allow the simulation run in agreement with the experimental
observations. The second reactions of Table 4 account for the
formation of secondary hydrochar via interactions between
liquid and solid phases. The schemes envisage the progressive
reduction of solid-phase species, except for network 2 (solid
balance of zero), which could adapt to cases of increasing
solid yield. The improvement of these illustrative networks is
straightforward, e.g., by considering different reactions. The
present basic form serves the scope of this paper and gives
remarkable results, easily comparable with the experimental data
to steer the selection of the proper scheme. Figure 9 illustrates
typical results.

The simulations run on equal values of the parameters (k1
= 20, k2 = 1, initial HC1 = 10, initial L1 = 10). Diagram A
reports the fraction of hydrochars in the solid phase as a function
of the normalized reaction time (end-time equal to one). Each
network displays recognizable dynamics, and this helps to link

the proper model to the experimental data. Diagram B gives the
corresponding distribution of the liquid to solid components.
The differences between schemes persist, except for models 3 and
4, intrinsically structured to produce a constant ratio of liquid to
solid products. Liquid-phase analyses, both of key components
and lumped properties (Gallifuoco et al., 2018), could allow
evidencing the best-fitting model. Diagram C and D show the
relationships between liquid and solid phases retrievable at any
time from the reactor. Definite patterns appear for all schemes
in that the solid recovery decreases monotonously with the
accumulation of liquid product (C), and this last gives clear trace
of the conversion of biomass to hydrochar (D).

Overall, the results of Figure 9 stimulate further elaborations
for comparing previsions with experiments. A detailed linking
of stochastic simulations with experiments allow selecting the
proper reaction network. Although the schemes of this study
consider a restrict number of compartments, there are sufficient
to illustrate the procedure. Figure 10 shows some examples of
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FIGURE 9 | System dynamics associated with the reaction patterns of Table 4. The numbers next to lines label the scheme. (A) Time course of the conversion to

hydrocar; (B) progression of liquid-phase moieties accumulation; (C) relationships between solid and liquid phases; (D) liquid-phase build-up as a function of

solid conversion.

how to bring valuable information out of the results. Diagram
A reports the fixed carbon of dataset 2 vs. the corresponding
simulated property for four out of the six reaction schemes. The
authors (Smith and Ross, 2019) reported the fixed carbon of the
native biomass (12.3%) of the time-zero solid (16.0%), and that
measured after 24 h of reaction (31.1%), reasonably due to the
complete conversion. One could speculate that the fixed carbon
measured at intermediate times should be due to the weighted
contributes of the biomass not yet reacted and the hydrochar
already produced.

Similarly, the x-axis values weigh the amounts of B and
(HC1 + HC2) with the experimental data. The diagram shows
that the simulations match the experiments unambiguously. By
the way, data fit very well third-degree polynomials (lines).
Further investigation could disclose the essence of this finding
and assess the possible theoretical foundations. Diagram B is

analougus and refers to schemes 2 and 4. Although in these
last cases, the polynomial fitting failed, ordered patterns appear
connecting simulations and data unambiguously, as shown by
the lines connecting points. Part C reports the direct relationship
between datasets 20 and 21 and the simulated total hydrochar
of reaction scheme 3. The left y-axis reports the liquid phase
electrical conductivity, the right y-axis the solid yield. The solid
line connecting the yields is an exponential which fits satisfactory
the data (R2 = 0.99919). The dashed line is a linear correlation
(R2 = 0.99876) of the conductivities, excluding the point on
the upper right corner. Diagram C shows satisfactory matching
trends and demonstrates that scheme 3 is predictive of the
datasets analyzed. Finally, diagram D shows a good coupling
of the amount of liquid recovered after the reaction and the
corresponding compartments. Data refer to datasets 11, 12, and
13 as matched to model 6.
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FIGURE 10 | The matching of experiments with simulations. (A) Fixed carbon measured in dataset 2 as a function of the corresponding quantity for some reaction

schemes. The numbers to the left of regression lines label the scheme. (B) Simulated vs. measured fixed carbon for scheme 2 (dashed line) and 4 (solid line). (C)

Conductivity (left y-axis) and solid yield (right y-axis) of dataset 20 and 21 vs. the simulation of scheme 3. (D) Amount of liquid phase recovered by the reactor as a

function of the corresponding simulation compartments. Datasets: 11, 12, and 13. Reaction scheme 6.

Figure 10 shows some of the many ways of linking
experiments with simulations. One could envisage further fruitful
implementations for steering the process of model assessments,
obtaining at the same time valuable feedbacks on which part
of the experimental investigation to strengthen. A more in-
depth analysis requires identifying and quantifying liquid-phase
key chemicals to match with the compartments of models.
Experimental data on the dynamics of such compounds appear
in the HTC literature seldom. As available, this evidence could
contribute to more accurate validations.

The state-of-art on HTC kinetic modeling shows
the success of both lumping and detailed descriptions
of reaction networks. Models that describe the overall
biomass conversion catch the autocatalytic progression of
the condensed phase transformation satisfactorily (Pecchi
et al., 2020). Mechanistic descriptions, involving up to a 10th
of reactions and chemically defined liquid-phase products,

result in a broader knowledge of the kinetic constants (Jung
et al., 2020). This paper demonstrates that compartmental
modeling, a sort of intermediate approach, could find room
in the HTC kinetic studies. The research is proceeding
this way.

CONCLUSIONS

The study demonstrates the usefulness of Bayesian statistics
and Monte Carlo methods for studying biomass hydrothermal
carbonization kinetics. Stochastic simulation of HTC reactions
is a flexible tool for testing hypothesized networks and
could improve the knowledge of the mechanism of biomass
conversion. The approach could face the limit of computational
expensiveness when extended to a thorough description of the
reaction kinetics. The matter deserves future researches. Despite
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the basicity of the routines, the results are satisfactory. The
estimation of the parameters furnishes regression coefficients
as high as 0.9999 and detects the global minimum of the
space parameters for all the datasets. The test of possible
reaction schemes is straightforward. The upgrading to more
sophisticated and efficient algorithms is clear-cut. It could exploit
the vast library of software, readily available and long used in
other areas of kinetics applied to chemical engineering. The
proposed method has the potential to guide the selection of the
correct kinetic model. It can flexibly simulate the dynamics of
any experimentally measured property in both the solid and
liquid phases.
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