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Under the Paris Agreement, established by the United Nations Framework

Convention on Climate Change, many countries have agreed to transition

their energy sources and technologies to reduce greenhouse gas emissions

to levels concordant with the 1.5°C warming goal. Lithium (Li) is critical to this

transition due to its use in nuclear fusion as well as in rechargeable lithium-ion

batteries used for energy storage for electric vehicles and renewable energy

harvesting systems. As a result, the global demand for Li is expected to reach

5.11 Mt by 2050. At this consumption rate, the Li reserves on land are expected

to be depleted by 2080. In addition to spodumene and lepidolite ores, Li is

present in seawater, and salt-lake brines as dissolved Li+ ions. Li recovery from

aqueous solutions such as these are a potential solution to limited terrestrial

reserves. The present work reviews the advantages and challenges of a variety

of technologies for Li recovery from aqueous solutions, including precipitants,

solvent extractants, Li-ion sieves, Li-ion-imprinted membranes, battery-based

electrochemical systems, and electro-membrane-based electrochemical

systems. The techno-economic feasibility and key performance parameters

of each technology, such as the Li+ capacity, selectivity, separation efficiency,

recovery, regeneration, cyclical stability, thermal stability, environmental

durability, product quality, extraction time, and energy consumption are

highlighted when available. Excluding precipitation and solvent extraction,

these technologies demonstrate a high potential for sustainable Li+

extraction from low Li+ concentration aqueous solutions or seawater.

However, further research and development will be required to scale these

technologies from benchtop experiments to industrial applications. The

development of optimized materials and synthesis methods that improve the

Li+ selectivity, separation efficiency, chemical stability, lifetime, and Li+ recovery

should be prioritized. Additionally, techno-economic and life cycle analyses are

needed for amore critical evaluation of these extraction technologies for large-

scale Li production. Such assessments will further elucidate the climate impact,

energy demand, capital costs, operational costs, productivity, potential return

on investment, and other key feasibility factors. It is anticipated that this review

will provide a solid foundation for future research commercialization efforts to

sustainably meet the growing demand for Li as the world transitions to clean

energy.
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1 Introduction

Lithium (Li) is a fundamental metal for manufacturing

batteries, ceramics, glass, lubricants, and flux powders, and air

treatment processes (Zhang et al., 2019)). Figure 1 shows the

predominant market end uses of Li in 2021. Before the 1970s, Li

was a considerably obscure mineral commodity. However, it has

experienced exponential growth in production in recent years.

The annual Li mine production by country in 1970, 2000, and

2021 are provided for comparison in Figure 2. Yearly global Li

production has expanded from an estimated 3,700 metric tons

(MT) in 1970 to over 100,000 MT in 2021, a record high (USGS,

2017; U.S Geological Survey, 2022). This growth can be

attributed to Li’s crucial role in the global energy transition.

The most prevalent application for Li is in rechargeable lithium-

ion batteries for renewable energy storage and electric vehicles. In

addition to existing use in Li-ion batteries, Li might also

experience growing demand from the hydrogen fuel sector,

given that it can be converted to tritium, a potential fuel

source for next-generation fuel reactors.

In 2021, international annual electric vehicle sales more than

doubled to 6.6 million cars, or 9% of the international car market.

This increase in sales is almost triple the global market share in

2019 (IEA, 2022). Summarily, electric vehicles were responsible

for the total net growth of global car sales in 2021 (IEA, 2022). Of

the 6.6 million cars, 4.7 million (71%) were Battery Electric

Vehicles (BEVs), and 1.9 million (29%) were Plug-in Hybrid

Electric Vehicles (PHEVs) (Irle, 2022). The typical lithium-ion

battery capacities for BEVs and PHEVs are estimated to be

25 and 9 kWh, respectively (Vikström et al., 2013).

Furthermore, it is estimated that 160 g of Li can supply one

kWh of battery capacity (Kushnir and Sandén, 2012). Therefore,

the estimated Li requirement for a BEV and PHEV is four and

1.4 kilograms, respectively. Applying these estimations, the

4.7 million BEVs and 1.9 million PHEVs required roughly

18,800 and 2,700 MT of Li, respectively. This combined mass

equates to almost 22% of global Li production in 2021.

Accordingly, the global consumption of Li in 2021 was

estimated to be 93,000 MT, a 22% increase from 70,000 MT in

2020 (U.S Geological Survey, 2022). By 2030, the global Li

demand is expected to exceed 2 Mt, with batteries accounting

for 95% of this demand (Azevedo et al., 2018; U.S Geological

Survey, 2022). In response, many countries are now prioritizing

the development of technologies for low-cost Li extraction to

combat impending supply shortages and price hikes.

Technologies that enable extraction from low Li+ concentrated

aqueous solutions are the leading edge of these development

efforts.

Traditionally, Li has been mined from the Li-bearing

minerals lepidolite, petalite, and spodumene contained in

pegmatite formations. Lepidolite (K(Li, Al)3(Al, Si, Rb)4O10(F,

OH)2), contains 3.58% Li content. It is no longer a major mining

ore due to its high fluorine content. Petalite (LiAlSi4O10),

contains 2.09% Li content. Its high iron content and low

thermal expansion rate make it ideal for glass and ceramics,

but it is also used for EV and battery storage applications. Of the

three minerals, spodumene (LiAl(SiO3)2), has the highest Li

content at 3.73% (Vikström et al., 2013). Its treatment chain

can be completed in roughly 5 days and is consistently productive

(Grosjean et al., 2012). The traditional sulfuric acid method for

extracting Li from spodumene ores has a percent yield between

85% and 90% and a percent recovery of 60%–70% (Ellestad and

Leute, 1950; Grosjean et al., 2012; Dessemond et al., 2019).

However, the pegmatite formations spodumene is contained

in are challenging to mine given their hardness and

occurrence in difficult-to-reach belt deposits (Grosjean et al.,

2012; Kesler et al., 2012). Additionally, the treatment process

requires high-energy-demanding furnaces, pit-digging machines,

and rock-crushing machines. Ultimately, these machines, the

dust produced from excavation, and the concentrated chemicals

used for processing cause environmental damage and pose health

and safety risks (Aral and Vecchio-Sadus, 2008; Grosjean et al.,

2012). These drawbacks to Li recovery from terrestrial mining

and the rapid depletion of Li ores have led to the innovative

practice of recovering Li from salt lake brines, or Direct Lithium

FIGURE 1
Pie chart showing market end uses of lithium as a percentage
of global consumption in 2021 (U.S Geological Survey, 2022).
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Extraction (DLE). As of 2021, the worldwide Li reserves from

ores and brines total an estimated 22 Mt. Salt lake brines account

for almost 80% of this total (Zhang et al., 2019). It is important to

note that the geographical distribution of these reserves is very

uneven (see Figure 3) (U.S Geological Survey, 2022). More than

half of the world’s Li reserves are found in the “ABC Triangle,” a

phrase coined for the South American countries of Argentina,

Bolivia, and Chile (Grosjean et al., 2012). The remaining

resources are concentrated in Australia (25%) and China (7%)

(U.S Geological Survey, 2022).

New development in DLE technologies has garnered

renewed interest in seawater extraction. Although the Li+

concentration is low at 0.1–0.2 ppm, seawater contains

nearly 230 Gt of Li+, making it a potentially inexhaustible

extraction source (Yang et al., 2018). Additionally, seawater’s

abundance eliminates many of the geopolitical concerns

surrounding land-based reserves because, essentially, any

country with access to the ocean has the opportunity to

strengthen its Li supply chain with seawater extraction

(Månberger and Johansson, 2019; Kalantzakos, 2020). While

the Li+ content in salt lake brines and seawater is vast, and

extraction from these resources has the potential to be more

sustainable than terrestrial mining, many technological

challenges must be mitigated before these resources can be

considered comprehensive solutions for the impending Li

shortage (Graham et al., 2021; Kelly et al., 2021; Chordia

et al., 2022). The main challenges facing DLE to date are the

extraction technology’s Li+ selectivity, separation efficiency,

recovery, and lifetime.

This paper reviews technology used for Li+ extraction from

salt lake brine and seawater, or low Li+ concentration aqueous

solutions. First, brine and seawater are classified according to

their content. Subsequently, key advantages and challenges of the

precipitation, solvent extraction, ion sieve adsorption, ion-

imprinted membrane (IIM) extraction, and electrochemical

extraction technologies are detailed. The Li+ adsorption

capacity, selectivity, separation efficiency, recovery,

regeneration, cyclical stability, thermal stability, environmental

durability, product quality, extraction time, optimal pH value,

and specific energy consumption are also highlighted when

provided. The adsorption capacity is the maximum amount of

Li+ that can be absorbed by the technology. Selectivity is the

technology’s ability to exclusively select Li+ or other desired ions

over competing ions present in the solution. The separation

FIGURE 2
A bar chart showing the annual lithium production by country in 1970, 2000, and 2021. Note that the countries labeled with “NP” reported no
data that year. Additionally, the United States withheld (W) its production data in 2021 (U.S Geological Survey, 2022; Mohr et al., 2012).

FIGURE 3
Pie chart showing lithium reserves by country as a percentage
of the total world-wide reserves in 2021 (U.S Geological Survey,
2022).
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efficiency is a measure of the quality of Li+ separation from the

solution achieved by the technology. It is measured by the ratio of

the Li+ concentrate removed from the solution feed stream to the

initial Li+ concentration in the solution. Furthermore, the

recovery is the amount or percentage of pure Li product

obtained after extraction and additional treatment processes, if

any. Regeneration refers to the number of times the technology

can be regenerated using a treatment process without significant

losses in recovery. The cyclical stability indicates the number of

times a technology can be reused before there are major losses in

recovery. Thermal stability indicates the operating

temperature(s) at which the technology achieves optimal

performance. Environmental durability refers to the number

of times the technology can be reused with minimal physical

degradation. The product quality is the percent purity of the Li

product recovered. The extraction time is the duration required

to remove Li+ and recover the Li product. The pH value is the

recommended solution pH for optimal Li+ extraction and

recovery. Finally, the specific energy consumption is the total

energy used to produce a unit weight of Li product. The review

concludes with recommendations for enhancements and future

research pathways of technologies for DLE from low Li+

concentration aqueous solutions.

2 Classification of aqueous lithium
extraction resources

Brines are excessively saline solutions found in

continental, geothermal, and oil field deposits. The

worldwide distribution of these brine types spans

continental basins (58%), geothermal brines (3%), and oil

field brines (3%) (USGS, 2017). Geothermal brines are

byproducts of geothermal energy production activities.

These heated saline deposits can be pumped to the surface

for Li+ extraction, but their complex chemistry, high salinity,

and high temperature ( > 100°C) are significant challenges for

extraction (Stringfellow and Dobson, 2021). Oil field brine

deposits generally occur at depths greater than one kilometer

(km). Although the Li+ concentration in these brines is

optimal (500–700 ppm), conventional extraction methods,

such as precipitation, are infeasible for those located in non-

arid climates (Bradley and McCauley, 2013; USGS, 2017).

Finally, continental basins, also known as salt lakes, are the

most prevalent Li+ brine deposits. These deposits are pools of

saline groundwater that have been enriched with Li from the

Earth’s crust (USGS, 2017). Arid climates with immense sun

exposure promote the formation of these deposits, as is the

case in the ABC Triangle. However, the ionic concentrations

of brines are diverse due to varying regional characteristics,

seasons, and evaporation rates per deposit. To date, salt lakes

are the most conventional aqueous solutions for Li+

extraction.

Both salt lakes and seawater possess complex concentrations

of chlorine (Cl−), sodium (Na+), potassium (K+), magnesium

(Mg2+), calcium (Ca2+), copper (Cu2+), nitrate (NO3
−),

bicarbonate (HCO3
−), sulfate (SO4

2−) and other ions, albeit

seawater at lower concentrations. On average, the total dissolved

solids in brines range from 170,000 to 330,000 ppm, compared to

500 to 30,000 ppm in seawater (Flexer et al., 2018; Moran, 2018).

The same disparity is observed in their relative Li+

concentrations. Salt lake Li+ concentrations typically range

from 54 to 1,600 ppm, compared to a range of 0.1–0.2 ppm in

seawater (Yaksic and Tilton, 2009). Although the Li+ content of

salt lakes is generally three orders of magnitude higher than

seawater, both resources are low Li+ concentration solutions: the

concentration of Li+ is meager relative to the concentrations of

the major ions (Cl−, Na+, SO4
2−, Mg2+, Ca2+, and K+) in both

solutions. Table 1 provides the total reserves, Li+ content, and

principal Li+ mass ratios for various salt lakes and oceans. Lake

Zabuye, Salar de Atacama, Salar de Uyuni, Salar del Hombre

Muerto, Smackover Formation, and the Great Salt Lake are

currently large-scale DLE project sites. The remaining salt

lakes and oceans listed have lower Li+ concentrations and are

prime candidates for DLE using the technologies reviewed in this

paper, given their ionic compositions.

Salt lake brines can generally be classified into four main types

based on their composition: carbonate (CO3
2−), sodium sulfate

(Na2SO4), magnesium sulfate (MgSO4), and chloride (Cl
−) (Qinghai

Institute of Salt Lakes, 2019). The first four salt lakes listed in Table 1

highlight the variation in ionic concentration across the four

different brine types. Ultimately, the ionic concentrations of the

different brine types and seawater impact the extraction technology’s

performance. The aqueous solution’s Mg2+ to Li+ mass ratio (Mg2+/

Li+) is a crucial example. A study on the major ionic concentrations

of 74 salt lakes in the Qinghai-Tibetan Plateau revealed that the

average Mg2+/Li+ ratios for carbonate, sodium sulfate, magnesium

sulfate, and chloride brines are 1.5, 24.6, 151.2, and 324.5 respectively

(Li et al., 2019b). Comparatively, the average Mg2+/Li+ ratio of

seawater is 7,340. Saline waters with an Mg2+/Li+ ratio equal to or

below ten ( ≤ 10) are classified as low − Mg2+/Li+, while those with

Mg2+/Li+ greater than ten (> 10) are classified as high-Mg2+/Li+.

(Heidari and Momeni, 2017). Therefore, seawater and sodium

sulfate, magnesium sulfate, and chloride brines are high − Mg2+/

Li+, low Li+ concentration solutions. Conversely, carbonate brines

are low − Mg2+/Li+, high Li+ concentration solutions. These brine

classifications are summarized in Table 2. Carbonate brine types

have been the most economical and sustainable Li+ extraction

resources for traditional evaporation and precipitation extraction

methods due to their low − Mg2+/Li+ mass ratios and higher Li+

concentrations relative to the other solutions (Li et al., 2019b; Zhang

et al., 2019). However, the emergence of the specialized precipitants,

solvents, Li-ion sieves, Li-imprinted membranes, and

electrochemical systems examined in this review may improve

the feasibility of extraction from high − Mg2+/Li+ and low Li+

concentration solutions. Further detail on how ionic
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TABLE 1 Major ionic concentration and competing ion mass ratios of select salt lakes and oceans.

Resource Location Reserves
(Mt)

Li+

(mg/L)
Cl−

(g/L)
Na+

(g/L)
SO4

2−

(g/L)
Mg2+

(g/L)
K+

(g/L)
HCO3

−

(g/L)
Mg2+

/Li+
Ca2+

/Li+
Na+

/Li+
K+

/Li+
pH Refs

Dongtai Lake (Magnesium
Sulfate)

QTP China 1 141 187 332 18 6 4 0 43 0 2,355 28 7.75 o

Lexiewudan Lake (Chloride) QTP China 0.06 103 54 30 1 1 2 0 10 19 291 19 8.2 f,o

Yibu Chaka (Sodium Sulfate) QTP China NP 43 43 34 17 1 1 0 23 0 791 23 8.2 o,p

Lake Zabuye (Carbonate) QTP China 1.5 970 156 130 39 0 41 0 0 0 134 42 9.2 f,i,j,n,o

Salar de Atacama Chile 9 2,100 119 51 38 12 24 NP 6 0 24 11 8.68 i,j,n,s,v

Salar de Uyuni Bolivia 21 960 190 91 21 20 17 NP 21 3 95 17 6.4 i,j,n,v

Salar del Hombre Muerto
(Well)

Argentina 1.2 504 151 92 8 0.79 6 NP 2 1 183 11 8 g,j,n

Lake Frome Australia 0.75 14 173 116 14 1 0.370 0.11 76 42 8,593 27 6.5 e,j

Dead Sea Israel 5.4 20 224 33 0.350 52 8 0 2,580 930 1,670 395 6.2 i,k,m,n

Great Salt Lake UT,
United States

0.53 18 72 41 8 4 2 0.47 222 11 2,283 133 7.95 i,l,n,v

Salton Sea CA,
United States

0.32 215 128 46 0.10 0.02 13 NP 0 106 215 58 5.2 i,j,n,y

Smackover Formation AK,
United States

0.75 174 172 67 0.45 3.5 3 0 20 198 385 16 5.35 c,t

Artic Ocean - - 0.26 0.04 0.03 0.01 0.004 0.001 NP 15 77 115 5 8.1 b

Atlantic Ocean - - 0.17 19 10.8 0.9 1.3 0.40 0.03 7,588 2,353 63,353 2,353 8 a,t,u

Pacific Ocean - - 0.19 19 10.7 2.7 1.3 0.40 0.14 6,760 2,135 55,693 2083 7.5 t,w,x

Arabian Gulf (Indian Ocean) - - 0.18 19 12.0 3.2 1.5 0.46 0.16 8,296 2,125 65,130 2,522 8 h

Caspian Sea - - 0.21 5.4 3.2 3.0 0.73 0.08 0.22 3,486 1,638 15,219 400 8 q,r

Red Sea - - 0.26 155 93 0.84 0.76 1.87 0.14 2,916 19,656 354,389 7,137 8.1 d,t

Note.Data is from Angino and Billings (1966)a, Brown et al. (2020)b, Collins (1974)c, Craig (1969)d, Draper and Jensen. (1976)e, Gao et al. (2016)f , Godfrey et al. (2013)g, Gouda et al. (1993)h, Grosjean et al. (2012)i, Gruber et al. (2011)j, Jamal and Khzahee

(2019)k, Jones et al. (2009)l, Katz et al. (2009)m, Li et al. (2019b)n, Li et al. (2019b)o, Li et al. (2006)p, Millero and Chetirkin. (1980)q, Pouraghabarar et al. (2021)r, Schmidt et al. (2019)s, Steiner et al. (2022)t, Summerhayes and Thorpe. (1996)u, Sun et al. (2021)v,

Takeuchi (1980)w, Voutchkov (2010)x, Williams and McKibben. (1989)y.
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concentration impacts each extraction technology will be provided

in the subsequent sections.

3 Traditional lithium extraction

The evaporation, purification, and reactive crystallization, or

precipitation, Li+ extraction method is credited as the first

technology investigated and applied in industrial applications.

The Li+ concentration of naturally occurring salt lake brines is

too low for cost-effective extraction without a pre-enrichment

process (Vikström et al., 2013; Flexer et al., 2018). Consequently,

solar energy is used to evaporate, and therefore, concentrate the Li+

in the brine after it is pumped from the salt lake into large

evaporation ponds. The optimal conditions for this process are

an arid climate, consistent, unidirectional winds, low salt water

permeability, and low rainfall. This evaporitic enrichment process

takes several months as the brine is cycled continuously through a

series of ponds that increase in salt saturation. When lithium

chloride (LiCl) concentration in the evaporation pond reaches

approximately 6,000 ppm, the brine is pumped to a recovery pond.

The ion salts that do not spontaneously precipitate, such as boron,

calcium, magnesium, and sulfate, must be removed with chemical

treatments. Lime (Ca(OH)2) is added to the brine to remove the

Mg2+ as magnesium hydroxide (Mg(OH)2) and remove sulfate as

calcium sulfate (CaSO4) via single-replacement and acid-base

neutralization reactions, respectively. The remaining brine is

treated with sodium carbonate (Na2CO3) to remove residual

Ca2+ as CaCO3 through a single-replacement reaction.

Additionally, the brine reaches critical supersaturation after

Na2CO3 is introduced, and Li2CO3 crystallization begins. The

crystal nuclei begin to form and grow as crystal ions spread

and deposit on the Li2CO3 nuclei surfaces. The Li2CO3 nuclei

grow into precipitated particles that aggregate into larger particles

(Zhao et al., 2019). The final product is a chemically stable,

odorless, white powder. Typically, the initial Li2CO3 product is

dissolved and re-precipitated until battery-grade purity (99.5 wt%)

is reached (Flexer et al., 2018). The final product is then used as a

precursor for the Li compounds utilized for the cathodes and

electrodes of Li-ion batteries. However, Li2CO3 can also be

converted into other industrial salts or treated to yield pure Li

metal.

This Li+ extraction method is the most conventional and

economical method to date, primarily due to its use of solar

energy for the Li+ enrichment process. Additionally, the

chemicals added for each ion salt precipitation step and the

production infrastructure afford low initial investment and

operation costs. However, there are significant drawbacks

associated with this extraction method. While Li2CO3

extraction from brine has lower life-cycle greenhouse gas

(GHG) emissions than ore mining, the initial product quality

is much lower (Kelly et al., 2021). Li2CO3 produced from

terrestrial extraction achieves an initial purity close to 99% wt.

Conversely, additional processing is required to achieve

comparable purity with conventional brine extraction, where

initial product purity ranges from 50 to 80% wt (Zhang et al.,

2019). Furthermore, the chemicals used for precipitation and the

waste produced by this process have raised many socio-

environmental concerns (Anlauf, 2016; Liu et al., 2019; Dorn

et al., 2020). There is a threat of Li2CO3 and sodium carbonate

leaching into the environment and contaminating the soil, air,

and freshwater supply of surrounding communities (Agusdinata

et al., 2018). Similarly, large amounts of waste are produced

during precipitation and generally left to accumulate on the

margins of the ponds. A salt lake with an annual production rate

of 18,000 MT will produce approximately 2 × 107 tons of waste,

which translates to a land area of 10 km2 (Flexer et al., 2018).

Therefore, practical resource, waste, and land-use management

strategies are of utmost priority and should be developed in

tandem with Li production expansion efforts. Further

investigation into the potential impacts on human health and

native biodiversity is also a critical component of expansion

efforts.

The economy of traditional Li extraction from low Li+

concentration aqueous solutions is highly dependent on four

key factors: 1) land and climate suitability; 2) production life

cycle time; 3) the brine’s natural Li+ concentration; and 4) the

mass ratio of competing ions to Li+ (i.e., Mg2+/Li+ mass ratio).

Producing Li from brine is an intricate process because

productivity is driven by environmental factors that are

impossible to control and increasingly more difficult to

predict due to the disruptive influence of climate change on

historical weather patterns. Consequently, a single extraction

facility can experience variations in production speed and

TABLE 2 Classification of the four major brine types according to Mg2+/Li+ mass ratio.

Brine Concentration High Mg2+/Li+ ( > 10) Low Mg2+/Li+ ( ≤ 10) Avg. Mg2+/Li+ Mass Ratio

Carbonate ✓ 1.5

Sodium Sulfate ✓ 24.6

Magnesium Sulfate ✓ 151.2

Chloride ✓ 324.5
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efficiency throughout the year (Perez de Solay, 2017). This

production instability is especially concerning, given that

12–24 months are required to enrich the brine for Li recovery

alone. Consequently, traditional Li+ extraction is uneconomical

for solutions with concentrations less than 30 ppm. For reference,

Salar de Atacama has one of the world’s highest Li+

concentrations (2,100 ppm) and evaporation rates (3,200 mm/

year), and the Li+ enrichment process ranges from 12 to

18 months. Finally, the Mg2+/Li+ mass ratio is perhaps the

most critical consideration for determining application

feasibility. High amounts of Mg2+ slow the evaporation

process and prevent LiCl formation, the first step to Li2CO3

production. Additionally, excessive Mg2+ causes precipitant

overconsumption, further contributing to precipitation

efficiency challenges and increasing operational costs.

Therefore, the traditional Li+ extraction method is

economically infeasible for aqueous solutions with high Mg2+/

Li+ mass ratios (> 10). However, most brines and seawater are

classified as high Mg2+/Li+ aqueous solutions (see Table 1). This

conundrum has motivated the development of the subsequent

technologies highlighted in this review.

4 HighMg2+/Li+ precipitant extraction

High Mg2+/Li+ precipitants continue to leverage traditional

precipitation extraction’s most advantageous aspects: a solar-

powered Li+ enrichment process (optional), low-cost chemical

agents, and easy industrialization. Their extraction mechanism is

identical: the precipitants are added to the aqueous extraction

solution to generate supersaturation via chemical reactions. Once

the extraction solution reaches critical supersaturation, the metal

ions present (Li+, Na+, K+, Ca2+, Mg2+) can be crystallized in

sequence so that the competing metal complexes are removed

and a high purity Li complex is the final product. However,

unlike traditional precipitants, they have effectively extracted Li+

from high Mg2+/Li+ and low Li+ concentration solutions.

Additionally, their selectivity rates are comparable to or

higher than the average selectivity rates achieved by

traditional precipitants. The main challenges facing high

Mg2+/Li+ precipitants are their sensitivity to precipitant dosage

(precipitant to target ion molar ratio), pH, temperature, and very

high competing ion concentrations. These factors directly impact

the technology extraction efficiency, the recovery and quality of

the Li products, and potential co-products. Similarly to

traditional precipitants, high operational costs stemming from

precipitant overconsumption, and pollution from process waste

are potential challenges. Therefore, extensive experimentation is

required to establish productive to optimal ranges for each

precipitant performance factor and substantiate their techno-

economic feasibility. Ultimately, their technological advantages

combined with the opportunity to co-precipitate additional

products for commercial resale indicate that high Mg2+/Li+

precipitants are promising for Li+ extraction from high Mg2+/

Li+ mass ratio brines. However, further experimentation is

needed to determine the feasibility of solely using these

precipitants for Li extraction from seawater. To date, high

Mg2+/Li+ precipitants have been paired with ion exchange

technologies for seawater extraction (Um and Hirato, 2014).

Table 3 provides the aqueous solution, Mg2+/Li+ mass ratio,

recovery, thermal stability, products, product quality,

extraction time, and optimal pH for various high Mg2+/Li+

precipitants.

4.1 Aluminate precipitation method

The aluminate precipitation method has demonstrated

excellent performance in Li+ recovery from high Mg2+/Li+

aqueous solutions in experiments dating back to 1960

(Goodenough, 1960; Goodenough and Stenger, 1961; Kaplan,

1963; Pelly, 1978; Epstein et al., 1981; Isupov et al., 1999;

Hamzaoui et al., 2007; Hamzaoui et al., 2008; Yang et al.,

2013; Li et al., 2015; Heidari and Momeni, 2017; Liu et al.,

2018). Epstein et al. (1981) precipitated Li+ from the dead sea as

lithium aluminate (LiAlO2), used a liquid-liquid extraction

technique to separate the Li+ from the Al3+. Similarly, Kaplan

(1963) recovered Li+ through LiAlO2 precipitation from dead sea

brine. Typically, an aluminum salt (AlCl3 · H2O) and sodium

hydroxide (NaOH) are added to the salt lake brines instead of

lime and sodium carbonate. The amorphous aluminum

hydroxide (Al(OH)3) created by this mixture selectively

precipitates Li+. Lithium aluminate precipitate

(LiCl.2Al(OH)3H2O) is produced, and the Li+ in the

precipitate is expulsed by manipulating the solution pH: the

Li+ is released from the precipitate in acidic and alkaline

conditions Zhang et al. (2019). Experimental studies with

synthetic brine report that the optimal values for Al/Li,

mixing time, pH, and temperature are 4.7, 3 h, 7.2, and 25°C,

respectively (Hamzaoui et al., 2007; Hamzaoui et al., 2008). The

highest Li percent recovery achieved with these parameters is

73%. However, the actual recovery in natural brine systems

decreased to 60%. This reduction in Li recovery is attributed

to brine impurities, such as boron, and variable environmental

conditions (Pauwels et al., 1995). The challenges associated with

this particular precipitation method are the sensitivities to Al3+/

Li+ ratio, mixing time, and the solution pH at ambient

temperatures.

Furthermore, Heidari and Momeni (2017) conducted

experimental studies on Li recovery from Urmia lake using

lithium aluminate. An aluminum salt, aluminum chloride

(AlCl3·6H2O), and NaOH were used to co-precipitate Li+

from two Urmia Lake water samples. The first sample had a

Li+ concentration of 0.038 ppm and an approximated Mg2+/Li+

mass ratio of 326. The second sample had a Li+ concentration of

0.055 ppm and an approximated Mg2+/Li+ mass ratio of 207.
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Therefore, both samples are high Mg2+/Li+ and low Li+

concentration aqueous solutions. The first step in the

extraction process involved adding and dissolving AlCl3·6H2O

into the water samples. Next the alkaline reagent, NaOH, was

added to increase the pH and form the precipitant, Al(OH)3. The

Li+ ions present in the solution were then absorbed into the

Al(OH)3. Finally, the Li
+ was desorbed from the solid phase using

sulfuric acid (H2SO4). The maximum Li recovery from both

samples occurred at a pH of 7.5. The sample with the highest Li+

concentration, 0.055 ppm, had a percent recovery of 76.4%,

whereas the sample with 0.038 ppm Li+ concentration had a

percent recovery of 71%. These Li percentages of recovery are

comparable to those achieved by traditional precipitants from

salt lakes with Li+ concentrations three to four orders of

magnitude higher than the two samples tested. Also, the high

Mg2+/Li+ mass ratios did not impact either sample’s Li+

adsorption or desorption process. Therefore, this technology is

promising for Li+ extraction from seawater, and other brines with

Li+ concentrations less than 30 ppm. The main challenges for Li+

extraction via this precipitant are the sensitivities to ambient

temperature, pH, and initial Li+ concentration. Heidari and

Momeni (2017) indicate Li+ adsorption is reduced when

temperatures exceed 30 °C. Furthermore, the amphoteric

properties of the Al(OH)3 surface groups only enhance the Li+

adsorption capacity when the pH is in the 7 to 8 range (Zymon

and Kurbiel, 1986). Finally, the efficiency of the Li+ adsorption

process improves with increasing Li+ concentration, as seen in

the percent recovery of the two samples. This finding suggests

that an Li+ pre-concentration step will be required to improve the

feasibility of this precipitant for large-scale Li production from

aqueous solutions with very high Mg2+/Li+ mass ratios and

seawater.

4.2 Aluminum layered double hydroxide
chloride precipitation method

Isupov et al. (1999) used a sorbent synthesized from

aluminum hydroxide and the chloride of the double

hydroxide of lithium and aluminum (LADH-Cl) to precipitate

and extract Li+ from natural brine. The reusable sorbent

demonstrated Li percent recovery ranging from 93% to 96%

TABLE 3 High Mg2+/Li+ precipitant extraction from salt lake brines, simulated brines, and seawater.

References Precipitation
method

Reagents Solution Mg2+/
Li+

Mass
Ratio

Recovery Thermal
stability

Product Product
quality

Ext.
Time

pH

Hamzaoui
et al. (2007)

Aluminum Al(OH)3 Tunisian
Brine

260 60% 25 °C LiAlO2 - 3 h 7

Pelly (1978) Aluminum Al(OH)3 Dead Sea
Brine

2,580 90% - LiAlO2 3 h 6.6–7.2

Heidari and
Momeni.
(2017)

Aluminum Al(OH)3 Urmia Lake 325.8 76.4% 30 °C Li+ - 3 h 7.5

Li et al. (2015) Aluminum Al-Ca alloy Salt Lake
Brine

- 94.6% 70 °C LiCl·Al(OH)3H2O - 1 h -

Goodenough,
(1960)

Aluminum Al(OH)3 Chloride
Brine

324.5 82% 25 °C LiCl - - 6.4

Goodenough
and Stenger
(1961)

Aluminum Al(OH)3 Chloride
Brine

324.5 91% 120–130°C LiCl - 1.5 h -

Isupov et al.
(1999)

Al-LDH LADH-Cl Natural
Brine

- 93–96% - LiCl 5–7 g/L 3–8

Paranthaman
et al. (2017)

Al-LDH LDH Geothermal
Brine

- 91% 95°C LiCl - - 6

An et al.
(2012)

Co-Precipitate Ca(OH)2,
Na2C2O4,
Na2CO3

Salar de
Uyuni Brine

21 90% Li+,
98.98%
Mg2+,
71.43% B

80–90°C Li2CO3 99.55% 1 h 11.3

Xu et al.
(2009)

Co-Precipitate NH3,
NH4HCO3,
NaOH

Salt Lake
Brine

- 98% Mg2+,
95% Li+

25 °C Li2CO3 - 20–30 min 12

Tran et al.
(2013)

Co-Precipitate C2H2O4,
NaOH

Salar de
Uyuni Brine

21 80% Ca2+,
95% Mg2+,
35% Li+, K+

20–22°C MgC2O4, CaC2O4,
Li2C2O4, K2C2O4

99.5% 1 h 3–5.5
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and an LiCl product quality of 5–7 g/l. Paranthaman et al. (2017)

developed a similar lithium aluminum layered double hydroxide

chloride (Al-LDH) sorbent for Li+ extraction using a three-stage,

bench-scale column extraction process. The aluminum Al-LDH

(Li:Al ratio 1:3) sorbent selectively precipitated LiCl from

geothermal brine with an initial Li+ concentration of 360 ppm.

The Mg2+/Li+ ratio of the brine is unreported. In the column

extraction process three solutions, the initial brine, intermediate

wash (NaCl + LiCl), and final strip solution (purely LiCl), are fed

into the column extractor. From there, two computer-operated

pinch valves are used to cycle the column extractor through three

steps: 1) loading the lithium sorbent with the LiCl present in the

brine; 2) washing the sorbent to remove any unwanted ions that

are trapped; 3) a final washing of the sorbent to desorb the

LiCl ions.

The Al-LDH extraction technology demonstrated an

approximated percent recovery of 91% and a high selectivity

of Li+ compared to competing ions Na+ and K+ at 47.87 and

212 selectivity, respectively. The only chemical agents required

for this process are NaCl and LiCl, and their low cost contributes

to the economy of this technology. Additionally, the load-wash-

elution cycle does not produce secondary waste, an important

consideration for environmental contamination and land use.

Although the sorbent composition and column extraction

technique could be further optimized to improve selectivity,

capacity, and competing ion removal, this novel sorbent

technology is a promising solution for Li extraction from

aqueous solutions with high competing ion to Li+ ratios.

4.3 Magnesium Co-precipitation method

The high concentrations of Mg2+ present in salt lake brines

and seawater have motivated investigations into the potential

economic benefits of Mg and Li co-precipitation extraction from

aqueous solutions. Mg and its compounds are essential to the

global agricultural, insulation, automotive, food, pharmaceutical,

chemical industries. The International Magnesium Association

estimates global Mg production exceeds 429,000 MT annually,

with steady increases attributed to the demand for Mg2+ alloys in

the automobile industry (Tran et al., 2013). On average, seawater

contains about 1,300 ppm of Mg2+, and the estimated global

resource of Mg bearing brines and bitterns is in the billions of

tonnes. Therefore, a co-extraction technology that efficiently

harvests Li and Mg from these abundant aqueous resources is

of high economic value.

Quintero et al. (2020) explored the use of oxalic acid

(C2H2O4) for Mg2+ and Ca2+ precipitation before Li+

precipitation. The recovery of these competing divalent ions

before Li+ improves the efficiency of Li+ selectivity and

produces high-quality calcium oxalate (CaC2O4) and

magnesium oxalate (MgC2O4). They achieved a 90% Ca2+

removal rate and a maximum yield of 88% for the solid Li+

and Mg2+ products, lithium carbonate (Li2CO3) and magnesium

hydroxide (Mg(OH)2), respectively. The Ca2+ extraction yield

was obtained by adding oxalic acid and sodium hydroxide

(NaOH) (5 M) to the Li-enriched refined brine and then

allowing a 2 h lapse at room temperature. The Oxalic Acid/Ca

was added until a molar ratio of 6:1 was achieved. A NaOH/

Oxalate molar ratio of 3:3:1 was used to lower the extraction

solution pH into a 0–1 range. The Li2CO3/Mg(OH)2 was then co-

precipitated by adding 5M NaOH and sodium carbonate

(Na2CO3). The Mg2+was precipitated with NaOH, then

Na2CO3 was used to precipitate the Li2CO3.

Technologies that remove and co-precipitate competing ions

(Mg2+ and Ca2+) from high Mg2+/Li+ and low Li+ concentration

aqueous solutions demonstrate high Li+ yield and extraction

efficiency rates. Additionally, their co-production of saleable

products, such as magnesium hydroxide, present a lucrative

opportunity to sustainably supply the industrial demand for

these co-products and Li. Overall, they present a more

efficient and sustainable crystallization process than what is

used in traditional precipitation extraction. The main

drawback of this technology is the sensitivity to pH and the

concentration of competing ions during the co-precipitation

processes. If the concentration of these ions is not controlled,

they become impurities that decrease the co-precipitation

efficiency and quality of the co-products. More authors have

explored the use of oxalic acid to remove or co-precipitate

competing ions in high Mg2+/Li+ and low Li+ concentration

aqueous solutions. An et al. (2012) used calcium hydroxide

and sodium oxalate in a two-step precipitation process to

recover > 90% of battery quality (99.55%) Li2CO3, 98.98% of

Mg2+, and 71.43% of boron from Salar de Uyuni brine. Xu et al.

(2009) developed a two-stage ammonia and ammonia

bicarbonate co-precipitation process to remove 98% of Mg2+

and recover 95% of Li+. Finally, Tran et al. (2013), Tran et al.

(2016) explored the co-precipitation of magnesium oxalate and

magnesium carbonate from Salar de Uyuni brine and achieved

99.5% and 99.6% purity, respectively.

5 Solvent extraction

Solvent extraction, also called liquid-liquid extraction (LLE), is a

method used to separate compounds according to their relative

solubilities into two immiscible liquid phases, an organic phase, and

an aqueous phase. An organic phase containing the solvent is added

to the aqueous Li solution to form organic Li+ complexes and

equilibrate coexisting metals (Na+, Mg2+, Ca2+). The Li+ complexes

and some residual impurity metals are transferred to the organic

phase. However, most impurity metals remain in the Li+ depleted

aqueous solution, or raffinate. The organic phase containing the

extracted Li+ complexes is scrubbed to remove the remaining

impurities. The scrubbed organic phase is stripped, typically with

an acid, to remove the Li+ in a highly concentrated strip liquor.
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Finally, the Li+ stripped organic phase is regenerated and recycled to

the extraction stage (Bang Mo, 1984; Butt et al., 2022). Cation

exchange is the driving mechanism for the extraction, scrubbing,

and stripping stages, and acid-base neutralization is the driving

mechanism for the organic phase regeneration stage (Shi et al.,

2018). This extraction process is typically stand-alone and does not

require the pre-concentration of Li+ in the aqueous solution.

Additionally, solvent extraction can achieve any concentration

factor up to the saturation limit compared to other DLE

technologies. However, like precipitation, solvent extraction

generates high volumes of harmful waste during the scrubbing

and stripping stages. Additionally, the corrosive nature of the

solvents and process solutions point to equipment and

environmental damages under continuous operating conditions.

Finally, the most significant barrier to the techno-economic

feasibility of solvents for low Li+ concentration solutions is their

high cost compared to present-day industrial Li+ precipitants and

solvents, which are ineffective for low Li+ concentration solutions.

Table 4 provides the aqueous solution, Mg2+/Li+ mass ratio,

selectivity, extraction efficiency, recovery, thermal stability,

regeneration, Li product, extraction time, and optimal pH value

for several solvents. Note that the extraction efficiency is the

percentage of the Li+ solute that moves from the brine to the

extraction solution.

TABLE 4 Li+ solvent extraction from salt lake brines, simulated brines, and seawater.

References Solvent
type

Solution Mg2+/
Li+

Mass
Ratio

Selectivity Extraction
efficiency

Recovery Thermal
stability

Regeneration Extraction
time

pH

Torrejos et al.
(2016)

Chelating
Acidic

Simulated
Brine

1954 Na+,
138 K+

72.8% 100%,
0.1 HCl

50°C 5 cycles 10 min 12

Xiong et al.
(2022)

Chelating
Acidic

Simulated
Brine

68.09 Ca2+,
24.53 K+,
16.32 Na+,
3.99 Mg2+

7% 20°C 30 min

Huang et al.
(2018)

Chelating
Polymer

Simulated
Brine

6.34 Ca2+,
8.91 K+,
5.83 Na+,
4.75 Mg2+

91.8% 25°C 5 cycles 3 h 6

Li et al.
(2019a)

Chelating Simulated
Brine

1,000 50 Li+/Na+,
84.6 Li+/K+,
157 Li+/Ca2+

1.1 mol/mol 85% 6 cycles 10 min

Bai et al.
(2020)

Chelating
Polymer

Simulated
Brine

12.3 Ca2+,
3.10 K+,
9.06 Na+,
3.79 Mg2+

4.43 mg/g 4.08 mg/g 25°C 5 cycles 2 h 6

Harvianto et al.
(2016)

Chelating
Neutral

Seawater 93% 65% 3 cycles 80 min 2–4

Zhou et al.
(2011)

Acidic
Neutral

LiCl 94.8 98% 25°C 10 min

Shi et al.
(2018)

Acidic
Neutral

Salt Lake
Brine

23,521.4 Li+/
Mg2+,
563.8 Li+/
H3BO3

96% 28 g/L 25°C 25 cycles 4 h 4.7

Su et al.
(2022)

Acidic
Neutral

Salt Lake
Brine

22 80% 100% 20°C 50 min 0.86

Bai et al.
(2022)

Ionic
Liquid

Simulated
Brine

274 98% 98% 25°C 6 cycles 20 min

Wang et al.
(2018)

Ionic
Liquid

Salt Lake
Brine

16 74.86 Li+ 91% 25°C 30 min 5

Wang et al.
(2018)

Ionic
Liquid

Salt Lake
Brine

16 71.29 Li+ 88% 25°C 30 min 5

Wang et al.
(2018)

Ionic
Liquid

Salt Lake
Brine

16 51.27 Li+ 88% 25°C 30 min 5

Wang et al.
(2018)

Ionic
Liquid

Salt Lake
Brine

16 44.68 Li+ 84% 25°C 30 min 5

Wang et al.
(2018)

Ionic
Liquid

Salt Lake
Brine

16 37% 25°C 30 min 5
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5.1 Chelating extractants

Several studies have investigated chelating extractants, such as

crown ether (CE) and its ether derivative for Li+ extraction. Their

polydentate structure encourages Li+ selectivity. Extraction using

these ethers follows Pearson’s hard-soft-acid-base (HSAB) principle.

The principle asserts that soft acids prefer to bond with soft bases,

and hard acids prefer to bond with hard bases. The hard acids

possess tiny, highly charged, non-polarizable acceptor atoms.

Conversely, softer acids have larger atoms with a lower charge.

Also, the bond between the hard acids and bases is dominated by

electrostatic interactions, and the bonds between soft acids and bases

are covalent. Applying these principles to Li+ extraction, CEs that use

ether oxygens, a hard base species, as donor atoms easily bond with

hard acid, alkali metal cations such as Li+ (Lowry and Richardson,

1987; Pearson, 1990). Li+ separation efficiency depends on the cavity

size of the CE or the CE derivative, especially when competitive ions

such as Na+ and Mg2+ are present in the extraction solution. The

most Li+ selective CEs are listed in Table 5 (Bartsch et al., 1985).

While the selectivity of CEs is competitive, even for high Mg2+/

Li+ ratio solutions, the commercial use of Li+ extraction using CEs

has been limited due to the high costs of the ethers and ether

derivatives (Hamilton, 1984; Swain, 2016). Additionally, the

influence of their underlying extraction mechanisms on the base

metal extraction process is not well understood (Swain, 2016). A

final consideration is the severely polluting and corrosive nature of

the chemical agents used in solvent extraction that ultimately reduce

the lifetime of the process equipment. These factors have

contributed to the delay in commercializing this solvent

extraction technology. However, the development of more

economical CEs could bridge this gap. Future developmental

efforts should focus on the three critical factors for CE Li

extractability: 1) the structure and size of the CE ring; 2) the

basicity of the pendent phenolic group (PPG); 3) the geometry

between the CE center and the PPG (Katayama et al., 1985).

5.2 Acidic extractants

There are two classes of acidic extractants for liquid-liquid

metal extraction: organophosphorus acids and carboxylic

acids. Both acids extract Li+ from aqueous solutions by

cation exchange (Peppard et al., 1958). This extraction

process is facilitated by increasing the aqueous solution pH.

Conversely, the Li+ stripping or elution process is triggered by

increasing the acidity of the aqueous stripping solution (Xie

et al., 2014). To date, acidic solvents have typically been used to

extract rare earth and heavy rare earth metals from aqueous

solutions, with organophosphorus acids being the more

conventional and efficient acid class for extraction

(Safarbali et al., 2016). Their characteristically high target

ion selectivity and separation efficiency have prompted

investigations into their use for aqueous Li+ extraction.

However, the best separation and extraction performance

has been achieved by a mixture of acidic and solvating

extractants (Chen and Wu, 2000). The oxygen atoms in

solvating extractants enable the aqueous solution molecules

to be incorporated into the Li+ coordination sphere to form an

extractable solvated complex (Fuks and Majdan, 2000;

Roundhill, 2001). Hano et al. (1992) demonstrated this

synergy in a foundational experiment investigating Li

recovery from geothermal brine using organophosphorus

acid and solvating extractants. Di-2-ethylhexyl-phosphoric

acid (D2EHPA) and 2-ethylhexyl-phosphoric acid 2-

ethylhexyl ester (MEHPA) were the extractant agents, and

tri-n-butylphosphate (TBP) or tri-n-octylphosphine-oxide

(TOPO) were the solvating extractants. The geothermal

brine samples used in the experiments were hot spring

water collected from Yamaga and Hazama, Japan.

The YamagawaterNa+/Li+ andMg2+/Li+ ratios are ~301 and ~4.

The Hazama water Na+/Li+ and Mg2+/Li+ ratios are ~184 and ~11,

respectively. The Hazama water samples are high Mg2+/Li+ and low

Li+ concentration aqueous solutions. The percent of Li+ extracted

from the Yamaga water samples for D2EHPA and MEHPA were

42.5% and 42.2%, respectively. The percent Li+ extraction from the

Hazama water samples for D2EHPa and MEHPA were 52% and

5.2%, respectively. The TOPO additive did not affect extraction

behavior. However, the TBP additive increased Li+ extraction in all

cases. Li+ extraction percentages for the Yamaga water samples with

additive, or D2EHPA + TBP and MEHPA + TBP, were 52.6% and

47.6%, respectively. Similarly, the extraction percentages for the

D2EHPA + TBP and MEHPA + TBP Hazama water samples were

88.3% and 11.7%, respectively. D2EHPA and MEHPA

demonstrated high selectivity of Li+ ions over Na+ and K+.

However, Ca2+ and Mg2+ had a greater affinity for the acidic

extractants and demonstrated extraction percentages greater than

91% (excluding Ca2+) from the MEHPA and MEHPA + TBP

Hazama water samples. D2EHPA + TBP demonstrated the

highest extraction performance overall. In a similar study, (Jang

et al., 2017), used D2EHPA and TBP to recover Li+ from oilfield

brine in two phases. In the first phase, 94.4% of Ca2+ and Mg2+ ions

were removed byD2EHPA. In the second phase, D2EHPA and TBP

recovered Li at a 41.2% extraction rate. The total amount of Li

recovered was 30.8%.

TABLE 5 Li+ selective crown ethers.

Crown ether Selectivity order Li+/Na+

14-crown-4 Li+ ≫ > Na+ > (No K+, Rb+, Cs+) 20

Benzo-14-crown-4 Li+ > Na+ > K+, Rb+ (No Cs+) 4.7

15-crown-4 Li+ > Na+ > K+ > Cs+ > Rb+ 3.5

13-crown-4 Li+ > Na+ > K+, Rb+ > Cs+ 2.3

Benzo-12-crown-4 Li+ > Na+ > K+ > Rb+ > Cs+ 1.8

12-crown-4 Li+ > Na+ > K+ > Rb+ ≥Cs+ 1.7
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The results from these experiments indicate that combining

acidic extractants D2EHPA and MEHPA and neutral extractants

(TBP) is ideal for Li+ extraction from aqueous solutions with

minimal divalent ion (Mg2+ and Ca2+) concentrations such as the

Salar de Atacama and Lake Zabuye brines. The use of these

solvents for Li extraction from high Mg2+/Li+ and Na+/Li+

seawater is infeasible because Li+ is too dilute. However, these

extractants could be leveraged as pre-separation agents that

remove the competing divalent ions (Mg2+ and Ca2+) before

an additional selectivity process is used to extract the remaining

Li+ ions from solutions with exorbitant competing ion to Li+ mass

ratios. Many other authors have investigated other

organophosphoric extractants and TBP for aqueous Li+

extraction in recent years (Torrejos et al., 2015; Nguyen and

Lee, 2018; Su et al., 2022).

5.3 Ionic liquid extractants

Ionic Liquids (ILs) are organic compounds comprised of ions

with melting points at or below room temperature (25°C). They

have many advantageous solvent properties, including high

thermal stability, selectivity, and separation efficiency, but

marginal volatility (Mori et al., 2015; Patil et al., 2015; Rama

et al., 2015). These properties have garnered the interest of

researchers working to develop augmented solvents for metal

ion extraction. Traditionally, conventional molecular extractants

have been combined with ILs that contain fluorinated anions

because their immiscible properties facilitate the formation of

hydrophobic complexes with the metal ions for extraction.

However, extraction with fluorinated ILs leads to hydrofluoric

acid contamination, limiting the reuse of ILs for continuous

extraction.

Shi et al. (2017) investigated the use of two non-fluorinated

ionic liquids (ILs), tetrabutylammonium bis(2-ethylhexyl)-

phosphate ([N4444][DEHP]) and tetraoctylammonium bis(2-

ethlyhexyl)-phosphate ([N8888]) for aqueous Li+ extraction.

These novel ILs, or functionalized ionic liquids (FILs), were

prepared via ion exchange and neutralizing reactions. The Li+

extraction performance of the DEHP-type FILs was tested using

a multi-metal-ion solution that contained Li+, Na+, K+, Rb+, and

Cs+. Both FILs preferred the alkali metal with the smallest ionic

radius and the highest surface charge density. Therefore, Li+

had the leading electrostatic interactions and formed the most

stable species with the FILs’ [DEHP]− anions. Additionally, the

initial Li+ stripping percentage of 90% increased with the

number of stripping stages, and complete Li+ stripping

occurred after four stages with minimal reduction in the

FILs’ extraction efficiency. Overall, the [N4444][DEHP] FILs

demonstrated higher extraction efficiencies than [N8888]

[DEHP] at 92% and 83%, respectively, due to the increased

steric hindrance associated with longer alkyl chains. Bai et al.

(2022) investigated the synergy of a phosphate-based ionic

liquid ([N1888][P507]) and a neutral extractant + acidic ion

compound system (TBP + FeCl3) for Li+ extraction from

high Mg2+/Li+ brine. At optimal extraction parameters, 97%

of the Li+ solute could be stripped from the solvent.

Additionally, an initial extraction efficiency of 61% was

achieved after the first extraction-stripping-extraction cycle

and rose above 70% for the five remaining cycles.

[N4444][DEHP] and [N8888][DEHP] FILs show promising

continuous Li extraction efficiency from aqueous solutions

containing competing monovalent ions (Na+ and K+). Both

FILs outperformed DEHPA, a popular acidic extractant (Shi

et al., 2017). However, further investigation into the performance

of these FILs in the presence of competing divalent ions such as

Mg2+ is needed to determine the feasibility of extraction from

brines, seawater, and any other high Mg2+/Li+, low Li+

concentration solutions. Conversely, the novel (([N1888][P507])

+ TBP + FeCl3) extractant system demonstrated promising Li+

separation and extraction from high Mg2+/Li+ salt lake brine.

Unfortunately, there is a potential trade-off between separation

and extraction efficiency: increasing the concentration of

([N1888][P507]) increases Li+ separation efficiency but causes

slight reductions in the extraction efficiency. Further

experimentation with extraction solutions similar to those of

salt lake brines or seawater would provide more insight into the

feasibility of ILs for these applications. In recent years, more

authors have studied the performance of other FILs in either salt

lake brines or high Mg2+/Li+ aqueous solutions (Gao et al., 2016;

Wang et al., 2018; Zante et al., 2019; Bai et al., 2020; Bai et al.,

2021; Olea et al., 2022).

6 Lithium-ion sieve adsorption

Ion sieve adsorbents are inorganic materials containing

template ions that are introduced into an inorganic

compound by redox or an ion exchange reaction. A heating

process is then used to obtain the compound oxide. After the

compound oxide is formed, an eluent is used to remove the target

ions from their crystal positions while retaining the vacancy sites

on the crystal. The resulting sieve extracts Li+ via two adsorption

mechanisms: physisorption driven by electrostatic interaction

and chemical adsorption via ion exchange (Xu et al., 2019).

Hence, the target ions can only be obtained in these crystal sites if

the ionic radii are similar to the ionic radii of the template ion.

Additionally, the material tends to have a higher selectivity for

ions that form the best crystal configuration. As a result, the

template ions create a reliable selection effect, allowing for the

adsorption of target ions even if multiple ions are present in the

solution. This process is known as the “ion-sieve effect” (Weng

et al., 2020).

One critical techno-economic challenge facing ion sieves is

their tendency to disintegrate during adsorption/desorption

cycling. This loss is caused by biofouling and the hydrochloric
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acid treatments used for the Li+ desorption process. Both sources

of loss reduce the adsorption capacity, selectivity, and separation

efficiency of the ion sieve during cycling. Consequently,

operational costs are driven up because more sieve is needed

to compensate for these losses, and Li-ion sieve synthesis is

expensive (Hu et al., 2022). Additionally, hydrochloric acid is

generally the recovery solution used for sieves and its caustic

nature raises concerns for environmental pollution. A final

drawback is the extraction lead time. Typically, extraction

using ion sieves takes days to complete. (Chung et al., 2008;

Chitrakar et al., 2014).

Despite the drawbacks, ion sieves demonstrate high Li+

adsorption, selectivity, and cycle stability. Also, the sieves can

be regenerated and reused, albeit with some loss after each cycle.

More importantly, the adsorption capacity is not impacted by the

presence of competing ions, such as Na+, K+, Na2+, andMg2+. The

passive nature of the extraction process is conducive to low initial

investment and operation costs. Lastly, in addition to superior

selectivity and separation efficiency, Li-ion sieves demonstrate

higher theoretical uptake capacity. This feature is particularly

desirable for Li+ extraction from high Mg2+/Li+ solutions with Li+

concentrations below 30 ppm.

6.1 Li+ manganese oxide-type lithium-ion
sieves

Manganese dioxide exists in many different crystalline

structures: α-MnO2, β-MnO2, γ-MnO2, and λ-MnO2. While

each structure demonstrates a strong affinity for Li+, the

spinel-type hydrous manganese oxides, λ-MnO2, are the top

performers (Voinov, 1982; Chitrakar et al., 2000a; Chitrakar

et al., 2000b; Liu et al., 2019). This top performance is

attributed to the spinel structure of the λ-MnO2 ion sieve

precursor, Li+ manganese oxide (LiMn2O4). The template

spinel formula is (AB2O4), where the divalent cations, A,

occupy eight tetrahedral voids, the trivalent ions, B, occupy

16 octahedral voids, and the oxygen anions, O, occupy the

32 face-centered cube lattice points (Hill et al., 1979).

Therefore, the ratio of A: B: O is 8: 16: 32, which can be

reduced to 1: 2: 4, or the conventional spinel formula.

As it relates to spinel LiMn2O4, the Li+ cations occupy the

eight tetrahedral voids, manganese (III) and manganese (IV)

occupy the 16 octahedral voids, and the oxygen anions occupy

the 32 face-centered cube lattice points. The manganese ions

have octahedral coordination with the oxygen anions, and the

MnO6 octahedra share edges that create a three-dimensional host

for the Li+ guest cations. Furthermore, the Li+ tetrahedral voids

are located the furthest away from the manganese octahedral

voids of the interstitial tetrahedra and octahedra. Consequently,

each Li+ tetrahedron face is matched with an octahedral void (Xu

et al., 2016). This combination of structural features inhibits easy

Li-ion exchange without changing crystalline structure during

reversible Li+ intercalation. Additionally, the Mn-O framework

remains stable after desorption/regeneration with an acidic

treatment (Wang et al., 2008; Wang et al., 2014).

The LiMn2O4 precursor has low Li+ adsorption capacity and

stability. The maximum adsorption capacities achieved from

seawater and salt lake brine are 1.1 and 30.9 mg/g,

respectively (Chitrakar et al., 2000b; Wang et al., 2014).

However, the stoichiometric proportion between Li: Mn can

be altered to increase the theoretical Li+ capacity of LMO-type

LISs (Xu et al., 2016). Chitrakar et al. (2000b) used a

hydrothermal method to synthesize Li1.33Mn1.67O4 and cubic

Li1.67Mn1.67O4, which achieved Li+ adsorption capacities of

25 and 37 mg/g from seawater and salt lake brine,

respectively. The highest recorded Li+ adsorption capacities for

Li1.33Mn1.67O4 from seawater and salt lake brine are 54.7 and

63 mg/g, respectively (Zandevakili et al., 2014; Ryu et al., 2016).

Additionally, the highest recorded Li+ adsorption capacities for

Li1.67Mn1.67O4, from seawater and salt lake brine are 40 and

28 mg/g, respectively (Chitrakar et al., 2001; Xiao et al., 2013).

Currently, Li1.67Mn1.67O4 has the highest theoretical adsorption

capacity at 72.8 mg/g. However, Li1.67Mn1.67O4 requires a two-

step preparation process compared to the one-step required for

the other precursors. Consequently, LiMn2O4 and Li1.33Mn1.67O4

are more economical for industrial Li+ extraction applications at

this time. Table 6 provides the adsorption capacity, cyclical

stability, thermal stability, environmental durability, extraction

time, and optimal pH of various LMO-type LISs used for Li+

extraction from salt lake brines, simulated brines, and seawater.

The main challenges facing LMO-type LISs for large-scale,

industrial Li+ extraction applications are the residual impacts of

the precursor acid treatments. These acid treatments reduce the

LMO-type adsorbent stability, adsorption capacity, and

durability and cause environmental pollution. While the acid

effectively removes most of the Li+ without disrupting the

precursor crystalline structure, it simultaneously causes

manganese to dissolve with each successive treatment (Shen

and Clearfield, 1986; Wang et al., 2009; Xiao J. L. et al., 2015;

Gao et al., 2018; Weng et al., 2020). The dissolution of the Mn is

attributed to the Jahn Teller effect induced by trivalent

manganese (Mn3+). The octahedral MnO6 structure becomes

increasingly distorted, reducing the stability, adsorbent capacity,

and durability, and causing considerable water pollution (Jin

et al., 2018; Weng et al., 2020). To combat this dissolution

phenomenon, many authors have experimented with replacing

the Mn3+ with: divalent cobalt (Co2+), nickel (Ni2+), and

magnesium (Mg2+); trivalent chromium (Cr3+), aluminum

(Al3+, and iron (Fe3+); and, other rare-earth ions (Malyovanyi

et al., 2003; Ein-Eli et al., 2005; Eftekhari et al., 2006; Wu et al.,

2007; Iqbal and Ahmad, 2008; Amaral et al., 2010; Sakunthala

et al., 2010; Wu et al., 2010; Helan et al., 2011; Xu et al., 2011; Xu

et al., 2016). LMO-type precursors doped with Fe3+, antimony

Sb(v), and Al3+ demonstrated the highest Li+ extraction capacity

with minimal Mn dissolution. However, ascertaining the optimal
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molar ratio between the doping ions and Mn is critical for

achieving a high Li+ adsorption capacity. Further investigation

is needed into improving the cyclical stability and practical ion

exchange capacity of Li-Mn-O precursors for large-scale Li

production.

6.2 Lithium titanium oxide-type lithium-
ion sieves

At present, there are two classifications for LTO-type LISs:

layered H2TiO3 and spinel H4Ti5O12. The structure of H2TiO3 is

attributed to the layered structure of the Li2TiO3 precursor that is

synthesized to create the LIS. Similarly, the spinel structure of

H4Ti5O12 is derived from the spinel structure of its precursor,

Li4Ti5O12. Compared to LMO-type LISs, LTO-type LISs

demonstrate high adsorption capacities, with marginal Ti loss.

The main advantage of these LISs is that they are more

ecologically friendly because titanium ions are

environmentally benign and easy to remove from liquids (Xu

et al., 2016; Gopinath et al., 2020). Unlike Mn, the Ti valence ions

remain stable during permeation and adsorption. Consequently,

LTO-type LISs demonstrate higher theoretical adsorption

capacity and better recyclability for continuous extraction

(Marthi et al., 2021). Additionally, the Ti-O bonds present in

Li4Ti5O12 provide anti-acidic properties: an especially

compelling feature for extraction from seawater and salt lake

brines. The main drawback of LTO-type LISs is that they

demonstrate slower Li+ adsorption rates than LMO-type LISs

(Chitrakar et al., 2014). Table 7 provides the adsorption capacity,

cyclical stability, thermal stability, environmental durability,

extraction time, and optimal pH of various LTO-type LISs

TABLE 6 Li+ LMO-Type LIS extraction from salt lake brines, simulated brines, and seawater.

References Precursor Ion sieve Solution Mg2+/
Li+

Mass
Ratio

Adsorption
capacity

Cyclical
stability

Thermal
stability

Envi.
Durability

Ext.
Time

pH

Chitrakar et al.
(2000b)

LiMn2O4 λ-MnO2 Seawater 39.9 mg/g
(Theoretical),
1.1 mg/g
(Practical)

22°C 1.5% Mn Loss 144 h 8.1

Chitrakar et al.
(2000b)

Li1.33Mn1.67O4 MnO2·0.31H2O Seawater 59.5 mg/g
(Theoretical),
25.5 mg/g
(Practical)

22°C < 1.5% Mn
Loss

144 h 8.1

Chitrakar et al.
(2000b)

Li1.67Mn1.67O4 MnO2·0.5H2O Seawater 73 mg/g
(Theoretical),
37mg/g
(Practical)

22°C < 1.5% Mn
Loss

144 h 8.1

Xiao et al.
(2015a)

Li4Mn5O12 PAM-MnO2 Qarhan
Brine

264 19 mg/g 30 cycles 30°C 48 h 10.1

Xiao et al.
(2015a)

Li4Mn5O12 MnO2·0.4H2O Qarhan
Brine

446 39 mg/g, 2.8 mg/
g (> 55 cycles)

55 cycles 30°C 2% Mn Loss 48 h 10.1

Zhang et al.
(2009)

Li4Mn5O12 β-MnO2 LiCl 46 mg/g 30°C 0.28 mg/g Mn
Loss

72 h 10.1

Zandevakili et al.
(2014)

Li–Mn–O λ-MnO2 Urmia
Lake Brine

325.8 63 mg/g, 62 mg/
g (> 3 cycles)

3 cycles 30°C 1% Mn Loss 120 h 11

Wang et al.
(2009)

Li1.51Mn1.63O4 H1.36Li0.07Mn1.65O4 LiCl 33.3 mg/g 25°C 1% Mn Loss 48 h 12

Wang et al.
(2009)

Li1.57Mn1.65O4 H1.41Li0.01Mn1.65O4 LiCl 37.6 mg/g 25°C 1% Mn Loss 48 h 12

Chitrakar et al.
(2012)

Li1.33Mn1.67O4 H1.33Mn1.67O4 Bolivian
Brine

22 30 mg/g, 27 mg/
g (10 cycles)

10 cycles,
45%
Recovery

0.5% Mn Loss
(Cycles 1–4)
0.3% Mn Loss
(Cycles 5–10)

24 h 6.6

Chitrakar et al.
(2012)

Li1.6Mn1.6O4 H1.6Mn1.6O4 Bolivian
Brine

22 32 mg/g, 27 mg/
g (10 cycles)

10 cycles,
54%
Recovery

0.5% Mn Loss
(Cycles 1–4)
0.3% Mn Loss
(Cycles 5–10)

8 h 6.6

Ryu et al.
(2016)

Li1.33Mn1.67O4 LMO Chitosan Seawater ~8,530 54.65 mg/g,
46.5 mg/g
(3 cycles)

3 cycles,
96%
Recovery

20°C ~9.2% Mn Loss
(3rd Cycle)

72 h 6.6
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used for Li+ extraction from salt lake brines, simulated brines,

and seawater.

6.2.1 H2TiO3 lithium ion sieves
The crystal structure of Li2TiO3 can be represented as a cubic

close packing of oxygen atoms with metal atoms placed in the

octahedral voids. Li+ and Ti4+ form two layers. The first layer is solely

composed of Li atoms, and the second is composed of 2/3 Ti atoms

and 1/3 Li atoms. The crystal structure is formed by successive stacks

of oxygen, lithium, and titanium/lithium layers (e.g., O/Li-Ti/O/Li/

O) that conform to the C2/c space group symmetry (Watanabe et al.,

2020). This crystal formation of Li2TiO3, also known as monoclinic

β-phase Li2TiO3, achieves nearly complete Li extraction (100%) to

form monoclinic H2TiO3 when treated with acid at comparatively

low temperatures (700°C). Two other phases of Li2TiO3 exist, α-

phase and γ-phase, but the β-phase is the most promising for

aqueous Li extraction. The α-phase has lower thermal stability and

will transform into β-phase when exposed to temperatures above

300°C. Alternatively, γ-phase only achieves 50% Li+ extraction

(Chitrakar et al., 2014).

Chitrakar et al. (2014) investigated the Li+ ion exchange reaction

of H2TiO3 in brine collected from Salar de Uyuni, Bolivia. H2TiO3

demonstrated initial adsorption of 26 mg/g within 1 h and reached

equilibrium after 24 h. A Li+ adsorptive capacity of 32 mg/g was

achieved, reaching equilibrium after 8 h. The high concentrations of

competing monovalent (Na+ and K+) and divalent (Mg2+ and Ca2+)

ions present in the brine did not impact the Li+ selectivity. Finally,

after elution with an HCl solution, H2TiO3 demonstrated a Li+

adsorptive capacity of 31.4 mg/g, 98% of the initial capacity reported.

Zhang et al. (2016) prepared H2TiO3 using a sol-gel process and

tested its Li+ adsorption performance from LiOH and LiCl + NaOH

solutions. The maximum Li+ adsorption capacities from the LiOH

and LiCl + NaOH solutions were 27.4 and 24.1 mg/g, respectively.

They found that alkaline pH values and higher initial Li+

concentrations yield higher adsorption capacities.

While the theoretical adsorption capacity of H2TiO3 LISs is

higher thanmost LMO-type LISs, the practical adsorption capacity

demonstrated after recovery from brine or seawater is often lower

(Dai et al., 2021). Authors have explored the use of doping to

potentially increase the adsorption capacity of LISs (Chitrakar

et al., 2014;Wang et al., 2019; Qian et al., 2021a; Qian et al., 2021b).

Dai et al. (2021) tested the adsorption performance of Al-doped

H2TiO3 using a LiCl solution. A maximum adsorption capacity of

32.1 mg/g was achieved, with the adsorption capacity remaining at

29.3 mg/g after five HCl elution cycles. The undoped H2TiO3

achieved a maximum of 29.73 mg/g. Although there was no major

improvement in adsorption capacity, the Al-doped H2TiO3

demonstrated favorable adsorption selectivity and solubility

resistance. Additionally, the dissolution of Ti after multiple

regenerations was marginal (2.53%). Further investigation into

doping materials and other capacity-increasing processes is

recommended to improve the feasibility of H2TiO3 LISs for Li+

extraction from high Mg2+/Li+ and low Li+ concentration aqueous

solutions. The chemical stability, cyclical stability, and eco-

friendliness of H2TiO3 LISs signal their potential to surpass

LMO-type LISs if their adsorption capacity is significantly

improved.

6.2.2 H4Ti5O12 lithium ion sieve
In the Li4Ti5O12 spinel structure, Ti atoms occupy 5/6 of the

16 days octahedral voids, Li atoms occupy the remaining 16 days

octahedral voids, and oxygen atoms occupy the 32e voids

TABLE 7 Li+ LTO-Type LIS extraction from salt lake brines, simulated brines, and seawater.

References Precursor Ion
sieve

Solution Mg2+/
Li+

Mass
Ratio

Adsorption
capacity

Cyclical
stability

Thermal
stability

Environmental
Durability

Ext.
Time

pH

He et al. (2015) Li2TiO3 H2TiO3 LiOH 57.8 mg/g 5 cycles 60°C 25–30 mg/g, ≤
5 cycles

8 h 6.5

Chitrakar et al.
(2014)

Li2TiO3 H2TiO3 Salar de
Uyuni Brine

18 32.6 mg/g 2 cycles 60°C 32.6 mg/g, ≤ 2 cycles 24 h 6.5

Limjuco et al.
(2016)

Li2TiO3 H2TiO3 Seawater ~8,530 30 mg/g 5 cycles 30°C ~30 mg/g ≥ 5 cycles 24 h 7

Lawagon et al.
(2016)

Li2TiO3 H2TiO3 LiOH + LiCl 94.5 mg/g 5 cycles 30°C ~ 94.5 mg/g ≤ 5 cycles,
< 0.5% Ti Loss

12 h 11

Wang et al.
(2019)

Mo-doped
Li2TiO3

Mo-Ti-
0.15(H)

LiOH 35 78 mg/g 6 cycles 30°C ~78.8 mg/g ≤ 6 cycles 48 h 8.8

Wang et al.
(2016)

β-Li2TiO3 H2TiO3 LiOH 76.7 mg/g 30°C 24 h 5–7

Moazeni et al.
(2015)

Li4Ti5O12 H4Ti5O12 LiCl 39.4 mg/g 30°C 120 h 9.17

Shi et al. (2013) Li2TiO3 H2TiO3 LiOH 39.8 mg/g 8 cycles 60°C 0.17% Ti Loss ≤
8 cycles

192 h
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(Ohzuku et al., 1995). The resulting [Li1/3Ti5/3]
16dO4 framework

features face shared tetrahedral and octahedral interstitial Li-ion

positions in the lattice that create three-dimensional connections

for Li-ionmigration. In addition to creating stronger Ti-O bonds,

this spinel structure enables easy migration of Li+ ions for

recovery and elution with minimal Ti dissolution (Ouyang

et al., 2007). Consequently, H4Ti5O12 LISs have higher Li+

capacity and greater cyclical stability than LMO-type LISs (Xu

et al., 2016). Furthermore, a preliminary study of Li4Ti5O12 for

Li+ recovery from Salar de Atacama brine and seawater revealed

that Li4Ti5O12 has high Li+ selectivity for aqueous solutions with

high concentrations of H and Na+. Consequently, Li4Ti5O12 is

predicted to be one of the most promising LIS precursors for

large-scale Li+ extraction from brine and seawater (Snydacker

et al., 2018).

Gu et al. (2016) studied the ion exchange properties and

selectivity of Li4Ti5O12 for Li recovery from a LiOH solution.

Li4Ti5O12 was prepared by a solid-state reaction of Li2CO3 and

TiO2 then treated with nitric acid to form the H4Ti5O12 LIS. The

LISs demonstrated excellent Li+ selectivity of 145.7 ml/g, with only

a moderate reduction of 5.5% after three recovery/elution cycles.

Wei et al. (2020) synthesized H4Ti5O12 nanofibers (P-HTO-NF)

for Li recovery from simulated brine water (Li+ 40 mg/L, Na+

241 mg/L, K+ 443 mg/L, Mg2+ 501 mg/L, Ca2+ 535 mg/L). The

P-HTO-NF demonstrated an adsorption capacity of 59.1 mg/g,

which is 93% of the theoretical capacity. Adsorption equilibrium

occurred within 30 min. Also, the equilibrium distribution

coefficient for Li+ was two orders of magnitude higher than the

coefficients of the competing ions, indicating an extraordinary Li+

selectivity. Finally, the LIS demonstrated excellent cyclical stability,

with capacity remaining at 86.5% after six cycles. Similarly, Zhao B.

et al. (2020) explored using H4Ti5O12 sheets in place of the

traditional powder adsorbent to recover Li from Lagoco Salt

Lake samples and simulated brine. While the adsorption

capacity was not as competitive at 21.57 mg/g, 96.84% of the

initial adsorption capacity was retained after four cycles.

H4Ti5O12 LISs have demonstrated superior Li+ selectivity,

adsorption capacity, chemical stability, and cyclical stability after

multiple adsorption/elution cycles from high Mg2+/Li+ and low

Li+ concentration aqueous solutions. The main challenge facing

the commercialization of H4Ti5O12 LISs is their novelty. Few

experiments have explored the performance of this sieve in

traditional powder form, and the limited studies of alternative

morphologies have remained at the bench scale. Further

performance testing of H4Ti5O12 LISs for recovery from high

Mg2+/Li+ and low Li+ concentration aqueous solutions is needed.

7 Lithium-ion imprinted membrane
extraction

Ion-imprinted membranes (IIMs) are the combined product

of membrane separation and ion-imprinting techniques.

Membrane separation is a highly efficient technique that

utilizes pores to filter and selective permeability to separate

substances in aqueous solutions (Malliga et al., 2020). These

aqueous solutions are driven through the membrane by a

concentration, pressure, or potential gradient. Furthermore,

ion-imprinting is a bio-inspired technique that mimics the

“lock and key” interaction between natural receptors and

ligands (Lu et al., 2019). During the ion imprinting process,

polymeric matrices are loaded with artificial ionic recognition

sites complementary to the template ion’s size and shape (Ertürk

and Mattiasson, 2017). Protonation is then used to remove the

template ions, leaving the recognition sites open for target ion

adsorption. In summary, IIMs leverage the functionality

provided by both technologies and can selectively separate

and detect target ions via ion-selective recognition (Lu et al.,

2019). Additionally, these membranes can be modified with

interlayers or imprinted with nanomaterials that prevent

membrane fouling, a major challenge for all membrane

extraction technologies (He et al., 2022; Sun et al., 2022).

Similarly, the antifouling properties suggest that the standard

feed solution pretreatment required for most membrane

technologies may not be required for IIMs. Li-IIMs’ high

separation efficiency, selectivity, low energy consumption, easy

operation, and unique antifouling properties have prompted

recent investigations into its feasibility for Li+ extraction from

low Li+ aqueous solutions. Table 8 provides the selectivity,

rebinding capacity, thermal stability, regeneration, cyclical

stability, specific energy consumption, extraction time, and

optimal pH of various IIMs used for Li+ extraction from

simulated brines. Note that the rebinding capacity is the

degree to which the Li-ions in the aqueous solution can bind,

detach, and rebind to the IIMs Li+ recognition sites.

The most significant challenges facing the commercialization

of IIMs for industrial scale, aqueous Li+ extraction are

pH sensitivity, temperature dependence, extraction time, and

the ratio of template ions, ligands, and functional monomers (Lu

et al., 2019). The pH value is generally the determining factor for

IIM ion selectivity. When the pH value is too low, protons

compete with target ions for binding sites, decreasing the

membrane’s adsorption capacity. Increasing the pH value can

reduce this competition. Ultimately, the pH value can be adjusted

to trigger Li+ adsorption/desorption and, therefore, potential

membrane regeneration for continuous extraction. However,

extensive experimentation is required to identify the

pH values that optimize Li+ adsorption/desorption rates

without destroying the IIMs ion recognition sites. The optimal

pH value varies across IIM technologies. Furthermore, IIMs

demonstrate enhanced adsorption capacities at higher

temperatures. Consequently, passive Li+ extraction from

seawater and salt brines with cooler temperatures or

extraction during winter months may be economically

infeasible. Similar to the pH value, additional experimentation

is required to identify an extraction time that maximizes recovery
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without damaging the IIMs. Extended elution periods do not

guarantee higher percent recovery. Finally, the ratio of templates

to ligands to functional monomers dictates the number of

effective binding sites on the membrane. Therefore, research

that identifies the optimal ratio of templates to ligands to

functional monomers, which varies according to the materials

used to prepare the IIMs, is critical to adsorption capacity and

overall performance. Addressing these performance challenges

will significantly improve the techno-economic feasibility of Li-

IIMs, especially compared to other membrane extraction

technologies that are subject to fouling and require pretreated

extraction solutions.

7.1 High-selective multilayered
Li+-imprinted membranes

Lu et al. (2018) developed and tested High-selective Li-Ion-

Imprinted Membranes (Li-IIMs) with enhanced hydrophilicity

and stability for aqueous Li+ extraction. Polyether sulfone

membranes (PMs) were selected for their high porosity, high-

pressure resistance, and high stability. PMs have also

demonstrated satisfactory performance in other ion separation

experiments (Maheswari et al., 2012; Mortaheb et al., 2014).

Synthetic polydopamine (PDA) layers were synthesized on the

surface of the PMs to enhance interfacial adhesion for the

attachment of the ion-imprinted polymers. Additionally,

silicon dioxide nanoparticles (SiO2) were added to the PMs

surface to enhance their hydrophilicity and stability. Finally,

12-crown-4 ether and Li+ ions were imprinted on the PMs’

surfaces to create the adsorption cavities and ion recognition

sites, respectively. The Li-IIMs demonstrated high relative

selectivity with coefficients of 1.85 and 2.07 for Li+/Na+ and

Li+/K+, respectively. The permselectivity (separation efficiency)

factors were also high, with coefficients of 7.39 and 9.86 for Na+/

Li+ and K+/Li+, respectively. The rebinding (adsorption) capacity

reached a maximum of 90.3% of initial binding after five cycles of

adsorption/desorption with a slight decline to 88.1% after ten

cycles.

While the Li-IIMs demonstrated excellent performance,

experiments with aqueous solutions that more closely

resemble the ionic concentration of salt lake brine and

seawater should be investigated. Even salt lakes with higher

Li+ concentrations, like Salar de Atacama (2,100 ppm), have

Na+/Li+ and K+/Li+ ratios greater than 10:1, as compared to

the 1:1 concentration used in the Lu et al. (2018) experiments. In

2021, Ding et al. (2022) developed and tested a novel high-

selective ion imprinted polymer (sans membrane) for Li+

extraction lake Zabuye brine samples. The technology

achieved a maximum adsorption capacity of 1.1 mg/g. While

this is promising for green Li+ extraction from carbonate type,

low Mg2+/Li+ brines, experiments that investigate the

performance of these ion-imprinted technologies in high

Mg2+/Li+ aqueous solutions are needed.

7.2 PDMS-PDA Li+ -imprinted membranes

Yu et al. (2020) investigated the use of polydimethylsiloxane-

polydopamine (PDMS-PDA) Li-IIMs for rapid, high-efficiency

recovery of Li from seawater. A powerfully adhesive PDA layer

with numerous functional groups was synthesized on the PDMS

membrane surface via the self-polymerization of dopamine to

improve hydrophilicity. Carboxyl groups were then grafted onto

the PDA functionalized substrate per the hydrolysis of succinic

anhydride. The carboxyl-modified PDMS membranes were

further modified to construct ester-modified membranes. The

calix [4] arene ligand and Li-ions were used to create the

absorption cavities and ion recognition sites, respectively.

Finally, EDTA removed the template Li-ions from the

prepared Li-IIMs.

The PDMS-PDA Li-IIMs demonstrated high thermal

stability, with their rebinding capacity decreasing marginally

with increasing temperatures. Similarly, the modified

TABLE 8 Li+ IIM extraction from simulated brines.

References Membrane Solution Selectivity Rebinding
capacity

Thermal
stability

Regen Cyclical
stability

Sp. Energy
consumption

Ext.
Time

pH

Yu et al.
(2020)

PDMS-PDA LiCl 1.71 Na+,
4.56 K+,
3.80 Rb+

50.87 mg/g 20°C 43.94 mg/g
(4th cycle)

4 cycles 3 h 3

Liu et al.
(2020)

High-selective
Multilayered

Li Acidic
Solution

4.20 Na+,
4.11 K+,
4.13 Mg2+,
4.30 Al3+,
4.28 Fe3+

16.40 mg/g 25°C 95.88%
(5 cycles)

5 cycles −0.2 V 80 min 1

Lu et al.
(2018)

PDMS-PDA
12-crown-4

Simulated
Brine

1.85 Na+,
2.07 K+

27.55 mg/g 90.3%
(5 cycles),
88.1%
(10 cycles)

10 cycles 3 h 9
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membranes were stable in acidic and alkaline conditions.

However, the pH significantly impacted rebinding capacity; a

pH of 3.0 was identified as the optimal value. Furthermore, a Li+

rebinding capacity of 51 mg/g was achieved. The PDMS-PDA Li-

IIMS demonstrated high relative selectivity with coefficients of

1.71, 4.56, and 3.80 for Na+/Li+, K+/Li+, and Rb+/Li+, respectively.

The permselectivity factors for Na+, K+, and Rb+ were

approximately 2.52, 2.8, and 3.03, respectively. Finally, the

PDMS-PDA Li-IIMS showed high adsorption/desorption cycle

durability. Four successive regeneration cycles were completed

over 10 days, and the rebinding capacities remained almost

unchanged.

PDMS-PDA Li-IIMs demonstrated excellent performance

overall and appear to be a viable technology for Li+ extraction

from seawater. However, similar to the High-selective Li-IIMs

developed by (Lu et al., 2018), investigations with aqueous

solutions that simulate the ionic concentrations in seawater

are recommended. Also, the cost and specific energy

consumption implications for the stirring required to elute Li+

on an industrial scale should be further explored to determine the

techno-economic feasibility of this technology.

8 Electrochemical Lithium capturing
systems

Electrochemical Li capturing systems (ELiCSs) use electricity

to drive ion-separation processes for Li+ extraction. There is a

proportional relationship between the total charge storage of the

systems electrode and the amount of Li+ extracted from an

aqueous feed solution. The basic configuration of an ELiCS

consists of an external power supply, electrodes, and an

aqueous electrolyte, in this case, brine or seawater (Soffer and

Folman, 1972; Kim et al., 2018; Yoon et al., 2019).

Electrochemical technologies are particularly interesting for

extraction from high Mg2+/Li+ and low Li+ concentrations

solutions because they are environmentally sustainable and

have demonstrated excellent recovery capacities, scalability,

cycling efficiency, reversibility, and selectivity (Hoshino,

2013a; Lee et al., 2013; Kim et al., 2015; Yoon et al., 2019;

Zhang et al., 2019; Zhao et al., 2020b; Srimuk et al., 2020).

Additionally, electrochemical technologies can easily integrate

energy recovery techniques that utilize the salinity gradient of the

aqueous feed solutions to generate energy Zhang X. et al. (2021).

Their characteristic high extraction efficiency and low

environmental impact suggest that ELiCSs are more techno-

economically feasible for Li+ extraction from low Li+

concentration solution than precipitants or solvents. However,

the main disadvantages that must be addressed are their

potentially high energy consumption due to process

inefficiencies and high material costs Zhang Y. et al. (2021).

ELiCSs generally belong to one of three categories: battery-

based (BB), membrane enhanced battery-based (MEBB), or

electro-membrane-based (EMB) (Zavahir et al., 2021). BB

ELiCSs use at least one faradic electrode to capture Li+ from

aqueous solutions. The faradic electrode(s) capture Li-ions via

conversion reaction or intercalation over the bulk of the

electrode’s materials. They have greater storage capacity, Li+

selectivity, and capacitance but slower removal rates than

non-faradic (capacitive) electrodes (Patrice et al., 2014; Yoon

et al., 2019). The MEBB ELiCSs augment the battery-based

configuration with an anion exchange membrane (AEM) for

Li recovery. In the rocking chair configuration, the AEM splits

the electrochemical cell into a cathode and an anode chamber

that contain one Li+ intercalating electrode each. In the redox

configuration, there is one intercalating electrode and one redox

couple electrode. Continuous Li recovery is achieved by

swapping the positions of the Li+ “capture” and “release”

electrodes. Finally, the EMB, or electrodialysis configurations,

have a series of AEM and cation exchange membranes (CEM)

sandwiched between two faradic electrodes. Electric potential

drives the Li+ through the CEMs towards concentrating

compartments (Zavahir et al., 2021). Further information

about the performance, advantages, and challenges of

prominent ELICSs is provided in subsequent sections.

8.1 ESIX membrane

The electrochemically switched ion exchange system (ESIX),

first proposed by the Pacific Northwest National Laboratory, is a

battery-based ELiCS (when employed for Li capture). In the ESIX

process, an electroactive ion exchange film is deposited onto a

high surface area electrode. The redox reactions that drive ion

uptake and elution are directly controlled by adjusting the electric

potential of the film. A cathodic potential can be applied to

intercalate Li+ into the film for Li recovery from an aqueous

solution. This intercalation is driven by the film’s need to

maintain charge neutrality. Conversely, when an anodic

potential is applied, the film is oxidized, and Li is released

from the film (Sukamto et al., 1998). Essentially, the ESIX

combines electrochemistry and ion exchange to provide a Li

recovery process with high selectivity and reversibility. Also, the

ESIX utilizes a faradic and a capacitive electrode, the combined

benefits of which bridge the performance gaps in conventional

battery and capacitor-based recovery systems.

Adjustments to the conventional ESIX electrode

configuration must be made to circumvent the mass

transport challenges associated with Li recovery from high

Mg2+/Li+ and low Li+ concentration aqueous solutions. An

array of smaller electrodes with higher surface areas arranged

into working and counter electrode pairs can be employed for

recovery instead of a large, singular electrode (Joo et al., 2020;

Zavahir et al., 2021). Additionally, keeping the volume of the

recovered solution low is mandatory for obtaining a high Li-

concentrated final product (Joo et al., 2020; Zavahir et al.,

Frontiers in Chemical Engineering frontiersin.org18

Murphy and Haji 10.3389/fceng.2022.1008680

https://www.frontiersin.org/journals/chemical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fceng.2022.1008680


TABLE 9 Li+ ESIX (electrode) extraction from salt lake brines, simulated brines, and wastewater.

References Electrode
materials

Solution Mg2+/
Li+

Mass
Ratio

Selectivity Current
efficiency

Regeneration Adsorp. Capacity Recov. Sp. energy
consumption

Product
quality

Ext.
time

Kanoh et al. (1991) λ-MnO2-Pt LiCl only Li+ 85% 97%

Lee et al. (2013) λ-MnO2/Ag Simulated Seawater 1.9 92.7% 87% ( ≥ 4 cycles) 0.14 Wh/g Li+ 91.8% 1 h

Kim et al. (2019) λ-MnO2/Ag Simulated Brine 2,107 7.34 mg/g 3.07 Wh/g Li+ 99% ~18 h

Kim et al. (2015) λ-MnO2/AC Salar de Atacama
Brine

6 > 90% 96% 0.60 Wh/g Li+ 91.8% 1 h

Trócoli et al. (2017) λ-MnO2/
NiHCF

Simulated Brine ≪ 1 1.63 K+, 57.6 Na+,
1,633 Mg2+,

79.9% 71.05% 0.52 Wh/g Li+ 96.2% ~8 h

Liu et al. (2019) λ-MnO2/
LiM2O4

Simulated Brine 57.1% ( ≥ 30 cycles) 24.3 mg/g 2 h

Kim et al. (2018) LMO/BDD Industrial
Wastewater

88.4 Na+, 44% (5 cycles) 22.7 mg/g 8.71 Wh/g Li+ ~98% 1 h

Missoni et al.
(2016)

LMO/Ppy Natural Brine 50% (200 cycles) 56% 0.72–1.44 Wh/
g Li+

Zhao et al. (2020c) LMO/Ppy/
Al2O3

Simulated Brine 5.2 91.7% (30 cycles) 12.8 mg/g 91.7% 0.2 Wh/g Li+ 97.4% 40 min

Trócoli et al. (2014) LiFePO4/Ag Simulated Brine 116 92.9% 0.4 Wh/g Li+ 97.9% 1 h

Trócoli et al. (2015) FePO4/NiHCF Salar de Atacama
Brine

6 1.25 Wh/g Li+ 97.9% 24 h
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2021). The Li+ selectivity of the ESIX depends on the

selectivity of the electrode materials. Several working and

counter electrode materials have been tested to identify the

best candidates for Li recovery from low concentration

solutions: λ-MnO2/Pt (Kanoh et al., 1991; Kanoh et al.,

1993; Kim et al., 2019; Liu et al., 2019); λ-MnO2/Ag (Lee

et al., 2013; Xu et al., 2018; Kim et al., 2019; Joo et al., 2020));

λ-MnO2-activated carbon (AC) (Kim et al., 2015); λ-MnO2/

NiHCF (Trócoli et al., 2017); λ-MnO2/LiMn2O4 (Liu et al.,

2019); LMO/Boron Doped Diamond (BDD) (Kim et al.,

2018); LMO/Polypyrrole (Ppy) (Marchini et al., 2016;

Missoni et al., 2016); LMO/Ppy/Al2O3 (Zhao et al., 2020c);

LiFePO4/Ag (Trócoli et al., 2014); and, FePO4/NiHCF

(Trócoli et al., 2015). When applied for Li recovery from

simulated brine, natural brines, and multi-ion solutions, the

specific energy consumption for these electrode variations

ranged from 1.4 kWh/kmol to 18.5 kWh/kmol. The AC

counter electrode demonstrated a high Li recovery of

14.4 mg/g for a 25 min cycle, so it is recommended for all

ESIX systems (Zhao et al., 2020d; Zavahir et al., 2021).

Furthermore, the λ-MnO2 and LMO working electrodes

demonstrate the highest adsorption capacities at 10 mg/g

and 30 mg/g, respectively. Table 9 provides the selectivity,

current efficiency, regeneration, adsorption capacity,

recovery, specific energy consumption, product quality and

extraction time of various ESIX working/counter electrode

materials used for Li+ extraction from salt lake brines,

simulated brines, and wastewater. Note that the current

efficiency is a measure of how efficiently the electrodes

transfer the charges driving the electrochemical extraction

of Li+.

A major challenge facing ESIX for industrial operation is

the flushing process needed to exchange the source solution

for the recovery solution. Pure water, a precious resource, is

required for flushing to prevent cross-contamination of the

two solutions. Consequently, this process poses a considerable

threat to process efficiency and sustainability. Furthermore,

this batch operation is less efficient than other continuous

mode technologies, such as electrodialysis (Zavahir et al.,

2021). Additionally, the reported energy consumption for

ESIX can be misleading because it is typically calculated

using metrics from the first cycle only, which results in

underestimated projections for total energy consumption

over many cycles. Finally, as mentioned previously,

maintaining a low recovery solution is critical to the

quality of the Li recovered. At the bench level, recovery

solutions at the μ scale require around five enrichment

cycles. Therefore, the solution enrichment process at the

commercial level can be expected to exceed 1,000 cycles

(Zavahir et al., 2021). Further investigation into the

practical energy consumption and sustainability of ESIX for

Li recovery from brine and seawater is needed. A special focus

on the solution flushing process and finding an alternative for

pure water is recommended. In this vein, Trócoli et al. (2017)

have developed a promising ion-pumping process that

employs a λ-MnO2/NiHCF working/counter electrodes for

Li+ recovery. No chemical reactants are required, the

electrodes are recyclable, and most importantly, only a

small volume of water is required.

8.2 Electrodialysis

Electrodialysis (ED) is an electrochemical membrane

separation process that utilizes an ion-selective membrane and

an electric potential gradient for ion separation from aqueous

solutions(Gurreri et al., 2020). A typical electrodialysis cell

comprises an alternating series of AEMs and CEMs between a

cathode and an anode (Gmar and Chagnes, 2019). In the

electrodialysis process for Li+ extraction, electric force drives

Li+ ions in the feed solution from the positive side of the cell

(cathode) to the negative side (anode) through an ion Li+

selective membrane. As a result, Li+ is concentrated on one

side of the cell. Additional treatments are required to obtain

the metallic or solid Li compounds dissolved in the Li+ enriched

water. Similarly to other membrane technologies, ED systems

require the feed solution to be pretreated so that Ca2+, Mg2+, and

other metals that cause membrane fouling can be removed prior

to Li+ extraction (Wang et al., 2022). However, compared to other

membrane technologies such as nanofiltration, ED systems have

higher recovery rates, lower energy consumption, and higher Li+/

Mg2+ separation factors (Gmar and Chagnes, 2019).

ED systems are classified according to the attributes of their

ion exchange membranes (IEMs): selective electrodialysis (SED)

utilizes IEMS that have high selectivity for monovalent ions;

bipolar membrane electrodialysis (BMED) utilizes bipolar IEMS;

and finally, ion liquid membrane electrodialysis (ILMED) which

employs liquid ion membranes (Zavahir et al., 2021). While ED

technologies are already used for industrial hydrometallurgical

processes to recover Li from industrial brines, ore concentrates,

and spent LIBs, their use for recovery from high Mg2+/Li+ and

low Li+ concentration solutions has been limited (Campione

et al., 2018; Gmar and Chagnes, 2019). Table 10 provides the

applied voltage, selectivity, current efficiency, separation

efficiency, recovery, and specific energy consumption of

various ED membranes for Li+ extraction from salt lake

brines, simulated brines, and seawater.

8.2.1 Selective electrodialysis
SED employs monovalent anion exchange membranes

(MAEMs) and monovalent cation exchange membranes

(MCEMs) to transport the monovalent anions (Cl−) and

cations (Li+, Na+, and K+) through the MAEMs and MCEMS

and to the anode and cathode, respectively. The divalent anions

(SO4
2−) and cations (Mg2+ and Ca2+) are rejected by the MAEMs

and MCEMs (Lambert et al., 2006; Zhang et al., 2012; Reig et al.,
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TABLE 10 Li+ ED extraction from salt lake brines, simulated brines, and seawater.

References Classification Solution Mg2+/
Li+

Mass
Ratio

Li+

concentration
Applied
voltage

Selectivity Current
efficiency

Separation efficiency Recovery Sp. energy
consumption

Nie et al. (2017) SED LiCl·H2O, MgCl2 (Low Li+) 18.9 4.86 g/L 20 V 10.4 Li+ 8.7% 90.5% 0.01 kWh/m3

Nie et al. (2017) SED LiCl·H2O, MgCl2 (High Li+) 150 6.94 g/L 6 V 27.5 Li+ 70%

Nie et al. (2017) SED Salt Lake Brine 21.4 5.55 g/L 20 V 9.9 Li+ 22.3 kWh/m3

Ji et al. (2017) SED Simulated Brine 60 6.94 g/L 5 V 12.5 Li+ 7% 72.5% 1.4 kWh/m3

Chen et al. (2018) SED Simulated Brine 20.8 0.14 g/L 5 V 65 Li+ 51.5% 77.5% 0.05 kWh/m3

Chen et al. (2018) SED Simulated Brine 0.14 g/L 5 V 7.8 Li+ 41.5% 76% 0.73 kWh/m3

Ji et al. (2018) SED Simulated Brine 20 0.14 g/L 6 V 6.4 Li+ 67.7% 0.2 kWh/m3

Guo et al. (2018) SED Seawater 16 0.14 g/L 7 V ~1.2% 16 kWh/m3

Guo et al. (2018) SED Salt Lake Brine 36 34.7 g/L 10 V 47% 76.5% 4.86 kWh/m3

İpekçi et al. (2020) BMED Lithium Bromide Solution 0.28 g/L 25 V 73% 3.2 kWh/m3

İpekçi et al. (2018) BMED Lithium Bromide Solution 0.35 g/L 30 V 94.7% 62% 7.9 kWh/m3

Hoshino (2013a) ILMED Seawater 3.4 · 10–4 g/L 2 V 22.2%

Hoshino (2013b) ILMED Seawater 3.4 · 10–4 g/L 2–3 V 63%

Liu et al. (2020) ILMED Simulated Brine 347 0.97 g/L 2 V 65% 0.76 kWh/m3

Zhao et al. (2020e) ILMED Brine 694 0.97 g/L 3 V 0.9 kWh/m3
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2018). As a result, the monovalent ions are enriched in a

concentrate chamber as they migrate from the dilute chamber.

Na2CO3 is added to the concentrate chamber exit flow to form

Li2CO3. SED has demonstrated high permselectivity and

retention of monovalent and divalent ions, respectively, in

experiments that tested high Mg2+/Li+ brines and seawater for

aqueous Li recovery (Ji et al., 2017; Nie et al., 2017; Guo et al.,

2018; Ji et al., 2018). They also require little pretreatment for

recovery. Increasing the applied voltage increases SED Li

recovery and specific energy consumption (SEC). The

recovery performance of SED is critically sensitive to the

concentration of divalent ions in the feed solution, specifically,

the Mg2+/Li+ and Na+/LiS+ mass ratios due to their influence on

separation efficiency. SED demonstrated higher selectivity of Li+

in solutions that had higher Mg2+/Li+ mass ratios and lower

selectivity at higher Na+/Li+ mass ratios (Nie et al., 2017; Chen

et al., 2018; Ji et al., 2018). Finally, the SEC for SED recovery from

Li+ is more efficient for salt lake brines than seawater due to their

higher ionic strength and mass ratios (Zavahir et al., 2021).

However, a Li percent recovery of 80% was achieved from

seawater at 9 V after 120 min (Guo et al., 2018). To improve

the feasibility of SED for salt lake brines and seawater, MCEMs

with higher selectivity for Li+ in solutions with high Na+ and K+

concentrations. Investigation of more selective materials,

temperatures, pH levels, and membrane preparation

techniques is recommended. However, SED still offers the

advantages of environmental sustainability, high separation

efficiency, and high Li recovery compared to other extraction

technologies.

8.2.2 Bipolar membrane electrodialysis
BMED employs a bipolar membrane (BM) comprising a

cation-exchange layer, an anion-exchange layer, and a

hydrophilic interface layer (Huang and Xu, 2006; Li et al.,

2016; Gmar and Chagnes, 2019). When an electric field is

applied to the BM, the water molecules in the hydrophilic

layer separate into hydrogen (H+) and hydroxide (OH−) ions.

Simultaneously, anions passing through the AEM are combined

with H+, and cations passing through the CEM are combined

with OH−. The resulting acidic and basic solutions are enriched

in corresponding recovery compartments (Mani, 1991). The

acidic and basic recovery compartment streams can be treated

with precipitants to produce LiOH and other valuable co-

products (Bazinet et al., 1998; Jiang et al., 2014; Xue et al.,

2015; Gmar and Chagnes, 2019).

Similar to SED, BMED demonstrates higher Li recovery at

higher voltages. However, the ion leakage induced by higher

voltages reduces Li recovery, so finding an optimum applied

voltage is critical. Furthermore, BMED is very promising for Li

recovery from high Mg2+/Li+ and low Li+ concentration solutions

(Bunani et al., 2017b; Gmar and Chagnes, 2019). Compared to

the other ED processes, it has the highest average Li+ recovery

range (60%–98%), lowest average extraction time (20–120 min),

and the lowest SEC range (3–19 kWh/kmol) (Bunani et al.,

2017a; Bunani et al., 2017b; İpekçi et al., 2018; İpekçi et al.,

2020). Also, BMED is ecologically friendly, requiring no chemical

reagents for recovery (e.g., lime or sodium carbonate). The

production of a basic and acidic recovery stream provides an

economic opportunity to co-recover other industrial minerals,

such as boron (Jiang et al., 2014; Yang et al., 2014; Hwang et al.,

2016; Bunani et al., 2017a; Bunani et al., 2017b; Chen et al., 2022).

The main drawback of BMED is the sensitivity to high ion

concentrations. The BM permselectivity is significantly reduced

due to the Donnan exclusion phenomena wherein salt leaks

through the membrane into the Li product (Tanaka, 2015;

Venugopal and Dharmalingam, 2016; Pärnamäe et al., 2021).

The BM’s high cost and thermal instability have also contributed

to the limited use of BMED for aqueous mineral recovery. A

pretreatment to reduce initial concentration is required for

optimal performance. Despite its disadvantageous aspects,

BMED has demonstrated higher chemical stability, mechanical

stability, current efficiency, permselectivity, durability, and lower

electrical resistance and voltage drop than the conventional ED

processes for Li recovery. Many authors are already exploring

ways to improve BMED performance, such as decreasing the

AEM thickness, combining BMs with MAEMS andMCEMs, and

appending catalysts layers to the BMs (Wilhelm et al., 2001;

Manohar et al., 2017; Wang et al., 2017; Chen et al., 2021).

8.2.3 Ionic liquid membrane electrodialysis
ILMED comprises two ion exchange membranes separated

by an ionic liquid membrane (ILM). As previously mentioned,

Ionic liquids (ILs) are unique liquids that have garnered attention

as negligible vapor pressure alternatives to traditional organic

solvents. Perhaps the most attractive feature of ILs for ED Li

recovery is that they can be customized with pre-selected

characteristics such as high thermal stability, moisture

stability, and ion selectivity, by careful selection of the cation

and anion (Seddon et al., 2000; Seddon et al., 2002; Deetlefs et al.,

2006; Zavahir et al., 2021). ILMs have successfully been used for

critical and heavy metals from aqueous solutions (Chen and

Chen, 2016; Makanyire et al., 2016; Zante et al., 2019; Imdad and

Dohare, 2022). The high permselectivity, separation efficiency,

and low energy consumption demonstrated in previous studies

support the integration of ILMS into the ED process for Li

recovery from highMg2+/Li+ and low Li+ concentration solutions.

When employing ILMED for Li recovery, the ILM must be

sealed with a coat for durability and efficient recovery. After sealing

novel, ion liquid impregnated organic membranes (IL-I-OM) with

Nafion N-324, Hoshino (2013b) found that the membrane’s

durability increased, the concentration of Li+ in the cathode

increased by 5.94%, and the recovery of Li from seawater

increased up to 22.2%. In addition to fortifying the IL-I-OM, the

Nafion N-324 coating sealed the inside the IL-I-OM, resulting in an

increase in Li+ concentration at the minimum voltage (2 V) and Li

recovery. Similarly, in Hoshino (2013a), two CEMswere used to seal

Frontiers in Chemical Engineering frontiersin.org22

Murphy and Haji 10.3389/fceng.2022.1008680

https://www.frontiersin.org/journals/chemical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fceng.2022.1008680


the ends of the IL-I-OM. To test selectivity, the CEMs employed

were only permeable to the competing cations present in the

seawater (Na+, K+, Mg2+, and Ca2+). The divalent cations were

successfully separated from the monovalent cations and enriched

in the cathode compartment. The Li+ was retained in the anode

compartment, and a maximum separation efficiency of 63% was

achieved. Other experiments explored the impacts of high Mg2+/Li+

mass ratios and voltage on ILMED SEC and Li recovery (Zhao Z.

et al., 2020; Liu et al., 2020). Liu et al. (2020) observed a 99.5%

reduction in the brineMg2+/Li+mass ratio after 12 h at 20°C and 3 V.

Also, a minimum SEC of 16Wh/g Li+ was achieved, compared to

the 40Wh/g Li+ for typical ED processes.

Zante et al. (2019) found that for an IL-TBP ILMED adding

equimolar sodium carbonate and sodium hydrogen carbonate to the

feedstream could reduce the loss of IL and extend the lifetime of the

ILM. IL-TBP ILMED achieved a maximum extraction efficiency of

80%, and high selectivity for Li+ over Mg2+ and Na+, even when the

competing ions were present in high concentrations. Despite their

limited application, ILMED demonstrates high Li+ selectivity and

competing monovalent and divalent ion separation efficiency at low

voltages. The main challenges facing the commercialization of

ILMED for industrial-scale Li recovery from aqueous solutions

are the flux drops in membrane stability and the dissolution of

IL to the feedstream after short periods of (2 days) of continuous use

(Ma et al., 2000; Zante et al., 2019). Further investigation into

treatments or mechanisms that minimize the loss of IL is needed to

improve the feasibility of ILMED for recovery from brines and

seawater.

9 Conclusion

The exponential growth in demand for the world’s exhaustible

Li supply signals an impending shortage unless we expand current

extraction resources to include highMg2+/Li+ mass ratio and low Li+

concentration aqueous solutions such as seawater and most brines.

Several technologies, including high Mg2+/Li+ precipitants, novel

solvent extractants, Li-ion sieves, Li-ion-imprinted membranes, and

electrochemical Li capturing systems, have been identified for Li+

extraction from these resources. However, each technology has

unique challenges that have limited their application beyond

bench-scale experiments. High Mg2+/Li+ precipitants leverage low

reagent costs and passive extraction, but an Li+ enrichment step is

required for feasibility. The high cost and low manufacturability

combined with the associated environmental concerns make most

novel solvent extractants infeasible for seawater, or most salt-lake

brines. In contrast, LMO-type and LTO-type ion sieves are very

promising for Li+ extraction from high Mg2+/Li+ and low Li+

concentration solutions. However, the powder morphology of the

adsorbents reduce their durability and efficiency for continuous

extraction. Li-IIMs leverage a unique combination of membrane

separation technology and target ion-imprinting that achieves high

rebinding capacity, selectivity, and recovery, but low specific energy

consumption. The main challenges facing their commercialization

are their sensitivity to pH, temperature, extraction time, and ion-

recognition sites. Finally, ELICSs demonstrate great potential for

extracting Li+ from solutions with high competing ion to Li+ ratios

with their characteristically high separation and extraction

efficiency. Their main challenges are operating cost, high energy

demand, and very high competing ion to Li+ mass ratios.

A techno-economic analysis and life cycle assessment for

each of the extraction technologies reviewed is needed. Both of

these activities will further elucidate the climate impact, energy

demand, operational costs, capital costs, productivity, and

potential ROI for large scale projects using these technologies.

Additionally these benchmarks can be used to develop pathways

that move these technologies from bench-scale experiments to

continuous demonstrations, and eventual pilot-scale systems. A

recommended pathway is further exploration of the synergies

between these technologies. The literature suggests that a

strategic combination of two or more of the technologies

reviewed can mitigate their individual challenges.
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