Check for updates

OPEN ACCESS

EDITED BY Giulia Bozzano, Politecnico di Milano, Italy

REVIEWED BY Wenwen Huang, Zhejiang University, China Ziyang Sun, Westlake University, China

*CORRESPONDENCE Whitney L. Stoppel, whitney.stoppel@ufl.edu

SPECIALTY SECTION

This article was submitted to Biochemical Engineering, a section of the journal Frontiers in Chemical Engineering

RECEIVED 14 September 2022 ACCEPTED 23 November 2022 PUBLISHED 19 December 2022

CITATION

Pacheco MO, Eccles LE, Davies NA, Armada J, Cakley AS, Kadambi IP and Stoppel WL (2022), Progress in silk and silk fiber-inspired polymeric nanomaterials for drug delivery. *Front. Chem. Eng.* 4:1044431. doi: 10.3389/fceng.2022.1044431

COPYRIGHT

© 2022 Pacheco, Eccles, Davies, Armada, Cakley, Kadambi and Stoppel. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Progress in silk and silk fiber-inspired polymeric nanomaterials for drug delivery

Marisa O. Pacheco¹, Lauren E. Eccles¹, Nickolas A. Davies², Jostin Armada¹, Alaura S. Cakley¹, Isiri P. Kadambi¹ and Whitney L. Stoppel¹*

¹Department of Chemical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, United States, ²College of Medicine, University of Florida, Gainesville, FL, United States

The fields of drug and gene delivery have been revolutionized by the discovery and characterization of polymer-based materials. Polymeric nanomaterials have emerged as a strategy for targeted delivery because of features such as their impressive biocompatibility and improved availability. Use of naturally derived polymers in these nanomaterials is advantageous due to their biodegradability and bioresorption. Natural biopolymer-based particles composed of silk fibroins and other silk fiber-inspired proteins have been the focus of research in drug delivery systems due to their simple synthesis, tunable characteristics, and ability to respond to stimuli. Several silk and silkinspired polymers contain a high proportion of reactive side groups, allowing for functionalization and addition of targeting moieties. In this review, we discuss the main classes of silk and silk-inspired polymers that are being used in the creation of nanomaterials. We also focus on the fabrication techniques used in generating a tunable design space of silk-based polymeric nanomaterials and detail how that translates into use for drug delivery to several distinct microenvironments.

KEYWORDS

polymeric nanoparticles, natural biopolymers, silk, drug delivery, nanomaterials

Introduction

The efficacy of treatment for numerous diseases and conditions including, but not limited to, cancers, autoimmune disorders, inflammation, and infection, is limited by how therapeutic agents and drugs are delivered. Systemically administered drugs suffer from low water solubility, rapid clearance, and can cause a variety of off-target side effects (Jain, 2020). Administering drugs *via* alternative routes is an area of interest, but overcoming the body's natural barrier systems is a significant challenge. To address the limitations associated with systemic delivery, research focused on advanced drug delivery systems (DDS) has been a major area of interest (Hrkach and Langer, 2020). Nanomaterial-based DDS, such as nanoparticles, liposomes, and dendrimers, have been shown to enhance the bioavailability of various therapeutics (Blanco et al., 2015; Brannon et al., 2022). A major class of nanomaterial DDS are polymeric nanomaterials engineered to include features

01

such as targeting moieties (Chen et al., 2021a). Using natural biopolymers for the creation of these DDS is further advantageous due to their impressive biocompatibility and biodegradability (George et al., 2019). The main classes of natural biopolymers used for the synthesis of nanoparticle-based systems are polysaccharides and proteins.

Silk fibroins and other silk fiber-inspired proteins have been shown to be biocompatible and easily digested by immune cells and proteolytic enzymes into products that can re-enter native metabolic processes on a tunable timeline (Guo et al., 2020; Jameson et al., 2021). Apart from their biocompatibility and tunable biodegradation, silk proteins are also advantageous polymers for the engineering of DDS due to the myriad of methods to induce increases in crystalline content. This translates into numerous methods for engineering nanomaterials of various sizes, depending on the end state application, that do not require the use of harsh solvents (Pham and Tiyaboonchai, 2020). Increased crystalline content also limits the tendency for burst release behavior (Wongpinyochit et al., 2019; Pham and Tiyaboonchai, 2020). The main silk proteins that have been explored for use in a variety of nanoparticle DDS are silk fibroins from the Bombyx mori silkworm. Bombyx mori silk fibroin is the most wellcharacterized silk protein source and has a variety of reactive amino acids to allow for functionalization (Murphy et al., 2008; Murphy and Kaplan, 2009; Asakura et al., 2015; Heichel and Burke, 2020; Bittencourt et al., 2022). Other silk proteins, including Bombyx mori sericin, genetically engineered silk fibroin proteins, silk fibers from other Antheraea species, and bioengineered spider fibroin silks (Bittencourt et al., 2022), are being explored due to their enhanced ability for functionalization, potential for a wider range of material and

mechanical properties, and increased homogeneity of the starting polymer. In this review, we discuss the primary structure of these silk proteins and relate the structure to fabrication strategies for nanomaterials (Figure 1). We also highlight progress in the *in vitro* and *in vivo* evaluations of silk-based DDS.

Fabrication and evaluation of nanomaterial DDS based on silk proteins and silk fiber-inspired polymers

Bombyx mori fibroin

Bombyx mori silk is composed of two main protein groups, fibroin and sericin. Two fibroin fibers are surrounded by a sericin coating. When fibroin and sericin are present together, there is decreased biocompatibility (Ode Boni et al., 2022). Sericin is water soluble, allowing for fibroin to be readily extracted (Rockwood et al., 2011). Historically, sericin has been discarded as waste, but we discuss the potential for sericin nanomaterials in a later section.

Fibroin from *Bombyx mori* is biocompatible and the focus of biomedical research for applications including nanomaterials and both local and systemic DDS. Fibroin consists of heavy (~325 kDa) and light (~26 kDa) chains linked with a disulfide bond (Zhou et al., 2001). The light chain is elastic, hydrophilic, and characterized by nonrepeating sequences of amino acids. The heavy chain comprises highly hydrophobic and crystalline motifs (GAGAGS or GAGAGX, X = V or Y) separated by amorphous regions containing polar and charged amino acids (Zhou et al., 2001). The hydrophobic motifs can form layers of

Polymer source	Fabrication strategy	Particle size	Application	<i>In vitro</i> and/or <i>in vivo</i> models	Refs
<i>B. mori</i> fibroin	Chemical crosslinking	50–100 nm	Molecular imprinting	In vitro: 3T3 cytotoxicity	Bossi et al. (2021)
	Nanoprecipitation	200–220 nm	pH responsive Silk-ZIF-8 core-shell nanospheres, Doxorubicin delivery	<i>In vitro:</i> MCF-7 cytotoxicity, uptake and localization	Chen et al. (2021b)
				<i>In vivo:</i> subcutaneous injection in BALB/c nude mice safety evaluation	
				MCF-7 tumor baring mice-therapeutic anti-tumor effect	
	Desolvation	175–225 nm	NAC nasal delivery	<i>In vitro:</i> TEER assays and tight junction analysis in human nasal RPMI 2650	Chung et al. (2022)
				In vivo: Sprague Dawley IVIS study	
	Desolvation	110 nm	Celecoxib and curcumin delivery for osteoarthritis	<i>In vitro</i> : isolated articular chondrocyte inflammation model	Crivelli et al. (2019)
	Desolvation	200-300 nm	cRGD functionalized silk for targeted delivery of patchouli alcohol	<i>In vitro</i> : anti-inflammation assays in RAW 264.7 macrophages, Intestinal barrier protection evaluation in Caco-2 cells	Du et al. (2022)
				<i>In vivo</i> : biodistribution and therapeutic outcomes evaluation in mice	
	Spray drying	~165–260 nm	Rosmarinic acid delivery to cancer cells	<i>In vitro:</i> cellular uptake, and cytotoxicity assays	Fuster et al. (2021)
	Desolvation	300-400 nm	NO delivery	<i>In vitro:</i> viability assays with 3T3 cells, antibacterial effect on viability with <i>E. coli</i> and <i>MRSA</i>	Ghalei et al. (2020)
	Desolvation	100–180 nm	Silk particles as adjuvants in subunit multi epitope vaccine for UTI	In vitro: cytotoxicity in L929 cells	Hasanzadeh et al. (2020)
				<i>In vivo:</i> immunization assay in BALB/c mice	
	Desolvation	~160-190 nm	Targeted delivery of ferulic acid by neutrophil coating of silk particles for pancreatitis	<i>In vivo</i> : IV injection in male Wistar rats. Biodistribution and therapeutic effect	Hassanzadeh et al. (2021)
	*ionic gelation, green synthesis	~8 nm, ~1 µm	Chitosan-gold nanoparticles coated in functionalized silk fibroin for targeted delivery of doxorubicin	<i>In vitro</i> : HeLa cell viability and live cell imaging	Horo et al. (2021)
	Chemical crosslinking				
	*processing steps not involving silk				
	Emulsion polymerization	38–220 nm	PEGylated fibroin nanoparticles for 5- FU delivery in treatment of colorectal cancer	In vitro: HT-29 cytotoxicity assays	Hudita et al. (2021)
	Semi-batch processing using micromixing and microfluidics-desolvation	109–149 nm	Volumetric scale up of silk particles to enhance the potential for translation		Matthew et al. (2022)
	Desolvation and pH induced self-assembly	106–165 nm	Respiratory delivery of rifampicin for treatment of mycobacterial disease	<i>In vitro:</i> inflammatory response of infected RAW 264.7 macrophages	Mitra et al. (2022)
	Desolvation	186 nm	Delivery of tamoxifen citrate for treatment in breast cancer	<i>In vitro</i> : cytotoxicity and uptake in MCF-10A (noncancerous), MCF-7 and MDA-MB-231 (cancerous) lines	Moin et al. (2021)
	Self-assembly	120–170 nm	Delivery of gene therapies for treatments of lung cancer by chemically modified, cationized silk fibroin carriers	<i>In vitro:</i> transfection and viability analysis in A549 and WI-38 cells	Niu et al. (2021)
	Desolvation	69 nm	Delivery of antioxidant and imaging agents (theragnostic)	<i>In vitro:</i> cytotoxicity in L132 and A549 cells	Passi et al. (2020)
	Desolvation and chemical crosslinking	300–500 nm	Delivery of paclitaxel for colon cancer treatment	<i>In vitro:</i> cytotoxicity and uptake in Caco-2 and MCF-7 cells	Pham et al. (2020)
	Desolvation	92–200 nm	Composite silk fibroin/alginate nanoparticles in PNIPAM hydrogel for pH sensitive delivery of vancomycin for treatment of infection in chronic burns	<i>In vitro:</i> biocompatibility, cell migration analysis with L929 cells	Rezaei et al. (2020)
				<i>In vivo:</i> infected burn model in male Wistar albino rats	

TABLE 1 Summary of current advances in silk and silk fiber-inspired nanomaterials for drug and gene delivery.

(Continued on following page)

Polymer source	Fabrication strategy	Particle size	Application	<i>In vitro</i> and/or <i>in vivo</i> models	Refs
	Salting out	107–436 nm	Magnetic silk + polyethyleneimine core shell for targeted delivery of gene therapies in treatment of breast cancer	<i>In vitro</i> : cytotoxicity and uptake analysis in MDA-MB-231 or HDF cells	Song et al. (2019)
	*thin film hydration Desolvation *processing steps not	136–191 nm	Long-term delivery of cancer therapies (doxorubicin)	<i>In vitro:</i> cytotoxicity in L929, MDA- MB-231 and MCF-7 cells	Suyamud et al. (2021)
	involving silk	a.c. 10			
	Desolvation	36–48 nm	Transdermal deliveries of therapies	<i>In vivo:</i> transdermal distribution study in male ICR mice	Takeuchi et al. (2019)
	Microfluidic assisted desolvation	129–232 nm	Targeted delivery by G3 functionalized particles of cancer therapy ASC-J9	<i>In vitro:</i> cytotoxicity, uptake, and tumor spheroid penetration in HCT- 116 and DF cells	Tomeh et al. (2022)
	Co-flow microfluidic device assisted desolvation	~6 µm	Doxorubicin delivery to tumor microenvironment	<i>In vitro:</i> cytotoxicity, inflammation response, uptake in KELLY and THP-1 cells	Vargas Montoya et al. (2020)
	Water/oil emulsion	20–140 µm	Injectable microspheres analysis for future delivery in treatment of	<i>In vitro</i> : cytocompatibility analysis with rat bone MSCs	Zhang et al. (2019)
			osteoarthritis	<i>In vivo:</i> subcutaneous injections in Sprague Dawley rats for biocompatibility analysis, ACL transection model in Sprague Dawley rats	
	Concentration followed by incubation to induce self- assembly	100 nm-1 μm	Delivery of cancer therapies (doxorubicin)	<i>In vitro</i> : uptake, retention, cytotoxicity analysis in HUVEC and MCF-7 cells. Tumor spheroid penetration (MCF-7)	Xiao et al. (2022)
	Desolvation	179 nm	Delivery of biotherapeutics to the retina	<i>In vitro:</i> cytotoxicity, uptake, retention analysis in ARPE-19 cells	Yang et al. (2019)
				<i>In vivo</i> : biodistribution and safety of intravitreal injection in white New Zealand rabbits	
	Desolvation and freezing induced self-assembly	330-379 nm	Delivery of gene therapies	<i>In vitro:</i> cytotoxicity, uptake, immunostimulation in RAW 264.7	Zhang et al. (2019)
	Desolvation	53–73 nm	${\rm MnO}_2$ capped silk fibroin particles for photodynamic therapy for cancer	<i>In vitro:</i> viability in L929 and HUVEC cells. Cytotoxicity and uptake in 4T1 cells	Zhang et al. (2021)
				<i>In vivo</i> : evaluation of biodistribution, pharmacokinetics, and antitumor effects in a 3T1 tumor model in BALB/c mice	
	Desolvation	120 nm	Indocyanine green loaded silk particles for photo-thermal treatment of glioma	<i>In vitro:</i> cytotoxicity and uptake in RAW 264.7 and C6 cells. Photo- thermal effect with C6 cells	ZhuGe et al. (2019)
				<i>In vivo</i> : biodistribution, pharmacokinetics, and antitumor effects in C6 tumor model in BALB/c mice	
B. mori sericin	Self-assembly in water	35–370 nm	Sericin-PLA are chemically conjugated to form an amphiphilic material for doxorubicin delivery	<i>In vitro</i> : cytotoxicity and uptake in HepG2 cells	Boonpavanitchakul et al. (2020)
	Self-assembly in DMSO with Pluronic F-127	137–201 nm	Slow release of antioxidant polyphenols for support of regeneration by MSCs	<i>In vitro</i> : cytocompatibility and proliferation assays in human adipose derived MSCs	Orlandi et al. (2020)
	Chemical crosslinking followed by desolvation	225–248 nm	Evaluating crocetin as novel crosslinker for bioactive sericin particles for nasal delivery and limiting oxidative stress	<i>In vitro:</i> metabolic activity assay in Caco-2 cells	Perteghella et al. (2021)

TABLE 1 (Continued) Summary of current advances in silk and silk fiber-inspired nanomaterials for drug and gene delivery.

(Continued on following page)

Polymer source	Fabrication strategy	Particle size	Application	<i>In vitro</i> and/or <i>in vivo</i> models	Refs
	Nanoprecipitation	100–300 nm	Doxorubicin delivery in treatment of breast cancer	<i>In vitro:</i> cytotoxicity, cytoskeletal changes, and comet assays in MCF-7 cells	Radu et al. (2021)
	Desolvation	123–147 nm	pH responsive, targeted delivery of lactoferrin for treatment of ulcerative colitis	<i>In vitro:</i> cytotoxicity, cellular uptake, and anti-inflammatory activity in RAW 264.7 cells	Xu et al. (2022)
				<i>In vivo</i> : ulcerative colitis model in BALB/c mice	
Non- <i>B. mori</i> native silks	Desolvation and radiolysis	180–250 nm	Characterization of secondary structure of <i>Antheraea assamensis</i> fibroin nanoparticles for applications in controlled release		Asapur et al. (2022)
	Desolvation	185 nm	Release of doxorubicin from <i>Antheraea assamensis</i> fibroin nanoparticles for cancer treatment	<i>In vitro</i> : biocompatibility in L929 cells. Cytotoxicity in MDA-MB-231 cells	Baruah et al. (2020)
	Desolvation	400-800 nm	Stimuli responsive, PEG- <i>Antheraea</i> <i>pernyi</i> silk particles for gene therapy in cancer	<i>In vitro:</i> transfection and cytotoxicity assays in HT1080 and HEK293 cells	Liu et al. (2021)
	Self-assembly	109–155 nm	Chitosan and <i>Antheraea mylitta</i> silk- coated silver nanoparticles for transdermal cancer therapy delivery	<i>In vitro:</i> cytotoxicity, comet, morphology assays in A431 and HaCaT cells	Nayak et al. (2021)
				In vivo: immune response in BALB/c mice	
Recombinant silks	Salting out	~400 nm	Targeted delivery of doxorubicin for cancer in particle inspired by <i>Nephila clavipes</i> spider	<i>In vivo</i> : biodistribution and safety in BALB/cAnNCrl mice	Deptuch et al. (2021)
	Salting out	~400 nm	Targeted delivery of doxorubicin for cancer in particle inspired by <i>Nephila</i> <i>clavipes</i> spider	<i>In vitro:</i> cytotoxicity, and uptake in D2F2E2/LUC and D2F2/LUC cells	Florczak et al. (2020)
				<i>In vivo</i> -models for orthotopic and metastatic breast cancer in BALB/ cAnNCrl mice	
	Salting out	~1 µm	Stimuli responsive <i>Araneus</i> <i>diadematus</i> inspired particle for cancer therapy delivery	<i>In vitro:</i> cytotoxicity and uptake in HeLa cells	Herold et al. (2020)
	Nanoprecipitation	184 nm	Stimuli responsive <i>Nephila clavipes</i> inspired particles for antibiotic delivery	In vitro: infection responsive activity in Staphylococcus aureus and Staphylococcus epidermidis	Mulinti et al. (2021)
				<i>In vivo:</i> septic arthritis model in Sprague Dawley rats	
	Salting out	~1 µm	<i>Araneus diadematus</i> inspired particles for directing corona formation, applications in systemic delivery	<i>Ex vivo:</i> incubation in human whole blood for corona analysis	Weiss et al. (2020)

TABLE 1 (Continued) Summary of current advances in silk and silk fiber-inspired nanomaterials for drug and gene delivery.

beta-sheet structures, thereby altering the crystallinity and mechanical properties of fibroin-based materials. The level of crystallinity varies with the material fabrication methods and can be further increased using post-processing techniques such as water annealing (Hu et al., 2011; Rockwood et al., 2011; Jameson et al., 2021). Fibroin nanoparticles have also been shown to have stimuli-responsive behavior, with increased degradation and drug release occurring as a function of stimuli such as pH and the presence of reactive oxygen species, making them advantageous for delivery of therapies like chemotherapeutics (Seib et al., 2013; Rezaei et al., 2020; Chen et al., 2021b).

To form nanomaterials with silk fibroin, researchers have developed an array of physical and chemical methods to induce the hydrophobic collapse of the hydrophobic motifs and encourage the formation of water insoluble nanoparticles (Murphy et al., 2008; Murphy and Kaplan, 2009; Wenk et al., 2010; Heichel and Burke, 2020; Hong et al., 2020). Recent studies have utilized techniques such as spray drying (Fuster et al., 2021), organic solvent desolvation (Hasanzadeh et al., 2020; Rezaei et al., 2020; Zahedi et al., 2021), salting out (Song et al., 2019), and microfluidic devices (Shimanovich et al., 2017; Matthew et al., 2020; Vargas Montoya et al., 2020; Matthew et al., 2022; Tomeh et al., 2022) (Table 1). Control of particle size and material properties to enhance cell material interaction (Xiao et al., 2022) and to optimize non-systemic delivery routes has been established (Takeuchi et al., 2019; Yang et al., 2019; Chung et al., 2022; Mitra et al., 2022).

Recently, researchers have combined functionalization techniques with the use of composite materials to generate the next generation of silk-based nanomaterials that can function as targeted delivery systems (Song et al., 2019; Totten et al., 2019; Pham et al., 2020; Bossi et al., 2021; Hassanzadeh et al., 2021; Horo et al., 2021; Zahedi et al., 2021; Du et al., 2022) and as systems for both therapy and diagnostics (ZhuGe et al., 2019; Passi et al., 2020; Zhang et al., 2021). Pham et al. (2020) developed a fibroin nanoparticle system for delivery of therapeutics in the treatment of colon cancer. They encapsulated paclitaxel in fibroin particles (300-500 nm) formed by organic solvent desolvation and EDC crosslinking. They found their formulations were effective in colon and breast cell cancer lines, but interestingly observed that when the formulation was used in colon cancer lines, cytotoxic efficiency increased 10-fold relative to free drug (Pham et al., 2020). Du et al. (2022) also explored targeting sites in the colon for ulcerative colitis. They formed nanoparticles by desolvation and then surface functionalized them with cRGD. Safety and efficacy were evaluated in vitro and in vivo and it was found that the cRGD functionalized particles specifically interacted with integrin av inflammation sites in the colon and contributed to an improved therapeutic outcome (Du et al., 2022). Horo et al. (2021) developed a composite material for targeted delivery of antitumor agents. They developed chitosan-stabilized gold nanoparticles (~8 nm) loaded with doxorubicin and coated with fibroin conjugated with folic acid and fluorescein to promote the targeting of tumor cells. The silk coating contributed to an improved drug release profile and increased uptake and cytotoxicity in HeLa cultures. They also modified this formulation into larger particles (~1,000 µm) using ionic gelation to address the potential for oral delivery (Horo et al., 2021). Song et al. (2019) also explored anti-cancer composite silk nanomaterials for targeted delivery for gene therapies. They utilized a salting out technique to fabricate magnetic silk + polyethyleneimine core shell nanoparticles with tunable size (~100-500 nm). They demonstrated enhanced delivery of therapeutic antisense oligodeoxynucleotides by use of magnetofection in MDA-MB-231 breast cancer cells (Song et al., 2019). Silk-based nanomaterial DDS continue to be made of primarily Bombyx mori fibroin polymers, but recently researchers have also begun investigating other silk fiber biopolymers as well as alternative sources for silk fibroin biopolymers that have additional unique properties for use in biomedical applications.

Bombyx mori sericin

As mentioned previously, sericin proteins from Bombyx mori cocoons have traditionally been discarded as a waste product. However, recent work has highlighted how, when purified, sericin proteins are non-cytotoxic, have a high potential for reactive modification, and can facilitate cell-material interaction. A major limitation of sericin proteins is that they are highly water soluble, meaning the majority of nanomaterials made with sericin must be composite materials. Sericins from Bombyx mori are not as well characterized as their fibroin counterpart, but it has been shown that they are globular proteins in nature ranging from 20 to 310 kDa and mainly consist of reactive residues like serine and aspartic acid. This means sericin materials often have increased presence of random coil structures; however, crystallinity can still be induced in the material synthesis process by techniques such as desolvation. Recent studies utilizing sericin-based DDS have focused on applications including nasal delivery (Perteghella et al., 2021), pH responsive materials (Xu et al., 2022), antibacterial activity (Baker et al., 2020; Al Masud et al., 2021), cell therapy (Orlandi et al., 2020), and cancer therapies (Boonpavanitchakul et al., 2020; Baker et al., 2021; Radu et al., 2021) (Table 1).

To assemble sericin-based nanoparticles, researchers often have taken a two-step approach. First, taking advantage of the reactiveness of sericin, they chemically crosslink or modify the polymer. This is typically followed by a self-assembly or desolvation step. Boonpavanitchakul et al. (2020) conjugated a hydrophobic polymer, PLA, to sericin, forming an amphiphilic material. They were then able to self-assemble the PLA-silk sericin polymers into nanomaterials of tunable size (~36-370 nm) depending on the pH and inclusion of additional crosslinkers, all taking place in aqueous conditions. They further demonstrated the potential of this system as a cancer therapy by showing effective loading of doxorubicin, enhanced release under acidic conditions, and effectiveness in vitro liver cancer cell models (Boonpavanitchakul et al., 2020). Perteghella et al. (2021) stabilized sericin by crosslinking with crocetin and formed ~225 nm nanoparticles by desolvation in acetone. Perteghella et al. (2021) and colleagues are working toward optimizing these particles for nose-to-brain delivery and demonstrated cytocompatibility and protection from oxidative stress in Caco-2 epithelial cells. Xu et al. (2022) took a novel approach and optimized a transgenic silkworm to produce silk that is sericin-rich and has recombinant lactoferrin expressed in the sericin layer for treatment of ulcerative colitis. They were then able to synthesize ~125 nm negatively charged sericin-lactoferrin nanospheres by acetone desolvation. The effectiveness of the system was evaluated by oral delivery in an ulcerative colitis mouse model. They demonstrated improved uptake efficiency (attributed to charge interactions) and inhibition of the NF- $\kappa\beta$ inflammatory pathway associated with acute colitis (Xu et al., 2022). Overall, the recent progress in sericin DDS highlight the advantages of the increased bioactivity and reactivity of the protein. Researchers have also begun to evaluate the potential of silk from different species for this same purpose.

Non-Bombyx mori native silk fibers

While most silk-based healthcare materials have traditionally been reverse engineered from *Bombyx mori* silk fibers, most insects in the Lepidopteran order produce silk fibers for a variety of applications (cocoon/web formation, egg coating, etc.,). Recent studies have found that some of these fibers expand the design space for silk-based materials by having more reactive residues and different mechanical properties. Recently, silk fibroin from *Antheraea assamensis* (Baruah et al., 2020; Asapur et al., 2022), *Antheraea pernyi* (Liu et al., 2021), and sericin from *Antheraea mylitta* (Nayak et al., 2021) have all been used in the development of nanoparticle DDS (Table 1).

Asapur et al. (2022) characterized the secondary structure of nanoparticles synthesized from Antheraea assamensis fibroin by desolvation and radiolysis methods. The fibroin from Antheraea assamensis is known for its ability to absorb high levels of UV radiation and its impressive tensile strength (Goswami et al., 2020). Like Bombyx mori fibroin, alanine-rich repeating motifs give this biopolymer the potential to form nanomaterials with high levels of β sheet crystallinity (Gupta et al., 2015). Asapur et al. (2022) found that the radiolysis method led to the formation of smaller ~180 nm particles compared to ~250 nm particles made with desolvation. Both particle types also had >30% crystalline content, showing potential for controlled release. Baruah et al. (2020) evaluated the release of doxorubicin from Antheraea assamensis fibroin particles made by desolvation and found efficient drug loading, and that the DDS increased the effectiveness relative to free doxorubicin of the cytotoxic effect on MDA-MB-231 cancer cells.

Liu et al. (2021) took advantage of the abundant reactive sites present in silk fibroin from *Antheraea pernyi* in the creation of their stimuli responsive DDS. They prepared particles from cationized *Antheraea pernyi* fibroin for gene delivery to cancer cells by desolvation in DMSO. Using the reactive capabilities of this fibroin, they grafted on an MMP-2 cleavable PEG to the particles surface. This allowed for limiting opsonization without sacrificing transfection when MMP-2 (highly expressed in the tumor microenvironment) cleaves the PEG *in vitro*. They demonstrated decreased protein adhesion and successful transfection to HEK293 cells (Liu et al., 2021). In addition to leveraging the biodiversity of silk fiber producing species to design novel polymeric nanomaterials for DDS, researchers have also recently been producing recombinant proteins inspired by silk fibers to create targeted DDS.

Silk fiber-inspired recombinant polymers

As an alternative to use of purified silk fibroin proteins, researchers have also designed recombinant silk proteins inspired by nature to make polymeric nanomaterials for drug and therapeutic delivery. One approach is to use bacteria, such as *E. coli*, to express silk-like peptides either alone or in combination with other useful protein sequences (Huang et al., 2015; Bowen et al., 2018; Yu et al., 2022). Another approach utilizes whole organism genetic modification to express engineered silk fibroins or other related therapeutic agents (e.g., sericins) (Xu et al., 2022; Tamura et al., 2000; Tomita et al., 2003; Xu and O'Brochta, 2015; Saviane et al., 2018; Baci et al., 2021a; Baci et al., 2021b; Zhong et al., 2011).

Much of the focus of genetic engineering of silk proteins is based on the silk fibroins produced by spiders. This is because, unlike Lepidopteran species, spiders' cannibalistic and territorial tendencies make it so spiders cannot be farmed, meaning their fibers cannot be naturally sourced for biomedical research. Researchers have taken inspiration from the silk of Nephila clavipes and Araneus diadematus to design recombinant spider proteins. Silk produced from spiders (spidroin proteins) are ~300 kDa and composed of a highly repetitive core, mainly consisting of alanine, glycine, and proline residues, flanked by small, nonrepetitive terminal domains, which are highly conserved across spider species (Babb et al., 2017). The development, expression, and purification of spider-inspired fibroin proteins (spidroin proteins) has been recently reviewed (Kiseleva et al., 2020; Bittencourt et al., 2022). For the purposes of this review, we focus on the nanoparticle fabrication techniques recently used in the progress toward targeted DDS, and recent publications are summarized in Table 1.

The Scheibel group designed nanoparticle systems based on Araneus diadematus with the goal of directing corona formation and stimuli responsive release (Herold et al., 2020; Weiss et al., 2020). They recombinantly produced polymers with either a net negative or net positive charge and used the salting out technique to form nanoparticles. They then performed ex vivo analysis of corona formation in whole blood (Weiss et al., 2020). It was observed that the negatively charged nanospheres primarily attracted complement proteins and immunoglobulins, while positively charged particles primarily had fibrinogen-based proteins adsorbed on their surface (Weiss et al., 2020). In a separate study, researchers utilized a polyanionic form of the silk from the aforementioned study and covalently attached a cytostatic drug to the particle surface and explored the response to pH and redox state (Herold et al., 2020). Ellman's solution (a model to simulate sulfhydryl group containing drugs) was bound to cystine residues in the spider fibroin-inspired silk particle, which was then further modified by including a hydrazone linker. This system led to enhanced drug release under acidic conditions and oxidative stress in HeLa cultures (Herold et al., 2020). Researchers have also explored recombinantly producing proteins and peptides inspired by the spidroin proteins of other spider species (Ramezaniaghdam et al., 2022).

The Dam-Kozlowska group has been building toward a cancer therapeutic DDS based on a recombinant silk fiber inspired by *Nephila clavipes* (Florczak et al., 2014; Florczak et al., 2020; Deptuch et al., 2021). They were able to produce a polymer based on the MaSp1 sequence from *Nephila clavipes* and include a Her2 binding peptide. Particles were produced by salting out and loaded with doxorubicin. They demonstrated enhanced binding to Her2-overexpressing SKOV3 cells and showed the particles themselves were noncytotoxic and could deliver doxorubicin to kill cancer cells (Florczak et al., 2014). They recently tested this system *in vivo* and demonstrated safety (Deptuch et al., 2021) and targeted delivery in breast cancer models (Florczak et al., 2020). The development of DDS based on silk nanomaterials continues to grow and researchers are moving toward potential for clinical translation.

Future perspectives and conclusion

The wide range of material properties available from the reconstitution of silk fibers makes them an interesting class of materials for future translational research. Specifically, silk fibroins from *Bombyx mori* are able to generate a wide array of drug delivery systems (DDS) given the range of fabrication techniques, modification methods, and utility in composite materials. Furthermore, spider silk-inspired and sericin biopolymers represent additional classes of materials for DDS. Each class of materials offers its own unique features, such as biodegradation, controllable immunogenicity, and favorable mechanical properties.

While many systems have been proposed, grand challenges still exist in the application of these materials to clinical settings. As with any natural material or recombinantly produced protein, ensuring good manufacturing practices as well as methods to remove contaminating molecules or organisms, such and endotoxins or mycotoxins, is critical. Sourcing these natural materials can also be a challenge, as Bombyx mori cultivation and farming is subject to our changing climate and regional differences in farming practices (Gani and Ghosh, 2018; Shilpa et al., 2021), which can lead to variability in cocoons and subsequent silk properties. Recent advancements in genetic engineering technologies for the Bombyx mori silkworm suggest that improvements or modifications to protein structures within these systems is possible (Tamura et al., 2000; Xu and O'Brochta, 2015; Saviane et al., 2018; Baci et al., 2021a; Long et al., 2020), thus providing an avenue for addressing current challenges in protein structure highlighted throughout this review. However, any change is not without added complication or risk, as modification to silk fibroin protein sequences can pose new challenges in protein expression, spinning, or purification. Additionally, chemical

modifications to existing natural materials can also alter chemistries for improvements in affinity binding and drug loading (Sato et al., 2012; Heichel and Burke, 2020). Continued efforts to further open the design space to include silk fibers or silk fiber-based proteins from other species as well as recombinantly produced polymers and peptides is another strategy for overcoming current challenges. These efforts demonstrate the enormous future potential for this class of materials and their scale-up, use in advanced manufacturing, generation of novel polymer solutions, and development of treatments for a myriad of diseases. While this review was limited to nanomaterialbased DDS, we expect that the use of novel silk proteins for the formation of materials such as scaffolds, films, foams, and hydrogels is an area of interest for local DDS, regenerative medicine, and tissue engineering. Similarly, clinical trials using materials from or synthesized to replicate components silk fibers are on-going, with a large focus on inert filler materials for treatment of conditions like vocal cord paralysis (National Library of Medicine (U.S.), 2019). These advances toward clinical application are positive first steps for the continued investigation and development of all-natural silk-inspired nanomaterials for drug delivery systems.

Author contributions

MP: Writing-original draft, review and editing, visualization, conceptualization LE: Visualization, writing-review and editing ND: Visualization, writing-review and editing JA: Writingreview and editing AC: Writing-review and editing IK: Writing-review and editing WS: Writing-review and editing, conceptualization, supervision. All authors have read and agreed to the final version of the manuscript.

Funding

All authors would like to acknowledge support from the Department of Defense Congressionally Directed Medical Fund (W81XWH2110199). LE and AC Research acknowledge support from the REU in Chemical Engineering REU Site at the University of Florida (NSF EEC-1852111). ND was supported by a grant from the National Institutes of Health (NIH T35HL007489). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH. MP acknowledges support from the National Science Foundation Graduate Research Fellowship (DGE-1842473). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation or another funding agency. IK would like to acknowledge support from the UF Student Science Training Program (SSTP) and her summer research experience.

Acknowledgments

The Stoppel Lab would like to acknowledge the University of Florida (UF) Chemical Engineering Research Experience for Undergraduates program, the UF Herbert Wertheim College of Engineering Summer Undergraduate Research at Florida (SURF) Program, the UF Student Science Training Program, and the UF College of Medicine Medical Student Research Program for supporting development of trainees in the laboratory during Summer 2022. Figure 1 was created with a license from BioRender.com.

References

Al Masud, M. A., Shaikh, H., Alam, M. S., Karim, M. M., Momin, M. A., Islam, M. A., et al. (2021). Green synthesis of silk sericin-embedded silver nanoparticles and their antibacterial application against multidrug-resistant pathogens. *J. Genet. Eng. Biotechnol.* 19 (1), 74. doi:10.1186/s43141-021-00176-5

Asakura, T., Okushita, K., and Williamson, M. P. (2015). Analysis of the structure of *Bombyx mori* silk fibroin by NMR. *Macromolecules* 48 (8), 2345–2357. doi:10. 1021/acs.macromol.5b00160

Asapur, P., Mahapatra, S. K., and Banerjee, I. (2022). Secondary structural analysis of non-mulberry silk fibroin nanoparticles synthesized by using microwave and acetone method. *J. Biomol. Struct. Dyn.* 40 (9), 4100–4109. doi:10.1080/07391102.2020.1852970

Babb, P. L., Lahens, N. F., Correa-Garhwal, S. M., Nicholson, D. N., Kim, E. J., Hogenesch, J. B., et al. (2017). The *Nephila clavipes* genome highlights the diversity of spider silk genes and their complex expression. *Nat. Genet.* 49 (6), 895–903. doi:10.1038/ng.3852

Baci, G. M., Cucu, A. A., Giurgiu, A. I., Musca, A. S., Bagameri, L., Moise, A. R., et al. (2021). Advances in editing silkworms (*Bombyx mori*) genome by using the CRISPR-cas system. *Insects* 13 (1), 28. doi:10.3390/insects13010028

Baci, G. M., Moise, A. R., and Dezmirean, D. S. (2021). Utilization of transgenic Bombyx mori for biomaterials production. Sci. Pap. Animal Sci. Biotechnologies/ Lucrari Stiintifice Zootehnie si Biotehnol. 54 (1).

Baker, A., Syed, A., Alyousef, A. A., Arshad, M., Alqasim, A., Khalid, M., et al. (2020). Sericin-functionalized GNPs potentiate the synergistic effect of levofloxacin and balofloxacin against MDR bacteria. *Microb. Pathog.* 148, 104467. doi:10.1016/j. micpath.2020.104467

Baker, A., Wahid, I., Hassan Baig, M., Alotaibi, S. S., Khalid, M., Uddin, I., et al. (2021). Silk cocoon-derived protein bioinspired gold nanoparticles as a formidable anticancer agent. J. Biomed. Nanotechnol. 17 (4), 615–626. doi:10.1166/jbn.2021.3053

Baruah, R. R., Chandra Kalita, M., and Devi, D. (2020). Novel non-mulberry silk fibroin nanoparticles with enhanced activity as potential candidate in nanocarrier mediated delivery system. *RSC Adv.* 10 (15), 9070–9078. doi:10.1039/c9ra08901b

Bittencourt, D. M. C., Oliveira, P., Michalczechen-Lacerda, V. A., Rosinha, G. M. S., Jones, J. A., and Rech, E. L. (2022). Bioengineering of spider silks for the production of biomedical materials. *Front. Bioeng. Biotechnol.* 10, 958486. doi:10. 3389/fbioe.2022.958486

Blanco, E., Shen, H., and Ferrari, M. (2015). Principles of nanoparticle design for overcoming biological barriers to drug delivery. *Nat. Biotechnol.* 33 (9), 941–951. doi:10.1038/nbt.3330

Boonpavanitchakul, K., Bast, L. K., Bruns, N., and Magaraphan, R. (2020). Silk sericin-polylactide protein-polymer conjugates as biodegradable amphiphilic materials and their application in drug release systems. *Bioconjug. Chem.* 31 (10), 2312–2324. doi:10.1021/acs.bioconjchem.0c00399

Bossi, A. M., Bucciarelli, A., and Maniglio, D. (2021). Molecularly imprinted silk fibroin nanoparticles. *ACS Appl. Mat. Interfaces* 13 (27), 31431–31439. doi:10.1021/acsami.1c05405

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Bowen, C. H., Dai, B., Sargent, C. J., Bai, W., Ladiwala, P., Feng, H., et al. (2018). Recombinant spidroins fully replicate primary mechanical properties of natural spider silk. *Biomacromolecules* 19 (9), 3853–3860. doi:10.1021/acs.biomac. 8b00980

Brannon, E. R., Guevara, M. V., Pacifici, N. J., Lee, J. K., Lewis, J. S., and Eniola-Adefeso, O. (2022). Polymeric particle-based therapies for acute inflammatory diseases. *Nat. Rev. Mat.* 7 (10), 796–813. doi:10.1038/s41578-022-00458-5

Chen, L., Hong, W., Ren, W., Xu, T., Qian, Z., and He, Z. (2021). Recent progress in targeted delivery vectors based on biomimetic nanoparticles. *Signal Transduct. Target. Ther.* 6 (1), 225. doi:10.1038/s41392-021-00631-2

Chen, Y., Wu, H., Yang, T., Zhou, G., Chen, Y., Wang, J., et al. (2021). Biomimetic nucleation of metal-organic frameworks on silk fibroin nanoparticles for designing core-shell-structured pH-responsive anticancer drug carriers. *ACS Appl. Mat. Interfaces* 13 (40), 47371–47381. doi:10.1021/acsami.1c13405

Chung, T. W., Wu, T. Y., Siah, Z. Y., and Liu, D. Z. (2022). Antioxidative NACloaded silk nanoparticles with opening mucosal tight junctions for nasal drug delivery: An *in vitro* and *in vivo* study. *Pharmaceutics* 14 (6), 1288. doi:10.3390/ pharmaceutics14061288

Crivelli, B., Bari, E., Perteghella, S., Catenacci, L., Sorrenti, M., Mocchi, M., et al. (2019). Silk fibroin nanoparticles for celecoxib and curcumin delivery: ROS-scavenging and anti-inflammatory activities in an *in vitro* model of osteoarthritis. *Eur. J. Pharm. Biopharm.* 137, 37–45. doi:10.1016/j.ejpb.2019.02.008

Deptuch, T., Florczak, A., Lewandowska, A., Leporowska, E., Penderecka, K., Marszalek, A., et al. (2021). MS1-type bioengineered spider silk nanoparticles do not exhibit toxicity in an *in vivo* mouse model. *Nanomedicine Lond. Engl.* 16 (18), 1553–1565. doi:10.2217/nnm-2021-0029

Du, Y., Shi, J., Duan, R., Tsim, K. W. K., Shen, L., Zhang, N., et al. (2022). cRGD peptide incorporated with patchouli alcohol loaded silk fibroin nanoparticles for enhanced targeting of inflammatory sites in colitis. *Biomater. Adv.* 140, 213069. doi:10.1016/j.bioadv.2022.213069

Florczak, A., Deptuch, T., Lewandowska, A., Penderecka, K., Kramer, E., Marszalek, A., et al. (2020). Functionalized silk spheres selectively and effectively deliver a cytotoxic drug to targeted cancer cells *in vivo*. *J. Nanobiotechnology* 18 (1), 177. doi:10.1186/s12951-020-00734-y

Florczak, A., Mackiewicz, A., and Dams-Kozlowska, H. (2014). Functionalized spider silk spheres as drug carriers for targeted cancer therapy. *Biomacromolecules* 15 (8), 2971–2981. doi:10.1021/bm500591p

Fuster, M. G., Carissimi, G., Montalban, M. G., and Villora, G. (2021). Antitumor activity of rosmarinic acid-loaded silk fibroin nanoparticles on HeLa and MCF-7 cells. *Polym. (Basel)* 13 (18), 3169. doi:10.3390/ polym13183169

Gani, M. N. A., and Ghosh, M. K. (2018). Impact of climate change on agriculture and sericulture. J. ENTOMOLOGY ZOOLOGY Stud. 6 (5), 426–429.

George, A., Shah, P. A., and Shrivastav, P. S. (2019). Natural biodegradable polymers based nano-formulations for drug delivery: A review. *Int. J. Pharm. X.* 561, 244–264. doi:10.1016/j.ijpharm.2019.03.011

Ghalei, S., Mondal, A., Hopkins, S., Singha, P., Devine, R., and Handa, H. (2020). Silk nanoparticles: A natural polymeric platform for nitric oxide delivery in biomedical applications. *ACS Appl. Mat. Interfaces* 12 (48), 53615–53623. doi:10.1021/acsami.0c13813

Goswami, A., Goswami, N., Bhattacharya, A., Borah, P., and Devi, D. (2020). Composition and *in silico* structural analysis of fibroin from liquid silk of non-mulberry silkworm Antheraea assamensis. *Int. J. Biol. Macromol.* 163, 1947–1958. doi:10.1016/j.ijbiomac.2020.08.232

Guo, C., Li, C., and Kaplan, D. L. (2020). Enzymatic degradation of *Bombyx mori* silk materials: A review. *Biomacromolecules* 21 (5), 1678–1686. doi:10.1021/acs. biomac.0c00090

Gupta, A. K., Mita, K., Arunkumar, K. P., and Nagaraju, J. (2015). Molecular architecture of silk fibroin of Indian golden silkmoth, Antheraea assama. *Sci. Rep.* 5 (1), 12706. doi:10.1038/srep12706

Hasanzadeh, S., Farokhi, M., Habibi, M., Shokrgozar, M. A., Ahangari Cohan, R., Rezaei, F., et al. (2020). Silk fibroin nanoadjuvant as a promising vaccine carrier to deliver the FimH-IutA antigen for urinary tract infection. *ACS Biomater. Sci. Eng.* 6 (8), 4573–4582. doi:10.1021/acsbiomaterials.0c00736

Hassanzadeh, P., Arbabi, E., and Rostami, F. (2021). Coating of ferulic acidloaded silk fibroin nanoparticles with neutrophil membranes: A promising strategy against the acute pancreatitis. *Life Sci.* 270, 119128. doi:10.1016/j.lfs.2021.119128

Heichel, D. L., and Burke, K. A. (2020). Enhancing the carboxylation efficiency of silk fibroin through the disruption of noncovalent interactions. *Bioconjug. Chem.* 31 (5), 1307–1312. doi:10.1021/acs.bioconjchem.0c00168

Herold, H. M., Dobl, A., Wohlrab, S., Humenik, M., and Scheibel, T. (2020). Designed spider silk-based drug carrier for redox- or pH-triggered drug release. *Biomacromolecules* 21 (12), 4904–4912. doi:10.1021/acs.biomac.0c01138

Hong, S., Choi, D. W., Kim, H. N., Park, C. G., Lee, W., and Park, H. H. (2020). Protein-based nanoparticles as drug delivery systems. *Pharmaceutics* 12 (7), 604. doi:10.3390/pharmaceutics12070604

Horo, H., Bhattacharyya, S., Mandal, B., and Kundu, L. M. (2021). Synthesis of functionalized silk-coated chitosan-gold nanoparticles and microparticles for target-directed delivery of antitumor agents. *Carbohydr. Polym.* 258, 117659. doi:10.1016/j.carbpol.2021.117659

Hrkach, J., and Langer, R. (2020). From micro to nano: Evolution and impact of drug delivery in treating disease. *Drug Deliv. Transl. Res.* 10 (3), 567–570. doi:10. 1007/s13346-020-00769-6

Hu, X., Shmelev, K., Sun, L., Gil, E. S., Park, S. H., Cebe, P., et al. (2011). Regulation of silk material structure by temperature-controlled water vapor annealing. *Biomacromolecules* 12 (5), 1686–1696. doi:10.1021/bm200062a

Huang, W., Rollett, A., and Kaplan, D. L. (2015). Silk-elastin-like protein biomaterials for the controlled delivery of therapeutics. *Expert Opin. Drug Deliv.* 12 (5), 779–791. doi:10.1517/17425247.2015.989830

Hudita, A., Radu, I. C., Zaharia, C., Ion, A. C., Ginghina, O., Galateanu, B., et al. (2021). Bio- and hemo-compatible silk fibroin PEGylated nanocarriers for 5-fluorouracil chemotherapy in colorectal cancer: *In vitro* studies. *Pharmaceutics* 13 (5), 755. doi:10.3390/pharmaceutics13050755

Jain, K. K. (2020). An overview of drug delivery systems. *Methods Mol. Biol.* 2059, 1–54. doi:10.1007/978-1-4939-9798-5_1

Jameson, J. F., Pacheco, M. O., Butler, J. E., and Stoppel, W. L. (2021). Estimating kinetic rate parameters for enzymatic degradation of lyophilized silk fibroin sponges. *Front. Bioeng. Biotechnol.* 9 (537), 664306. doi:10.3389/fbioe.2021.664306

Kiseleva, A. P., Krivoshapkin, P. V., and Krivoshapkina, E. F. (2020). Recent advances in development of functional spider silk-based hybrid materials. *Front. Chem.* 8, 554. doi:10.3389/fchem.2020.00554

Liu, X., Luo, H., Niu, L., Feng, Y., Pan, P., Yang, J., et al. (2021). Cleavable poly(ethylene glycol) branched chain-modified *Antheraea pernyi* silk fibroin as a gene delivery carrier. *Nanomedicine Lond. Engl.* 16 (10), 839–853. doi:10.2217/ nnm-2020-0481

Long, D., Xiao, B., and Merlin, D. (2020). Genetically modified silk fibroin nanoparticles for drug delivery: Preparation strategies and application prospects. *Nanomedicine Lond. Engl.* 15 (18), 1739–1742. doi:10.2217/nnm-2020-0182

Matthew, S. A. L., Rezwan, R., Perrie, Y., and Seib, F. P. (2022). Volumetric scalability of microfluidic and semi-batch silk nanoprecipitation methods. *Molecules* 27 (7), 2368. doi:10.3390/molecules27072368

Matthew, S. A. L., Totten, J. D., Phuagkhaopong, S., Egan, G., Witte, K., Perrie, Y., et al. (2020). Silk nanoparticle manufacture in semi-batch format. *ACS Biomater. Sci. Eng.* 6 (12), 6748–6759. doi:10.1021/acsbiomaterials.0c01028

Mitra, K., Chadha, A., Muthuvijayan, V., and Doble, M. (2022). Self-assembled inhalable immunomodulatory silk fibroin nanocarriers for enhanced drug loading and intracellular antibacterial activity. *ACS Biomater. Sci. Eng.* 8 (2), 708–721. doi:10.1021/acsbiomaterials.1c01357

Moin, A., Wani, S. U. D., Osmani, R. A., Abu Lila, A. S., Khafagy, E. S., Arab, H. H., et al. (2021). Formulation, characterization, and cellular toxicity assessment of tamoxifen-loaded silk fibroin nanoparticles in breast cancer. *Drug Deliv.* 28 (1), 1626–1636. doi:10.1080/10717544.2021.1958106

Mulinti, P., Shreffler, J., Hasan, R., Dea, M., and Brooks, A. E. (2021). Infection responsive smart delivery of antibiotics using recombinant spider silk nanospheres. *Pharmaceutics* 13 (9), 1358. doi:10.3390/pharmaceutics13091358

Murphy, A. R., and Kaplan, D. L. (2009). Biomedical applications of chemically-modified silk fibroin. J. Mat. Chem. 19 (36), 6443-6450. doi:10. 1039/b905802h

Murphy, A. R., St John, P., and Kaplan, D. L. (2008). Modification of silk fibroin using diazonium coupling chemistry and the effects on hMSC proliferation and differentiation. *Biomaterials* 29 (19), 2829–2838. doi:10.1016/j.biomaterials.2008. 03.039

National Library of Medicine (U.S.) (2019). Silk protein microparticle-based filler for injection augmentation. Identifier NCT03790956, https://ClinicalTrials.gov/show/NCT03790956.

Nayak, D., Thathapudi, N. C., Ashe, S., and Nayak, B. (2021). Bioengineered ethosomes encapsulating AgNPs and Tasar silk sericin proteins for non melanoma skin carcinoma (NMSC) as an alternative therapeutics. *Int. J. Pharm. X.* 596, 120265. doi:10.1016/j.ijpharm.2021.120265

Niu, L., Chen, G., Feng, Y., Liu, X., Pan, P., Huang, L., et al. (2021). Polyethylenimine-modified *Bombyx mori* silk fibroin as a delivery carrier of the ING4-IL-24 coexpression plasmid. *Polym. (Basel)* 13 (20), 3592. doi:10.3390/ polym13203592

Ode Boni, B. O., Bakadia, B. M., Osi, A. R., Shi, Z., Chen, H., Gauthier, M., et al. (2022). Immune response to silk sericin-fibroin composites: Potential immunogenic elements and alternatives for immunomodulation. *Macromol. Biosci.* 22 (1), e2100292. doi:10.1002/mabi.202100292

Orlandi, G., Bari, E., Catenacci, L., Sorrenti, M., Segale, L., Farago, S., et al. (2020). Polyphenols-loaded sericin self-assembling nanoparticles: A slow-release for regeneration by tissue-resident mesenchymal stem/stromal cells. *Pharmaceutics* 12 (4), 381. doi:10.3390/pharmaceutics12040381

Passi, M., Kumar, V., and Packirisamy, G. (2020). Theranostic nanozyme: Silk fibroin based multifunctional nanocomposites to combat oxidative stress. *Mater. Sci. Eng. C* 107, 110255. doi:10.1016/j.msec.2019.110255

Perteghella, S., Rassu, G., Gavini, E., Obinu, A., Bari, E., Mandracchia, D., et al. (2021). Crocetin as new cross-linker for bioactive sericin nanoparticles. *Pharmaceutics* 13 (5), 680. doi:10.3390/pharmaceutics13050680

Pham, D. T., Saelim, N., and Tiyaboonchai, W. (2020). Paclitaxel loaded EDCcrosslinked fibroin nanoparticles: A potential approach for colon cancer treatment. *Drug Deliv. Transl. Res.* 10 (2), 413–424. doi:10.1007/s13346-019-00682-7

Pham, D. T., and Tiyaboonchai, W. (2020). Fibroin nanoparticles: A promising drug delivery system. *Drug Deliv.* 27 (1), 431PMC7144220–48. doi:10.1080/10717544.2020.1736208

Radu, I. C., Zaharia, C., Hudita, A., Tanasa, E., Ginghina, O., Marin, M., et al. (2021). *In vitro* interaction of doxorubicin-loaded silk sericin nanocarriers with MCF-7 breast cancer cells leads to DNA damage. *Polym. (Basel)* 13 (13), 2047. doi:10.3390/polym13132047

Ramezaniaghdam, M., Nahdi, N. D., and Reski, R. (2022). Recombinant spider silk: Promises and bottlenecks. *Front. Bioeng. Biotechnol.* 10, 835637. doi:10.3389/ fbioe.2022.835637

Rezaei, F., Damoogh, S., Reis, R. L., Kundu, S. C., Mottaghitalab, F., and Farokhi, M. (2020). Dual drug delivery system based on pH-sensitive silk fibroin/alginate nanoparticles entrapped in PNIPAM hydrogel for treating severe infected burn wound. *Biofabrication* 13 (1), 015005. doi:10.1088/1758-5090/abbb82

Rockwood, D. N., Preda, R. C., Yucel, T., Wang, X., Lovett, M. L., and Kaplan, D. L. (2011). Materials fabrication from *Bombyx mori* silk fibroin. *Nat. Protoc.* 6 (10), 1612–1631. doi:10.1038/nprot.2011.379

Sato, M., Kojima, K., Sakuma, C., Murakami, M., Aratani, E., Takenouchi, T., et al. (2012). Production of scFv-conjugated affinity silk powder by transgenic silkworm technology. *PLoS One* 7 (4), e34632. doi:10.1371/journal.pone.0034632

Saviane, A., Romoli, O., Bozzato, A., Freddi, G., Cappelletti, C., Rosini, E., et al. (2018). Intrinsic antimicrobial properties of silk spun by genetically modified silkworm strains. *Transgenic Res.* 27 (1), 87. doi:10.1007/s11248-018-0059-0

Seib, F. P., Jones, G. T., Rnjak-Kovacina, J., Lin, Y., and Kaplan, D. L. (2013). pHdependent anticancer drug release from silk nanoparticles. *Adv. Healthc. Mat.* 2 (12), 1606–1611. doi:10.1002/adhm.201300034

Shilpa, M., Gowda, D. M., Ramesh, B. S., and Avinash, G. (2021). Assessment of the impact of climatic parameters on silk cocoon production2021. *Pharma Innovation J.* SP-10 (12), 885–888.

Shimanovich, U., Ruggeri, F. S., De Genst, E., Adamcik, J., Barros, T. P., Porter, D., et al. (2017). Silk micrococoons for protein stabilisation and molecular encapsulation. *Nat. Commun.* 8 (1), 15902. doi:10.1038/ncomms15902

Song, W., Gregory, D. A., Al-Janabi, H., Muthana, M., Cai, Z., and Zhao, X. (2019). Magnetic-silk/polyethyleneimine core-shell nanoparticles for targeted gene delivery into human breast cancer cells. *Int. J. Pharm. X.* 555, 322–336. doi:10.1016/j.ijpharm.2018.11.030

Suyamud, C., Phetdee, C., Jaimalai, T., and Prangkio, P. (2021). Silk fibroincoated liposomes as biomimetic nanocarrier for long-term release delivery system in cancer therapy. *Molecules* 26 (16), 4936. doi:10.3390/molecules26164936

Takeuchi, I., Shimamura, Y., Kakami, Y., Kameda, T., Hattori, K., Miura, S., et al. (2019). Transdermal delivery of 40-nm silk fibroin nanoparticles. *Colloids Surfaces B Biointerfaces* 175, 564–568. doi:10.1016/j.colsurfb.2018.12.012

Tamura, T., Thibert, C., Royer, C., Kanda, T., Abraham, E., Kamba, M., et al. (2000). Germline transformation of the silkworm *Bombyx mori* L. using a *piggyBac* transposon-derived vector. *Nat. Biotechnol.* 18 (5), 81–84. doi:10.1038/71978

Tomeh, M. A., Hadianamrei, R., Xu, D., Brown, S., and Zhao, X. (2022). Peptidefunctionalised magnetic silk nanoparticles produced by a swirl mixer for enhanced anticancer activity of ASC-J9. *Colloids Surfaces B Biointerfaces* 216, 112549. doi:10. 1016/j.colsurfb.2022.112549

Tomita, M., Munetsuna, H., Sato, T., Adachi, T., Hino, R., Hayashi, M., et al. (2003). Transgenic silkworms produce recombinant human type III procollagen in cocoons. *Nat. Biotechnol.* 21 (1), 52–56. doi:10.1038/nbt771

Totten, J. D., Wongpinyochit, T., Carrola, J., Duarte, I. F., and Seib, F. P. (2019). PEGylation-Dependent metabolic rewiring of macrophages with silk fibroin nanoparticles. ACS Appl. Mat. Interfaces 11 (16), 14515–14525. doi:10.1021/acsami.8b18716

Vargas Montoya, N., Peterson, R., Ornell, K. J., Albrecht, D. R., and Coburn, J. M. (2020). Silk particle production based on silk/PVA phase separation using a microfabricated Co-flow device. *Molecules* 25 (4), 890. doi:10.3390/molecules25040890

Weiss, A. C. G., Herold, H. M., Lentz, S., Faria, M., Besford, Q. A., Ang, C. S., et al. (2020). Surface modification of spider silk particles to direct biomolecular corona formation. *ACS Appl. Mat. Interfaces* 12 (22), 24635–24643. doi:10.1021/acsami. 0c06344

Wenk, E., Murphy, A. R., Kaplan, D. L., Meinel, L., Merkle, H. P., and Uebersax, L. (2010). The use of sulfonated silk fibroin derivatives to control binding, delivery and potency of FGF-2 in tissue regeneration. *Biomaterials* 31 (6), 1403–1413. doi:10. 1016/j.biomaterials.2009.11.006

Wongpinyochit, T., Vassileiou, A. D., Gupta, S., Mushrif, S. H., Johnston, B. F., and Seib, F. P. (2019). Unraveling the impact of high-order silk structures on

molecular drug binding and release behaviors. J. Phys. Chem. Lett. 10 (15), 4278-4284. doi:10.1021/acs.jpclett.9b01591

Xiao, L., Ding, Z., Zhang, X., Wang, X., Lu, Q., and Kaplan, D. L. (2022). Silk nanocarrier size optimization for enhanced tumor cell penetration and cytotoxicity *in vitro. ACS Biomater. Sci. Eng.* 8 (1), 140–150. doi:10.1021/acsbiomaterials. 1c01122

Xu, H., and O'Brochta, D. A. (2015). Advanced technologies for genetically manipulating the silkworm *Bombyx mori*, a model Lepidopteran insect. *Proc. R. Soc. B* 282 (1810), 20150487–20150488. doi:10.1098/rspb.2015.0487

Xu, S., Yang, Q., Wang, R., Tian, C., Ji, Y., Tan, H., et al. (2022). Genetically engineered pH-responsive silk sericin nanospheres with efficient therapeutic effect on ulcerative colitis. *Acta Biomater.* 144, 81–95. doi:10.1016/j.actbio.2022.03.012

Yang, P., Dong, Y., Huang, D., Zhu, C., Liu, H., Pan, X., et al. (2019). Silk fibroin nanoparticles for enhanced bio-macromolecule delivery to the retina. *Pharm. Dev. Technol.* 24 (5), 575–583. doi:10.1080/10837450.2018.1545236

Yu, J., Guo, Y., Gu, Y., Fan, X., Li, F., Song, H., et al. (2022). A novel silk fibroin protein-based fusion system for enhancing the expression of nanobodies in *Escherichia coli. Appl. Microbiol. Biotechnol.* 106 (5-6), 1967–1977. doi:10.1007/ s00253-022-11857-7

Zahedi, P., Besheli, N. H., Farokhi, M., Mottaghitalab, F., Sohrabi, A., and Ghorbanian, S. A. (2021). Silk fibroin nanoparticles functionalized with fibronectin for release of vascular endothelial growth factor to enhance angiogenesis. *J. Nat. Fibers* 19, 9223–9234. doi:10.1080/15440478.2021.1982814

Zhang, H., Lai, L., Wang, Y., Ye, B., Deng, S., Ding, A., et al. (2019). Silk fibroin for CpG oligodeoxynucleotide delivery. ACS Biomater. Sci. Eng. 5 (11), 6082–6088. doi:10.1021/acsbiomaterials.9b01413

Zhang, L., Yang, R., Yu, H., Xu, Z., Kang, Y., Cui, H., et al. (2021). MnO2-capped silk fibroin (SF) nanoparticles with chlorin e6 (Ce6) encapsulation for augmented photo-driven therapy by modulating the tumor microenvironment. *J. Mat. Chem. B* 9 (17), 3677–3688. doi:10.1039/d1tb00296a

Zhong, B., Wei, H., and Zhuang, L. (2011). Advances in research of silk gland bioreactor of piggyBac-mediated transgenic silkworm. *Sci. Agric. Sin.* 44 (21), 4488-4498.

Zhou, C. Z., Confalonieri, F., Jacquet, M., Perasso, R., Li, Z. G., and Janin, J. (2001). Silk fibroin: Structural implications of a remarkable amino acid sequence. *Proteins.* 44 (2), 119–122. doi:10.1002/prot.1078

ZhuGe, D. L., Wang, L. F., Chen, R., Li, X. Z., Huang, Z. W., Yao, Q., et al. (2019). Cross-linked nanoparticles of silk fibroin with proanthocyanidins as a promising vehicle of indocyanine green for photo-thermal therapy of glioma. *Artif. Cells Nanomed. Biotechnol.* 47 (1), 4293–4304. doi:10.1080/21691401. 2019.1699819