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Pressure swing adsorption (PSA) is a widely used technology to separate a gas

product from impurities in a variety of fields. Due to the complexity of PSA

operations, process and instrument faults can occur at different parts and/or

steps of the process. Thus, effective process monitoring is critical for ensuring

efficient and safe operations of PSA systems. However, multi-bed PSA

processes present several major challenges to process monitoring. First, a

PSA process is operated in a periodic or cyclic fashion and never reaches a

steady state; Second, the duration of different operation cycles is dynamically

controlled in response to various disturbances, which results in a wide range of

normal operation trajectories. Third, there is limited data for process

monitoring, and bed pressure is usually the only measured variable for

process monitoring. These key characteristics of the PSA operation make

process monitoring, especially early fault detection, significantly more

challenging than that for a continuous process operated at a steady state.

To address these challenges, we propose a feature-based statistical process

monitoring (SPM) framework for PSA processes, namely feature space

monitoring (FSM). Through feature engineering and feature selection, we

show that FSM can naturally handle the key challenges in PSA process

monitoring and achieve early detection of subtle faults from a wide range of

normal operating conditions. The performance of FSM is compared to the

conventional SPM methods using both simulated and real faults from an

industrial PSA process. The results demonstrate FSM’s superior performance

in fault detection and fault diagnosis compared to the traditional SPMmethods.

In particular, the robust monitoring performance from FSM is achieved without

any data preprocessing, trajectory alignment or synchronization required by the

conventional SPM methods.
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1 Introduction

The synthetic zeolites developed by Union Carbide in the 1950s

enabled the development of the pressure swing adsorption (PSA)

processes. The first industrial application of PSA went on stream in

1966 at a Union Carbide production facility. Since then, PSA has been

widely used to separate a gas product from impurities in various fields,

from traditional bulk gas separation and drying, to CO2 sequestration,

trace contaminant removal, and many others. A good review of the

historical development of PSA technology can be found in Elseviers

et al. (2015). With ever-increasing product capacity and carefully

designed operations, modern multi-bed PSA systems can take full

advantage of the feed pressure to optimize performance and recover

more product gases. For multi-bed PSA systems, adsorber vessels are

connected by a complex pipe networkwith literally hundreds of valves

to automatically switch the gas flows among the beds, which results in

an intrinsically transient, cyclic, highly nonlinear, and complex

dynamic process. As industrial adsorbents are usually highly

efficient and stable, major production disruptions are most often

caused by valve-related problems, such as internal leakage or stiction.

If a potential valve problem could be detected in real-timewhile still in

its early stage, corresponding actions can be scheduled as an online

maintenance event, which can be conducted without the downtime

and in coordination with other process and business considerations.

In other words, if a fault can be detected early, the problem can be

addressed with minimum disruption before it escalates to a highly

costly emergency shutdown. Clearly, successful early fault detection

and diagnosis can greatly improve the PSA process throughput,

product quality, and economic performance. In addition, such a

process monitoring system can serve as a remote monitoring and

early warning system for unattended or autonomous PSA operations.

The intrinsically transient and cyclic operation of PSA

processes renders most available fault detection and diagnosis

solutions ineffective. Despite the importance and potential

impact of PSA process monitoring, research in this area has

been scarce. Pan et al. (2004) proposed a monitoring approach

for continuous processes with periodic characteristics by

identifying a stochastic state space model that captures the

statistical behavior of changes occurring from one period to

another. This approach was validated using a wastewater

treatment process (WWTP). While there are similarities

between WWTP and PSA processes, there are also major

differences. Most notably, for the activated sludge process,

which is the central part of a WWTP, there is a strong cycle-

to-cycle dynamics due to the continuous growth of the

microorganisms, which provides a “linkage” from cycle to

cycle. In comparison, for PSA processes, the cycle-to-cycle

dynamics is almost non-existent due to the absence of such a

linkage between cycles. In addition, the activated sludge process

is a natural periodic process with a somewhat constant cycle time

driven by the diurnal temperature and light changes. As a result,

obtaining the same number of measurements from each period

can be easily achieved, which is required by the state space

modeling approach. In contrast, PSA is an engineered periodic

process, with cycle time dynamically controlled in response to

many disturbances that affect a PSA operation, including varying

customer demands, operation schedule adjustment based on

electricity pricing to minimize cost, and/or raw material feed

composition variations. As a result, the cycle time is frequently

and often significantly adjusted, which does not satisfy the

condition that each cycle contains the same number of

measurements as required by the state space approach

proposed in Pan et al. (2004). In addition, the state space

inferential prediction proposed by Pan et al. requires quality-

relevant process output, which we do not have in this study.

Recently, Wang et al. (2017) proposed a geometric framework for

the monitoring and fault detection of periodic processes. The

fault detection is based on the “centroids of the centroids” of the

training/normal cycles and a corresponding confidence region

defined based on them. The proposed approach was applied to a

simulated two-bed PSA process and showed superior

performance compared to the conventional dynamic PCA

(DPCA) and multi-way PCA (MPCA) methods. For the

simulated PSA process, 26 variables were used for process

monitoring, including feed flow rates, pressures, and

concentrations in and across both beds. However, in

industrial PSA processes, most of these variables are not

measured, especially the concentrations in and across the

beds. In fact, for almost all PSA plants, pressure is the only

process variable constantly monitored. In this case, the method

proposed by Wang et al. (2017) is not applicable as there is no

centroid for a single variable. Another proposed method for

monitoring industrial PSA processes is a US patent (Arslan et al.,

2014). This method first applied a moving window discrete

Fourier transform (DFT) to convert process data (i.e., bed

pressure profiles) into frequency spectra; next, a number of

“relevant” peaks were identified from the frequency spectra;

and finally the logarithm of the amplitude ratio of peak k

between beds i and j is computed over time to capture the

normal process behavior and monitored for fault detection.

However, the “relevant peaks” were selected in an ad hoc

manner, and there is no description on how “relevance” was

evaluated or how the “relevant” peaks were identified. Recently,

slow feature analysis (SFA) has been proposed to capture slowly

varying dynamics in a process (e.g., dynamics across multiple

cycles) (Shang et al., 2015). SFA enables separation of normal

process changes due to process dynamics from process faults.

SFA has been utilized for the monitoring of nonstationary

chemical processes subject to time variant conditions (Zhao

and Huang, 2018) and cyclic processes including WWTPs

(Hong et al., 2020; K. Wang et al., 2021). However, SFA is

not suitable for PSA processes due to the lack of slow cycle-to-

cycle dynamics.

To develop a process monitoring solution that is suitable for

PSA and other cyclic industrial processes, we present a different

approach based on the feature space monitoring (FSM)
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framework we developed recently (He and Wang, 2018). Instead

of monitoring the original pressure profile of a PSA process, we

first conduct feature engineering, where statistical and shape/

morphological features are computed based on the pressure

profile to capture the characteristics of each step of the

operation cycle. Next, these features are grouped by cycles and

monitored by a linear or nonlinear MSPM method for fault

detection and diagnosis. Through feature engineering and

selection, we not only can readily address the unique

challenges associated with cyclic processes, such as the

unequal duration for different cycles/steps, but also could

detect subtle changes early from a wide range of normal cycle

durations. The rest of the paper is organized as follows. Section 2

discusses the key characteristics of the industrial PSA process and

the challenges posed to the conventional MSPM methods by

these characteristics. Section 3 briefly reviews statistics pattern

analysis (SPA), which is the predecessor and a special case of

FSM. Section 4 introduces the proposed FSM method for PSA

processes. Section 5 presents several case studies, including

simulated and real faults in an industrial PSA process, to

demonstrate the performance of the proposed method, which

is compared to those of the conventional MPCA-based methods.

Finally, Section 6 discusses the results and draws some

conclusions.

2 PSA process characteristics and
their challenges to conventional
MSPM

In this section, we discuss the unique characteristics of PSA

processes and how these characteristics pose challenges to

process monitoring.

2.1 PSA process characteristics

PSA processes are operated on repeated cycles of adsorption

and regeneration. As shown in Figure 1, the bed pressure is raised

during the adsorption step and the impurities are adsorbed by the

adsorbent, providing the high-purity product gas. During the

regeneration step, the bed pressure is lowered and the impurities

are cleaned or purged from the adsorbent, allowing the

adsorption-regeneration cycle to be repeated. Therefore, a PSA

process is a continuous process but never operates at any single

steady state. Instead, it repeats a sequence of operation steps over

and over. This is usually termed a cyclic steady-state process,

where cycles are very similar to each other, and a whole cycle is

considered a “steady-state”.

To take full advantage of the feed pressure and to recover

more product gas, multi-bed multi-step PSA systems have been

widely applied in industrial applications. In terms of process

monitoring, the bed pressure is always measured and is often the

only variable constantly measured for PSA processes. The

industrial data utilized in this work were collected from one

of Linde’s 12-bed 15-step PSA systems. Figure 2 shows two

common ways to visualize pressure trajectories in a multi-bed

PSA process. Due to the sensitivity of the process’s actual

operation and production data, all axis tick labels in this and

other figures are omitted when real operation data are used.

Figure 2A shows time-series pressure profiles of multiple beds

(only three out of twelve beds are shown here to reduce clutter).

This type of pressure time-series plot is useful for visualizing and

observing between-bed variations. However, only severe faults

that significantly deviate from the nominal trajectory can be

detected by the naked eyes using this type of plot; in addition, it

becomes very cluttered and difficult to read if all beds were

plotted on the same figure. Another way to visualize the pressure

profile within a bed over multiple cycles is to overlay cycles based

on the start of each cycle, as illustrated in Figure 2B. This type of

plot can be used to visualize within-bed variations. However, due

to the variable duration of cycles, again, only severe faults that

show significant deviations from the normal operation can be

detected directly by the naked eyes from this type of plot.

In terms of process monitoring, PSA processes share more

similarities with batch processes than with continuous processes.

For example, PSA and batch processes can both have variable

batch/cycle duration and step durations; they are often dynamic

transient processes and do not have a steady state. The variable

nature of the PSA cycle duration is demonstrated in Figure 3A,

which plots the durations of different cycles from one PSA bed.

For the PSA process studied in this work, each cycle consists of

15 steps, as illustrated in Figure 2. For the step durations, about

half of the steps follow similar trends as the cycle duration, while

the remaining steps have relatively constant durations. Figure 3B

plots the variable step duration of the adsorption step across

different cycles, and Figure 3C plots the relatively constant step

duration of an equalization step across different cycles. For the

FIGURE 1
Schematic illustration of the major steps involved in a PSA
process (A) Adsorption (B) Regeneration.
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PSA process studied in this work, the cycle duration is in the

order of tens of minutes and the step durations vary from seconds

to minutes.

Several observations can be made from these plots. First, the

cycles are asynchronous across different beds; for the same bed,

the cycles do not exactly overlap with each other either. Second,

despite the overall highly nonlinear behavior for each cycle, the

pressure profile for each individual step is usually much simpler

and can be approximated by a simple linear or polynomial

function. Finally, not only the cycle durations but also the

step durations vary from cycle to cycle. It is important to note

that the variations in cycle/step duration is not caused by

unmeasured normal process variations, instead, it is a result

of deliberate control of cycle and step durations to ensure

product quality in response to dynamic scheduling and/or

measured disturbances such as demand change and weather

conditions. In addition, these characteristics are not unique to

PSA processes but are rather common to other cyclic steady-state

processes, such as heat exchanger networks under fouling with

cleaning-in-place (CIP) operations (Georgiadis and

Papageorgiou, 2000), and catalytic conversion processes where

the catalyst undergoes periodic deactivation and activation (Jain

and Grossmann, 1998).

2.2 Challenges in monitoring PSA
processes

As discussed above, normal PSA operations cover a wide

range of pressure trajectories, due to the dynamically controlled

step/cycle durations in response to external disturbances. It is

clearly a highly challenging task to detect a subtle fault early from

a wide range of normal cycle/step durations with the bed pressure

as the only monitored variable. In addition, the characteristics of

FIGURE 2
Visualization of pressure trajectories in a multi-bed PSA process (A) A sample time-series pressure profiles of three beds in a multi-bed PSA
process (B) Overlaid pressure profiles of a single bed over multiple cycles, which illustrates the variable durations from different cycles.

FIGURE 3
Illustrations of the variable cycle and step durations (A)Cycle durations vary significantly from cycle to cycle (B)Durations of the adsorption step
follow a similar trend as the cycle durations (C) durations of the equalization steps are close to constant.
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the PSA processes (and cyclic steady-state processes in general),

including asynchronous trajectories, variable cycle/step

durations, and nonlinear dynamics, present significant

challenges to process monitoring. These challenges cannot be

effectively addressed by commonly used multivariate statistical

monitoring (MSPM) methods, including both conventional

MSPM methods such as MPCA, trilinear decomposition

(TLD), and parallel factor analysis (PARAFAC) (Wise et al.,

1999), and more recent methods such as multi-way independent

component analysis (MICA) (Yoo et al., 2004) and kernel PCA

(KPCA) (Choi et al., 2005). These methods assume that the

normal process data follow the same distribution and require the

construction of a two-dimensional (2-D) data matrix (for data

unfolding approaches) or a 3-D data array (for multi-way

approaches). In other words, they require synchronization of

all steps within a cycle to achieve equal step and cycle durations.

Trajectory synchronization can be done through different ways,

including simple cut, interpolation, dynamic time warping

(DTW), etc. However, these preprocessing steps have their

drawbacks, including trajectory distortion, information loss,

etc (He and Wang, 2007; He and Wang, 2018). In particular,

synchronization is undesirable for PSA processes because the

step durations are dynamically controlled and may contain

important information on the state of the process operation.

Artificially changing the step/cycle durations may distort the

contained information and negatively affect the fault detection

and diagnosis performance.

In this work, built upon our work in batch process

monitoring that can naturally handle variable batch/step

durations, we develop an FSM approach for PSA processes.

We show that a balance between sensitivity and robustness of

the FSM approach can be achieved through feature engineering

and selection, which enables early detection of subtle faults with

very low false alarm rate.

3 A brief review of statistics pattern
analysis

In traditional MSPM approaches for process monitoring,

such as PCA and PLS-based approaches, it is inexplicitly assumed

that normal process data (or scores in principal component

subspace) follow a multivariate Gaussian distribution.

However, this assumption is usually not satisfied in industrial

applications, especially for batch processes whose data are often

highly non-Gaussian. Statistics pattern analysis (SPA) was

proposed to address the non-Gaussian process data commonly

seen in industrial processes. In SPA, various statistics of process

variables, instead of process variables themselves, aremodeled for

process monitoring. A statistics pattern (SP) is a collection of

various statistics calculated using process data, which captures

the characteristics of individual variables (e.g., mean and

variance), the interactions among different variables (e.g.,

covariance), the dynamics (e.g., auto-, cross-correlations), as

well as process nonlinearity and process data non-Gaussianity

(e.g., skewness, kurtosis, and other higher-order statistics or

HOS). SPA has been implemented for both continuous and

batch process monitoring. For continuous processes, SPs

corresponding to different time periods are computed using a

moving window approach. For batch processes, the SP for each

batch (or each step in a batch) is computed using all

measurements from the batch (or step). In this way, the

variable batch/step duration can be naturally handled without

any data preprocessing.

For process monitoring, SPA assumes that the SPs of normal

operations follow a similar pattern (i.e., normal pattern), while

the SPs of abnormal or faulty operations must show some

deviation from the normal pattern. A multivariate statistical

model can be developed for the normal SPs, which enables

the determination of a boundary for normal operation or

threshold for fault detection. The implementation of SPA can

be simplified by assuming that the normal SPs follow a

multivariate Gaussian distribution. Although this assumption

appears to be the same as the traditional MSPM methods, it is

important to note that this assumption (i.e., normal SPs follow a

Gaussian distribution) is usually satisfied to a much better degree

for SPs than for the measured process variables themselves. As

different statistics are the averages of different functions of the

variable measurements in a window/batch/step, the distribution

of SPs is asymptotically Gaussian. This argument is supported by

the central limit theorem (CLT) under weak dependencies, which

relaxes the requirement on the independency among different

random variables (Dedecker and Rio, 2008). It was further shown

that the CLT applies to sums of bounded random variables

generated from stationary dynamic systems (Pène, 2005),

which applies to different statistics computed using

measurements collected from stable processes. The

assumption was also validated in (He and Wang, 2011) for

batch process monitoring. With this simplification, the

characteristics of normal SPs can be captured by the

covariance structure of SPs, similar to PCA, and a threshold

can be defined (e.g., based onHotelling’s T2 or squared prediction

error (SPE)). The test SPs can then be projected onto the model

and the obtained metric such as T2 or SPE is compared to the

threshold for fault detection. More details on batch-based SPA

can be found in He and Wang (2011). Since the introduction of

SPA, several variations and extensions of SPA have been reported

in the literature for process monitoring (He and Xu, 2016; Yang

et al., 2018; Zhang et al., 2018; Zhou and Gu, 2019).

4 The proposed feature space
monitoring framework

As PSA and other cyclic continuous processes share many

similarities with batch processes, we expect SPA for batch
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monitoring can be extended to monitor PSA processes. However,

major differences between PSA and regular batch processes must

be considered. For the PSA process studied here, the bed pressure

is the only measured variable, therefore only univariate statistics

can be calculated for process monitoring. In addition, one major

challenge for PSA monitoring is that although under tight

process control, the normal PSA operation has a wide

distribution of step/cycle durations in response to

disturbances such as customer demand and scheduling based

on electricity pricing. Therefore, normal PSA operation data

exhibit a wide distribution of normal cycle trajectory, which

makes the detection, not to mention early detection, of abnormal

cycles highly challenging. To address this challenge, we explore

the power of feature engineering to achieve both sensitivity and

robustness in the monitoring performance, as well as minimal

data preprocessing for easy practical implementation. Once a

fault is detected, it is desirable to identify in which step the fault

has occurred, so that the corresponding valves, bed and/or

pipeline can be identified for further examination. The

proposed fault detection and diagnosis framework is termed

feature space monitoring or FSM. There are three steps

involved in the proposed FSM framework: 1) feature

engineering and selection; 2) fault detection; and 3) fault

diagnosis. They are discussed in the following sections.

4.1 Feature engineering

As shown in Figure 2, although a complete cycle of a PSA

process is highly nonlinear, each step is much simpler and can be

described by a simple linear or polynomial model. Therefore, in

this work, we compute different features for each step separately.

In addition to univariate statistics, we explore morphological

features to better capture the characteristics of pressure profile in

each step of the process. To handle the irregularities in industrial

data, for each characteristic we consider multiple features that

may exhibit different level of sensitivity to outliers. For example,

to assess the dispersion of pressure measurement during a

processing step, we compare features that use the mean of the

pressure measurements as the reference with others that use the

median as the reference. Based on the observation of the pressure

profiles and discussions with process engineers, totally

12 features (as defined in the remaining section), both

statistical and morphological, are examined in this work to

determine if they would provide adequate process monitoring.

All features are calculated for each step using raw pressure

measurements without any preprocessing such as

synchronization, centering, scaling or normalization.

In this work, we use a vector xi ∈ RNi to represent the Ni

pressure measurements in cycle i (i � 1, 2, . . . , C), where C is the

number of cycles from all beds and Ni varies from cycle to

cycle. A subset of xi: xi,j ∈ RNi,j represents the pressure

measurements of step j (j � 1, 2, . . . ,S) during cycle i; and

xi,j(t) (t � 1, 2, . . . , Ni,j) represents an individual pressure

measurement during step j of cycle i at time t; Ni,j is the

duration of step j of cycle i. Note that total sample number in

cycle i: Ni � ∑S
j�1Ni,j and total sample number across all C

cycles: N � ∑C
i�1Ni � ∑C

i�1∑S
j�1Ni,j. For each step of a given

cycle, the definitions of different features are given below.

1. Mean (μi,j), which captures the central tendency of pressure.

μi,j �
1

Ni,j
∑Ni,j

t�1 xi,j(t) (1)

2. Standard deviation (si,j), which measures the spread or

dispersion of pressure measurements relative to its mean.

si,j �
�������������������
1

Ni,j
∑Ni,j

t�1 (xi,j(t) − μi,j)√
(2)

3. Skewness (γi,j), which measures the asymmetry of pressure

distribution about its mean.

γi,j �
1

Ni,j
∑Ni,j

t�1 (xi,j(t) − μi,j)3
s3i,j

(3)

4. Kurtosis (κi,j), which measures whether the pressure

distribution is heavy-tailed or light-tailed relative to a

normal distribution. The following so-called excess kurtosis

is used in this work so that the standard normal distribution

has a kurtosis of zero.

κi,j �
1

Ni,j
∑Ni,j

t�1 (xi,j(t) − μi,j)4
s4i,j

− 3 (4)

5. Coefficient of variation (CVi,j), a. k.a., relative standard

deviation, is the standardized measure of dispersion of

pressure distribution.

CVi,j � si,j
μi,j

(5)

6. Interquartile range (IQRi,j), which also measures spread or

dispersion of pressuremeasurements. IQRi,j is based upon, and

relative to, the median, instead of the mean as in si,j. As a result,

IQRi,j is less sensitive to extreme measurements or outliers.

IQRi,j � Q3i,j − Q1i,j (6)

whereQ1i,j and Q3i,j are the lower quartile (i.e., 25-th percentile)

and upper quartile (i.e., 75-th percentile) of all pressure

measurements in step j of cycle i, respectively.

7. Quartile coefficient of dispersion (QCDi,j), which measures

dispersion of pressure measurements based on its

interquartile range IQRi,j.
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QCDi,j � Q3i,j − Q1i,j
Q3i,j + Q1i,j

� IQRi,j

Q3i,j + Q1i,j
(7)

8. Mean absolute deviation (Dmean,i,j), which measures

dispersion of pressure measurements in terms of the

absolute deviation from their mean.

Dmean,i,j � 1
Ni,j

∑Ni,j

t�1
∣∣∣∣∣xi,j(t) − μi,j

∣∣∣∣∣ (8)

9. Median absolute deviation (Dmed,i,j), which measures

dispersion of pressure measurements in terms of the

absolute deviation from their median.

Dmed,i,j � median(∣∣∣∣∣xi,j(t) −median(xi,j)∣∣∣∣∣) (9)

10. Slope (Si,j), which measures the overall slope of change in

pressure measurements.

Si,j �
xi,j(Ni,j) − xi,j(1)

Ni,j − 1
(10)

11. Slope of linear regression line (SLL,i,j), which measures the

slope of pressure change when linearity is assumed. SLL,i,j is

determined through simple linear regression.

• SLL,i,j �
Ni,j ·∑Ni,j

t�1 (t · xi,j(t)) − (∑Ni,j

t�1 t) · (∑Ni,j

t�1 xi,j(t))
Ni,j · ∑Ni,j

t�1 (t2) − (∑Ni,j

t�1 t)2

(11)

12. Mean absolute error (MAEi,j), which measures the errors

between the expected pressure measurements based on

linear regression and the observed pressure measurements.

For the steps with relatively flat pressure profiles (e.g.,

adsorption, hold and purge steps), we first estimate the global

mean of step j over all cycles under normal conditions (i.e., the

training data).

μglobal,j �
1
M

∑M

j�1μi,j (12)

where M is the total number of cycles in the training data. Then

MAE can be calculated as the following

MAEi,j � 1
Ni,j

∑Ni,j

t�1
∣∣∣∣∣xi,j(t) − μglobal,j

∣∣∣∣∣ (13)

For the steps with sloped pressure profiles (e.g., equalization,

provide purge, blowdown or evacuation, and pressurization

steps), the predicted pressure measurements, x̂i,j(t) (t �
1, 2, . . .Ni,j) are computed by linear regression using the

linear model estimated from all training data.

MAEi,j � 1
Ni,j

∑Ni,j

t�1
∣∣∣∣xi,j(t) − x̂i,j(t)

∣∣∣∣ (14)

Finally, for each cycle, we have all the above-described

features combined.

f i � {μi∣∣∣∣si|γi∣∣∣∣κi|CV i|IRQi|QCDi|Dmean,i

∣∣∣∣Dmed,i

∣∣∣∣Si|SLL,i∣∣∣∣MAEi}
(15)

where μi � {μi,1, μi,2,/, μi,T} is a row vector of dimension

(1 × S). S is the total number of steps in a cycle. The same

concatenation convention applies to all types of features.

Therefore, f i is a row vector of dimension (1 × ∑S
j�1Qj)

where Qj is the number of features used to characterize step j

of the PSA process. For simplicity, we use F to denote the total

number of features included in each cycle so that f i is a row

vector containing F features. In this work, we utilize 12 different

types of features, as defined in Eqs 1–14, for all the 15 steps,

which would result in 180 features for each cycle (i.e., F � 180).

After the extracted features are concatenated into a row

vector for each cycle following Eq. 15, the features from

multiple cycles are concatenated into a matrix as the following.

FTR �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
f 1
f 2
..
.

f C

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (16)

In this way, a training feature matrix FTR based on C normal

cycles is obtained, which has a dimension of (C × F), despite
different step/cycle durations in the data. The features of test

cycle(s) FTE are extracted in the same way except that some of the

features are generated with reference to the training cycles (e.g.,

μglobal,j in Eq. 12).

It is worth noting that the statistical and morphological

features are extracted for each step of each cycle based on the

raw training data without any preprocessing, without

synchronization, scaling, normalization nor alignment. Since

the features are calculated using all measurements from each

step of the cycle, they are all scalars regardless of the step/cycle

durations. Therefore, FSM naturally handles unequal step/cycle

durations and asynchronous step/cycle trajectories. In addition,

the structure shown in Eq. 15 has the flexibility of allowing

different number of features for different steps. In addition,

cycle-based features can be conveniently added in a similar

fashion.

4.2 Feature selection

Feature selection has been widely studied in supervised

learning where it has been shown that including irrelevant

and noisy features increases model complexity and can

degrade model prediction performance (Lindgren et al., 1994;

Andersen and Bro, 2010; Wang et al., 2015; Lee et al., 2020).
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Feature selection also has other benefits including reducing

computational cost, improving interpretability of the model,

etc. Since MSPM method based on PCA is a dimension

reduction technique that is capable of handling collinearity in

the process data, it may appear that feature selection is redundant

and unnecessary. However, as shown in Ghosh et al. (2014),

feature selection can have a significant impact on the monitoring

performance of PCA-based MSPM. Specifically, experiments

were conducted to show that including irrelevant and noisy

features in a PCA-based MSPM model can degrade process

monitoring performance (Ghosh et al., 2014).

In general, variable selection is more challenging for process

monitoring as it is an unsupervised learning. Specifically, in

process monitoring available data for model training are

predominantly normal data. Even if fault data were available,

they do not represent all possible fault scenarios. Therefore, for

process monitoring, it is reasonable to assume that only normal

operations data are available for feature selection, as features that

are sensitive for detecting one type of fault may not be sensitive for

detecting other (potentially unseen) faults. In this work we propose

a new feature selection method for process monitoring that utilizes

normal operation data only. We assume the true relevant features

that are important for process monitoring should capture the key

characteristics of the normal operation; consequently, if the true

relevant features were used for processmonitoring, the monitoring

performance would be insensitive to the subsets of the training

data used for model building. In other words, features extracted

from a set of normal operation data (e.g., the training data) should

show (highly) similar behavior as those extracted from another

independent set of normal data (e.g., the validation data). In this

work, we use false alarm rate (FAR) and false alarm magnitude

(FAM) to quantify the difference between the training and

validation performance, where FAM is defined as the difference

between the monitoring statistic (e.g., T2 or SPE) of the false alarm

sample and the threshold of that statistic. In this work, 10-fold

cross-validation is conducted using normal operation data to select

features that result in similar FAR and FAM in the validation data,

and feature selection is conducted through exhaustive search. A

more systematic approach is under investigation. In the end, the

following four features were selected: mean (μ), standard deviation

(s), slope of linear regression line (SLL) and mean absolute error

(MAE). It is worth noting that all median or quartile based robust

features were not selected in this work. The possible reason is that

since the PSA process is tightly controlled, these robust (hence less

sensitive) features do not offer advantage overmean-based features

that are more sensitive to changes in FAR and FAM.

4.3 Model development

After feature selection, a multivariate statistical model can be

developed to extract the patterns of normal cycles by examining

the correlations among all features. This model enables the

determination of a boundary or threshold for process

monitoring. In this work, we assume that under normal

operations, the features form a multivariate normal

distribution. Since all features are the averages of some

functions of multiple measurements in a step/cycle, their

distributions are asymptotically Gaussian (Pène, 2005). Similar

to He and Wang (2011), here we choose PCA to capture the

directions of maximum covariances among all the features. Other

SPM methods, such as independent component analysis (ICA),

can be applied as well.

Because the features in FSM are usually different types, it is

reasonable to scale the training feature matrix FTR to zero mean

and unit variance for correlation based PCA as follows.

FTR � TPT + ~FTR � TPT + ~T ~P
T

(17)
where P ∈ RF×P is the loading matrix with its columns

containing the directions of the first P (i.e., the number of

principal components) maximum correlations among all

features in descending order. T ∈ RM×P is the score matrix

with its columns containing the projections of FTR onto P. ~P
and ~T are the residual loading and score matrices, respectively.

The principal component subspace (PCS) is SP � span{P},
which captures the systematic variations of the normal

process operation, including measured and unmeasured

disturbance, as well as set-point changes. The residual

subspace (RS) is SR � span{~P}, which captures the remaining

variations after subtracting the systematic variations. They are

the random variations of the process, including measurement

noise under normal operations.

4.4 Fault detection

PCA based fault detection is well established for monitoring

multivariate processes at steady state, where Hotelling’s T2 can be

employed for monitoring variations in the PCS while SPE or Q

statistic can be employed for monitoring variations in the RS. By

monitoring features of individual cycles, we can straightforwardly

extend PCA for monitoring cyclic processes which are inherently

non-steady state. Similar to PCA-based monitoring of a

continuous process, T2 can capture faults that shift away from

the normal operation region without violating the covariance

among measured/monitored process variables. These faults are

usually large operational changes such as a change of feedstock or

raw material. On the other hand, SPE are sensitive to the process

faults that violate the collinear relationships among the monitored

features. The control limits of T2 and SPE can be defined

theoretically based on the Gaussian assumption of the features.

They can also be determined empirically, e.g., by kernel density

estimation (KDE). The latter is used in this work.

By design, PSA processes are tightly controlled to operate in a

targeted optimal region. Therefore, we expect there are few

process changes that could violate the threshold in PCS and
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are detectable by T2. In addition, as multiple features included in

the FS are closely related to each other, such as the same features

from different steps, there could be significant collinearities

among features. Therefore, we expect SPE to be sensitive to

the process faults with small magnitude but violating the

collinearities among features, and enable early detection of

potentially catastrophic faults. As shown in Section 5.2, both

the traditional multi-way PCA (MPCA) and the proposed FSM

detected the faults largely through SPE, as expected.

4.5 Fault diagnosis

Once a fault is detected by SPE statistic, the contribution plot

can be used for fault diagnosis. In this work, we propose a

hierarchical fault diagnosis using SPE to first determine in which

step the fault occurred based on the step-wise contribution plot,

then postulate what type of fault occurred based on the feature-

wise contribution plot.

At the step level (i.e., step-wise diagnosis), SPE statistic is

broken down by step:

SPE � ∑T

j�1SPEj � ∑T

j�1
�����~f j�����2 (18)

where SPEj � ‖~f j‖2 � ∑Qj

k�1 ~f
2
k is the contribution from the jth

step. ~f
2
k is the residual (row) vector of features extracted from

step j. The bar chart of SPEj

SPE × 100% (j � 1/T) provides

information for the step-wise diagnosis for the faulty cycle.

The step(s) with the highest contribution(s) are identified as

the root cause(s). Note that if different number of features are

used for different steps, a normalization (e.g., dividing by number

of features) can be applied. Once the faulty step is identified, a

feature-wise diagnosis is performed to identify the nature of the

fault. The bar chart of
~f
2
k

SPEj
× 100% (k � 1,/Qj) provides

information for the feature-wise diagnose for step j. For

example, if mean contributed significantly to SPEj, then more

likely there were step change(s) in the pressure profile during step

j. Similar diagnosis can be made for other features. It is worth

noting that the features proposed in this work specifically target

the PSA process. For other processes, other features, including

auto- and cross-correlation coefficients and higher-order

statistics (HOS), could and have been utilized for quantifying

process dynamics and nonlinearity (J. Wang and He, 2010), (He

and Wang, 2011).

5 An industrial case study

5.1 Fault description and methods studied

In this section, we use an industrial PSA case study to

demonstrate the performance of the proposed FSM method,

and compare it to the traditional MPCA method. Note that the

method proposed by Wang et al. (2017) is not applicable

because pressure measurements are the only available

measurements for process monitoring in this study. The

patented method by Arslan et al. (2014) cannot be

implemented either, because there are no details as how the

peaks are defined or classified as “relevant”, and the criteria

used for peak selection and control limits determination are

unknown. The state space modeling approach by Pan et al.

(2004) is not applicable due to the absence of cycle-to-cycle

dynamics of the PSA processes and the lack of quality-relevant

measurement for the PSA process studied in this work. Because

MPCA requires that each step across all cycles has the same

duration, two different data preprocessing techniques are

studied: one with simple cut denoted as MPCASC and the

other with dynamic time warping (DTW) denoted as

MPCADTW. For MPCASC, the shortest step durations across

all cycles are used as the reference while the last few

measurements of any cycle with longer step duration are

simply removed to match the shortest, which resulted in

438 variables for the whole cycle. For MPCADTW, the

number of variables after unfolding is 705. The significant

difference in the number of variables for MPCASC and

MPCADTW reflects the significant variation of step durations

across different cycles. For FSM, four features are used for each

of the 15 steps, which resulted in 60 variables. To ensure that

enough number of samples are available for all methods,

2,070 cycles under normal operations are used as the

training set, which is about three times the number of

variables for MPCADTW. The first 1,449 cycles (70% of

2,070 cycles) are used for model training and the remaining

621 cycles for model validation.

Six fault scenarios of a PSA process are studied in this work,

which are listed in Table 1. The first four are simulated faults

while the last two are from real industrial data. For the

simulated faults, similar faulty process behaviours have been

observed in actual operations. They are reproduced based on

historical plots of those faults because the historical data are no

longer available. All faults are related to valve malfunctions. For

example, an internally leaky valve could result in higher or

lower pressure in one vessel depending on whether the vessel

serves as a pressure provider or receiver, such as the fault

scenarios 1, 3 and 5. A sticky valve could result in higher

pressure variation, such as the fault scenario 2, sudden pressure

increase or drop, such as the fault scenario 4, or a non-smooth

(e.g., zig-zag) pressure profile, such as the fault scenario 6. As

discussed in the Introduction section, due to frequent open and

close operations of valves, it has been found that the process

faults are most often caused by valve-related problems. For each

fault scenario, totally 16 cycles are used as the test set and

among which 3 (deliberately arranged as cycle 4, 9 and 14 for

better comparison across all scenarios) are faulty cycles. In

these cases, the simulated faults are introduced by modifying a

normal cycle randomly selected from the industrial data set.
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The pressure trajectories of the test set for fault scenarios 1

(simulated fault) and 5 (real fault) are shown in Figure 4.

For all fault detection methods, the number of principal

component (PCs) is selected to cover 90% of the variance of their

corresponding full feature space. The control limits on Hoteling’s

T2 and squared prediction error (SPE) are calculated empirically

based on the kernel density estimation of the corresponding

statistics (i.e., T2 or SPE) of the training dataset at confidence

level 99%. The number of PCs and other information discussed

above are listed in Table 2.

5.2 Fault detection results

By considering faults detected in both residual subspace

using SPE and principal subspace using T2, the overall fault

detection results are shown in Table 3. Specifically, the table lists

faulty cycles detected by either SPE, or T2, or both. The fault

detection rate (FDR) and false alarm rate (FAR) of each method

are also summarized in Table 3. These results show that FSM

detects all faulty cycles under all fault scenarios without

generating false alarms. In comparison, MPCASC has missed

detection under fault scenario 1, while MPCADTW has missed

detection under fault scenario 5. In addition, both MPCASC and

MPCADTW have false alarms. More details of the fault detection

results by T2 and SPE are shown in Table 4. It can be seen that

SPE statistic in general is more effective in detecting faults,

although it also generates false alarms in the cases of MPCASC

andMPCADTW. In comparison, T2 does not generate false alarms

for all methods. However, it misses several faults in MPCASC and

performs even worse in MPCADTW. Overall, FSM performs

robustly with both T2 and SPE and is significantly better than

MPCASC and MPCADTW.

TABLE 1 Fault scenarios studied in this work.

Fault # Description

1 During adsorption step, the faulty cycles have lower pressure than normal cycles

2 During adsorption step, the faulty cycles have higher pressure variations than normal cycles

3 During a hold step, the pressure of the faulty cycles decreases instead of being held steady

4 During an equalization step, the pressure of the faulty cycles was held steady followed by a sudden drop instead of smooth decrease

5 During re-pressurization, the pressure of the faulty cycles does not follow the normal cycle trajectory

6 During an equalization step, the pressure of the faulty cycles follows a zig-zag or stair-like profile instead of a smooth increase

FIGURE 4
Pressure trajectories of the selected test sets (A) Fault scenario 1 (B) Fault scenario 5. Normal cycles are plotted in black while faulty cycles are in
red. The steps in which the fault occurred are marked by blue dashed-line rectangles and shown in the zoom-in views.

TABLE 2 Training, testing datasets and model parameters.

MPCASC MPCADTW FSM

# of features/variables 438 705 60

# of PC’s 24 32 20

Training 2,070 normal cycles

Testing 16 cycles (13 normal, 3 fault: cycle 4, 9, 16)

Confidence level 99%
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To provide additional details on the performance of different

methods, we visualized some fault detection results. Due to

limited space, only the detection results of fault scenarios one

and five in the residual subspace (i.e., using SPE statistic) are

visualized in Figures 5, 6 and discussed in detail below. Figure 5

shows that for fault scenario 1, MPCASC has difficulty in

detecting Fault 1: missing two out of three faulty cycles.

MPCADCW detects all three faulty cycles but also generates a

false alarm. Only FSM detects all three faulty cycles without

generating false alarms. Figure 6 shows that for fault scenario 5,

MPCASC detects all three faulty cycles while generating a false

alarm. MPCADCW failed to detect two out of three faulty cycles

TABLE 3 Fault detection results (true faulty cycles: 4, 9 & 14; FDR: fault detection rate; FAR: false alarm rate). Correctly detected cycles are in bold
black. Incorrectly detected cycles are in red.

Fault
scenario

MPCASC MPCADTW FSM

Cycle
detected

FDR (%) Far (%) Cycle
detected

FDR (%) Far (%) Cycle
detected

FDR (%) Far (%)

1 4, 14, 15 66.7 7.7 4, 9, 10, 14 100 7.7 4, 9, 14 100 0

2 4, 9, 14, 15 100 7.7 4, 9, 10, 14 100 7.7 4, 9, 14 100 0

3 4, 9, 14, 15 100 7.7 4, 9, 10, 14 100 7.7 4, 9, 14 100 0

4 4, 9, 14, 15 100 7.7 4, 9, 10, 14 100 7.7 4, 9, 14 100 0

5 4, 9, 14, 15 100 7.7 9, 10 33.3 7.7 4, 9, 14 100 0

6 4, 9, 14, 15 100 7.7 4, 9, 10, 14 100 7.7 4, 9, 14 100 0

TABLE 4 Details of the fault detection results by T2 and SPE. Correctly detected cycles are in bold black. Incorrectly detected cycles are in red.

Fault scenario MPCASC MPCADTW FSM

T2 SPE T2 SPE T2 SPE

1 4, 14 4, 15 4, 9, 14 4, 9, 10, 14 4, 9, 14 4, 9, 14

2 9 4, 9, 14, 15 None 4, 9, 10, 14 4, 9, 14 4, 9, 14

3 9, 14 4, 9, 14, 15 None 4, 9, 10, 14 9, 14 4, 9, 14

4 4, 9, 14 4, 9, 14, 15 None 4, 9, 10, 14 4, 9, 14 4, 9, 14

5 4, 9, 14 4, 9, 14, 15 None 9, 10 4, 9, 14 4, 9, 14

6 9 4, 9, 14, 15 None 4, 9, 10, 14 9, 14 4, 9, 14

FIGURE 5
Fault scenario 1: fault detection in residual subspace (SPE) from (A) MPCASC (B) MPCADTW and (C) FSM. Blue circles are normal training cycles;
black squares are normal testing cycles; black triangles are faulty testing cycles; horizontal red dashed lines are fault detection thresholds; vertical
black dash-dotted lines separate training from testing.
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while generating a false alarm. Again, only FSM successfully

detects all faulty cycles without generating false alarms. It is

worth noting that FSM results in linear models, which have low

risk of overfitting. This is demonstrated in Figure 5C and

Figure 6C where the normal test samples have similar SPE

values as those of the normal training samples.

We further investigated the false alarms (i.e., cycle 10 for

MPCASC and cycle 15 for MPCADTW) to understand why those

two cycles generate false alarms. Figure 7 plots the trajectory of all

test cycles for the fault scenario 5. All true faulty cycles are plotted

in red dashed lines, and all normal test cycles are plotted in black

solid lines—except cycle 10 in the cyan dash-dotted line, and

cycle 15 in the green dotted line. As described in Table 1, the

pressure profiles of the faulty cycles do not follow the normal

cycle pressure trajectory during the re-pressurization step

(highlighted in the blue dashed-line box). It can be seen that

cycles 10 and 15 both behave normally during the re-

pressurization step. However, if we zoom in to visualize the

pressure profile in other steps (e.g., the insert in Figure 7, which is

the zoom-in view of the adsorption step), it can be seen that

cycles 10 and 15 are at the lower boundary of all normal cycles,

suggesting that the MPCA based approaches may be more

sensitive to mean shift. Although the mean shift in this case is

within the normal operation range, the cumulative effect (i.e., the

FIGURE 6
Fault scenario 5: fault detection in residual subspace (SPE) from (A)MPCASC (B)MPCADTW and (C) FSM. Blue circles are normal training cycles;
black squares are normal testing cycles; black triangles are faulty testing cycles; horizontal red dashed lines are fault detection thresholds; vertical
black dash-dotted lines separate training from testing.

FIGURE 7
The false alarm cycles 10 (in cyan) and 15 (in green) behave normally during the re-pressurization step in which the true fault occurred
(highlighted in the blue dashed-line rectangle with faulty cycles plotted as red dashed lines). The zoom-in view of the adsorption step indicates that
cycles 10 and 15 are at the lower, but normal, boundary of all cycles.

Frontiers in Chemical Engineering frontiersin.org12

Lee et al. 10.3389/fceng.2022.1064221

https://www.frontiersin.org/journals/chemical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fceng.2022.1064221


persistent small shift that lasts for a period of time) would likely

be captured by MPCA as a fault.

The normal samples (i.e., cycles) in the test data are industrial

data collected from the same PSA process and used for all the fault

scenarios. For each faulty cycle, the fault occurred during different

steps for different fault scenarios as defined in Table 1. As a result,

the false alarms for a specific method across different fault scenarios

are the same (e.g., cycle 15 forMPCASC and cycle 10 forMPCADTW)

since they are the same normal cycles used in all fault scenarios.

Clearly, the value of FAR in Table 1 would be affected by the normal

cycles included in the test data. In this study, the normal testing

samples were selected randomly to avoid any potential bias.

Further investigation is conducted to understand the reason

for MPCADCW’s failure in detecting true faulty cycles under fault

scenario 5 (a real fault), for which only one out of three faulty

cycles is detected. Since MPCASC is able to detect all faulty cycles,

we suspect that the failure is related to data preprocessing by

DTW. Therefore, we plot the original pressure profiles of the

16 test cycles, which are shown in Figure 8A and compare them

to the pressure profiles after DTW as shown in Figure 8B. A

zoom-in view of the faulty step is included for both figures. The

comparison clearly indicates that the irregular discrepancies of

the faulty cycles shown in the original pressure profiles

diminished after trajectory synchronization by DTW. This

case suggests that DTW could cause severe information loss

or distortion, which in turns affects the fault detection

performance. This is consistent with our previous findings

that data manipulations during preprocessing, including

DTW, could cause information loss or distortion and should

be avoided if possible (He andWang, 2011). This example further

raises the alarm that the widely used DTW for batch trajectory

warping or alignment in process monitoring applications could

potentially be a problematic practice that may lead to missed

detections of process faults.

5.3 Fault diagnosis results

After fault detection, fault diagnosis is performed for the

detected faulty cycles. For FSM, the procedure outlined in Sec. 4

is followed to construct step-wise and feature-wise contribution

plots. For MPCASC and MPCADTW, since pressure is the only

measured process variable, only step-wise contribution plot is

applicable. Again, we use fault scenarios 1 and 5 as examples. For

fault scenario 1, test cycle four is used for illustration as the fault

is detected by all methods. For the same reason, test cycle nine is

used for fault scenario 5. Figures 9A–C show the step-wise

contribution plots for fault diagnosis of test cycle four in fault

scenario 1. From Table 1, we know that this is a fault occurring

during the adsorption step (i.e., step 1), and the faulty cycles have

lower pressure than normal cycles. Figure 9 shows that MPCASC

incorrectly attributes this fault to step 10, while MPCADTW and

FSM correctly identify the faulty step, with FSM providing the

strongest conviction. For FSM, once the faulty step is identified,

the faulty step contribution is further broken down to the feature

level following the procedure outlined in Sec. 4, as shown in

Figure 9D. In this figure, MAE and the mean (μ) are identified as

the most significant contributor to the fault, indicating that there

might be a mean shift in pressure profile during step 1 of the

faulty cycles. It is worth noting that MAE usually contributes the

FIGURE 8
Comparison between the pressure profiles of (A) the original 16 test cycles and (B) the test cycles after DTW. The normal testing cycles are
plotted in black solid lines while the faulty testing cycles are plotted in red dashed lined. The irregular discrepancies among cycles shown in the
original profiles (highlighted in the blue dashed-line rectangles and the zoom-in views) have diminished after DTW, indicating that DTW causes
significant information loss or distortion.
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most to the fault detection indices as it captures the absolute

deviation of a faulty trajectory from the nominal behavior, which

includes the effects of both mean and spread (e.g., standard

deviation) of the samples.

The fault diagnosis for cycle nine of fault scenario five is

conducted similarly and the results are shown in Figure 10. Here

the true fault is a deviation of the pressure profile from the

normal trajectories during the last step of the cycle. In this care,

both MPCASC and FSM correctly identify the faulty step, while

MPCADTW misidentifies the step 10 as the faulty step. FSM also

shows the clearest diagnosis among all methods. Feature-wise

diagnosis from FSM identifies MAE and the standard deviation

(s) as the most significant contributors to the fault, indicating that

there could be an increased variation in pressure profile during

the last step of the faulty cycle. The misdiagnosis of this fault by

MPCADTW can be at least partially attributed to the pressure

profile distortion during the DTW preprocessing step as

discussed earlier and illustrated in Figure 8.

The overall fault diagnosis results are shown in Table 5. It can

be seen that FSM correctly diagnoses all fault scenarios (i.e.,

correctly identifies all faulty steps). MPCASC has two

misdiagnoses (fault scenarios three and 6) and one

inconsistent diagnosis from T2 and SPE (fault scenario 1).

MPCADTW has two misdiagnoses (fault scenarios five and 6).

In addition, FSM provides meaningful diagnoses at the feature

level for all fault scenarios.

6 Conclusion and discussions

In this work, we present a simple yet effective fault detection

and diagnosis method, namely feature space monitoring or FSM,

for PSA and other cyclic/periodic processes. Different from the

conventional MSPM methods, FSM characterizes the normal

operation cycle behavior with various statistical and shape/

morphological features for each step. FSM naturally handles

the challenges in monitoring cyclic processes without any

preprocessing steps, which include variable cycle/step

duration, wide range of normal cycle/step trajectories, and/or

limited measurements—for PSA, bed pressure is often the only

FIGURE 9
Step-wise fault diagnosis for cycle four of fault scenario 1 (A)MPCASC (B)MPCADTW, and (C) FSM, and (D) feature-wise fault diagnosis from FSM.
MPCASC wrongly attributes the fault to step 10, while both MPCADTW and FSM correctly attribute the fault to step 1. FSM also shows the clearest
diagnosis among all methods. FSM can also further drill down the fault to the feature level where the mean (μ) and MAE are identified as the most
significant contributor to the fault, correctly indicating that there might be a significant shift in pressure profile during step 1 of the faulty cycles.
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measured variable for process monitoring. To be able to detect

subtle faults from a wide range of normal cycle trajectories, FSM

relies on feature engineering and selection to balance the

robustness and sensitivity of the fault detection performance.

Finally, through a hierarchical fault diagnosis framework, once a

fault is detected, the proposed FSM approach first identifies the

step where the fault occurred using a step-wise contribution plot,

then postulates the type of fault based on a feature-wise

contribution plot.

Using an industrial case study, we demonstrate that FSM

outperforms MPCA with simple cut (MPCASC) or dynamic time

warping (MPCADTW) in six fault scenarios. Specifically, FSM

successfully detected all three faulty cycles in every fault scenario

without generating false alarms. In comparison, both MPCASC

and MPCADTW had missed detections in some fault scenarios,

FIGURE 10
Step-wise fault diagnosis for cycle nine of fault scenario 5 (A)MPCASC (B)MPCADTW, and (C) FSM, and (D) feature-wise fault diagnosis from FSM.
BothMPCASC and FSM correctly attribute the fault to the last step of the cycle, while MPCADTWwrongly attributes the fault to step 10. FSM also shows
the clearest diagnosis among all methods. FSM can also further drill down the fault to the feature level where the standard deviation and MAE are
identified as themost significant contributor to the fault, correctly indicating that there is an increased variation in pressure profile during the last
step of the faulty cycles.

TABLE 5 Details of the fault diagnosis results by T2 and SPE. One faulty
cycle detected by all methods is selected for each fault scenario. If
the faulty step is correctly identified, it is marked as “Yes”, otherwise
marked as “No”. If the faulty cycle is not detected as a fault, its
diagnosis is marked as “NA".

Fault scenario
(cycle for
diagnosis)

MPCASC MPCADTW FSM

T2 SPE T2 SPE T2 SPE

1 (4) Yes No Yes Yes Yes Yes

2 (9) Yes Yes NA Yes Yes Yes

3 (9) No No NA Yes Yes Yes

4 (4) Yes Yes NA Yes Yes Yes

5 (9) Yes Yes NA No Yes Yes

6 (9) No No NA No Yes Yes
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and both had false alarms in all fault scenarios. In addition, the

hierarchical fault diagnosis framework based on FSM correctly

identified the faulty steps under all scenarios studied in this work.

In comparison, MPCASC and MPCADTW based contribution

plots all had misdiagnosis under some fault scenarios. Finally,

FSM provides the feature-wise diagnosis capability, which

enables a plant engineer to further determine the nature of a

fault, such as whether it is a simple mean shift or an increase in

variation or a complex fault of both. These fault detection and

diagnosis results demonstrate that the FSM-based linear models

have a low risk of overfitting and are easy to interpret.

The proposed FSM framework can be applied to other

periodic or cyclic processes. In terms of implementation, what

FSM features to be included has a big impact on the fault

detection and diagnosis performance. In general, the features

that should be included for process monitoring depend on the

process behavior, and the domain knowledge plays an important

role. In addition, depending on the noise level of the process data,

it may be necessary to evaluate different versions of the same

features that have different degrees of sensitivity to extreme

points or outliers. There is usually a trade-off between

robustness and sensitivity of the monitoring performance. In

this work, the list of features we evaluated were generated based

on PSA process behavior and discussions with process engineers.

In addition, we proposed an approach to select the relevant

features using normal process data only. The variable selection

for unsupervised learning was achieved based on the assumption

that the truly relevant features should provide consistent

monitoring performance, regardless of the training data used.

In this work, feature selection was done through a manual search.

It is desirable to have a systematic and automated approach for

feature engineering and feature selection, which is the area that

we are currently working on.

Finally, this work suggested that the widely used DTW for

batch trajectory warping or alignment in process monitoring

applications could potentially be a problematic practice that may

lead to missed fault detections. Specifically, this work

demonstrated that DTW could cause severe batch/cycle

trajectory distortion, which in turns negatively affected the

fault detection performance. Therefore, data preprocessing in

process monitoring, including DTW, should be avoided if

possible, or conducted with caution and verification if

unavoidable.
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