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As the chemical and energy producing industries are steadily transitioning towards more
sustainable processing practices, renewable biomass resources are becoming
increasingly more valuable. Recently, following the realisation that renewable resources
for the chemical and energy industry should not compete with food supplies, the use of
plant-based biowaste has significantly gained in interest. Due to its inherently variable
composition, diffuse distribution, and seasonality, it is of the utmost importance that
(potential) biorefinery exploiters are well informed of the biowaste resources that are
available in the vicinity of their (planned) biorefinery. Designing a biorefinery in such a way
that it can tailor for the locally available biowaste resources, exhibits several compelling
advantages. Apart from significantly reduced logistics costs, the usage of local biowaste
can be a reciprocal advantage for both the involved community and the biorefinery. In this
paper, a GIS-based (Geo-Information System) bio-inventory toolbox is presented. The
toolbox is developed to aid the biorefinery designers and decision makers, e.g.,
governmental bodies, to get an adequate overview of the locally available plant-based
biowaste resources and, linked to this, the expected periodical amounts, their
composition, and their seasonality. The toolbox presented in this contribution is the
first part of a decision support tool for the development of a locally embedded flexi-
feed and small-scale biorefinery, additionally consisting out of a process modelling tool,
and an optimisation tool. Both of these additional tools will employ the information obtained
from the bio-inventory toolbox to simulate and optimise several suitable biorefinery
designs. The eventual goal of the decision support tool is to provide users with several
optimised biorefinery designs that are tailored for their local setting. The additional
toolboxes are detailed elsewhere.
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1 INTRODUCTION

As extreme weather events are occurring more frequently, it is of the utmost essence that the impact
of anthropogenic activity on the environment is drastically reduced. The most recent
Intergovernmental Panel on Climate Change (IPCC) climate report (Masson-Delmotte et al.,
2021) is the last of a long list of climate reports urging countries and governments to take
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immediate and ambitious action to reduce their emission of
greenhouse gases (GHG). Since the industrialisation, the
amount of CO2 in the atmosphere has increased with 30%.
Carbon dioxide, together with methane and nitrous oxide, is
one of the most important greenhouse gasses. Due to
anthropogenic activity, the carbon-cycle has been unbalanced
because of the additional emission of carbon dioxide into the
atmosphere due the usage of fossil resources. The current
additional emission amounts to 13.0 Gt of carbon every year,
around 10.5 Gt of which is due to the usage and combustion of
fossil fuels. Although the hydrosphere is capable of storing a lot of
the additional carbon, still around 4.9 Gt of carbon remains in the
atmosphere, adding to the global warming (Wöhrle, 2021).

The biosphere, i.e., the sum of all ecosystems on the planet, is
just like the hydrosphere another carbon sink. Plants assimilate
atmospheric carbon during photosynthesis, storing it as an
energy reserve and as structural compounds in the form of
biomass. Once the plants decompose, or during the plant’s
respiration phase, this carbon is released back to the
atmosphere. On a net level, however, the amount of carbon
emitted into the atmosphere does not increase as the released
carbon was initially extracted from it. This carbon cycle is the so-
called short carbon cycle whereas the sequestering of carbon in
rocks (and fossils) is denominated the long carbon cycle.

As biomass is the largest non-fossil carbon source on the
planet and has compelling advantages over fossil carbon, it is
coined as the best candidate for replacing fossil fuels and fossil
raw feedstocks all together. Public opinion on the employment
of more sustainable and renewable processing practices in the
chemical and energy sector has in the past decades taken a
significant step in its favour. However, both industries are still
heavily dependent on (fossil) carbon, both as a feedstock and as
an energy source. Reducing the carbon footprint of these
industries will be a considerable challenge. Unsurprisingly,
reducing the climate impact of these sectors has gradually
become more and more a major point of discussion on
international fora. During the 2020 World Economic Forum
meeting in Davos, one of the discussions focussed on how to
build a more climate-friendly chemical industry
(Brudermüller, 2020). It was indicated that one of the corner
stones of reducing the carbon footprint of the chemical
industry, will be to use carbon more efficiently. A so-called
multi-pronged approach was proposed, based on three main
pillars: 1) process and energy optimisation, 2) renewable energy
supply, and 3) CO2 reduced breakthrough technologies
(Brudermüller, 2020). Similarly, Boulamanti and Moya
(2017) indicate that biomass is a potential feedstock to
replace petroleum resources.

However, to unlock the potential of lignocellulosic biomass
(i.e., the type of biomass and/or biowaste considered in this
contribution), it must be processed first. The conversion of
biomass to useable and valuable products is done using
biorefinery processes. Depending on the feedstock used, i.e., its
physico-chemical properties, different processes are employed to
disrupt the crystalline lignocellulosic biomass structure and
convert the obtained intermediates in finished products or
platform chemicals. Whereas finished products, like bioethanol

and -gas, can be immediately marketed, platform chemicals need
to be processed further.

Cherubini et al. (2009) introduced a general classification
system for biorefineries based on the type of platforms,
feedstock, and processes they use and the products they
produce. Generally, four biorefinery generations can be
distinguished. First generation biorefineries were developed as
an alternative for petroleum refineries, mostly producing liquid
biofuels and energy from uniform food crops (Naik et al., 2010).
While the usage of food crops and arable land for the production
of energy was deemed to be morally skewed, research efforts have
now shifted towards a second generation of biorefineries that use
non-food and biowaste as their feedstock (Carroll and
Sommerville, 2009; Isikgor and Becer, 2015; Jeevahan et al.,
2021). Third generation biorefineries employ algae and other
microbial cell factories for the production of energy and
chemicals, whereas fourth generation biorefineries use
genetically modified organisms as a feedstock (Cherubini et al.,
2009; De Buck et al., 2020).

As early generation biorefineries were mostly designed as an
alternative for petroleum refineries in a context of unstable and
relatively high oil prices, they were not necessarily designed to
have a low impact on the environment from an operational point
of view. They mainly relied on the economy-of-scale to become
economically sustainable and competitive with regard to their
petroleum-based counterparts (Naik et al., 2010; Mohr and
Raman, 2013). Hence, they require a large and steady stream
of a uniform feedstock, which is often either a food crop or an
energy crop grown on arable land that can, therefore, no longer be
used for growing food. Even though the disadvantages of large-
scale mono-feedstock biorefineries are becoming more obvious
(Leong et al., 2021), the implementation of the far more
sustainable small-scale flexible-feed biorefinery is still lagging
behind (Bruins and Sanders, 2012; Kolfschoten et al., 2014;
Álvarez del Castillo-Romo et al., 2018). To bridge this gap, the
proposed decision support tool (of which the bio-inventory tool
presented in this contribution will be a part of) will focus on the
design of a small-scale second generation biorefinery which is
optimally embedded in its local setting.

One of the main issues regarding small-scale flexible-feed
biorefineries is the uncertainty operators face with regard to
the feedstock stream (Elia and Floudas, 2014; Wang et al.,
2015; Schröder et al., 2018). When designing a biorefinery, it
is of the essence to have a good overview of which feedstocks are
locally available and in which amounts. Based on this knowledge,
an optimal biorefinery could be designed that is specifically
tailored to process these local biowaste streams and produce
locally desired products. A more detailed discussion on the
general aspects of designing a (locally embedded) biorefinery,
as well as on previous work with regard to modelling biorefinery
supply chains and estimating the biomass/biowaste potential of a
certain area, is included in Section 2.

The design of an optimally locally embedded biorefinery
requires in-depth knowledge and insight on the three main
aspects of a biorefinery system, i.e., the feedstock, the
(conversion) processes, and the products (see also Section 2).
Therefore, a decision support tool (DST) is being developed for
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designing and optimising an optimal locally embedded small-
scale biorefinery. Figure 1 displays the outline of the DST that is
being developed. This paper presents the first building block of
the DST: the bio-inventory tool.

As introduced above, one of the most important aspects of a
well-designed biorefinery is the usage of a locally available
feedstock. The types of feedstocks that are available, as well as
their estimated annual yield, will have a big influence on how the
biorefinery is designed as they influence the choice of processes
suited for the conversion step and, thus, the products that can be
expected. The bio-inventory tool will allow decisionmakers (DM)
to assess which feedstocks are locally available and in which
quantities and/or quality. This paper especially focusses on
developing a general inventory approach, valid for the region
of Flanders in Belgium and with the potential to be extended
further. Two different approaches are presented: 1) A colour
clustering method, based on the ground cover maps available for
Flanders, and 2) a clustering method based on residential centres,
ribbon development, rural, and industrial buildings. The
information generated by the bio-inventory tool will be
subsequently used by the process modelling tool and the
optimisation tool to draft an optimal biorefinery lay-out
(Figure 1). The final decision support tool is being developed
as an online tool and will be made available as soon as all building
blocks have been developed and are connected.

This paper is structured as follows: in Section 2, the overall
small-scale biorefinery design strategy employed in this paper is
presented. In Section 3, the employed materials and methods are
presented. Section 4 focusses on presenting two novel biowaste
quantification approaches employed in the bio-inventory
toolbox. In Section 5, both quantification methods are applied
to a case study region. Finally, the extendibility of the proposed
methods is discussed in Section 6, and Section 7 summarises the
main conclusions of this paper.

2 DESIGNING SMALL-SCALE LOCALLY
EMBEDDED BIOWASTE BIOREFINERIES

2.1 Small-Scale Biorefineries
As mentioned in the introduction, small-scale locally embedded
biowaste biorefineries are a specific type of biorefinery designed

to amend several disadvantages of early generation biorefineries.
The latter were developed as alternatives for petroleum refineries,
not necessarily out of environmental consideration, but rather
due to volatile oil prices and uncertain supply chains (Mohr and
Raman, 2013). While most countries do not posses their own oil
natural resources, they are reliant on a few oil-producing
countries, resulting in a heavy dependency, unstable and
relatively elevated oil prices. To obtain a higher level of energy
independence, alternative ways were sought to produce (liquid)
fuels and platform chemicals without a need for raw oil. Large-
scale sugar and starch processing biorefineries were developed to
achieve this goal. They heavily rely on a high throughput of a
uniform feedstock and economy of scale, and produce (a high
amount of) low value-added products like biofuels and bulk
chemicals. However, as these types of biorefineries directly
compete with cheap petroleum-based products, their economic
striking power is rather limited (Naik et al., 2010).

While large-scale biorefineries were designed using a very
similar pattern like conventional petroleum refineries (or as a
replacement for the latter, more specifically) (Mohr and Raman,
2013), small-scale biorefineries (SSBR) resolutely left these
practices behind (Bruins and Sanders, 2012; Ait Sair et al.,
2021). Instead of competing with petroleum refineries for the
production of fuels and bulk chemicals, small-scale biorefineries
focus on the production of high value-added products, using
locally available biowaste streams, that are highly desired in a
certain region. Although the economy of scale is lost in these
designs, they can still outperform large-scale biorefineries given
that they employ an integrated design (Bruins and Sanders, 2012;
Clauser et al., 2016; De Visser and Van Ree, 2016).

Integrated biorefineries are designed in such a way that the
amount of waste streams leaving the plant are minimised (Tay
et al., 2011; Geraili et al., 2014). In practice, this means that every
biomass stream of the biorefinery is maximally utilised and
valorised. An additional advantage of small-scale biorefineries
which process local (plant-based) biowaste is the fact that, in
essence, they function as local waste-processing facilities (Leong
et al., 2021). Especially when considering (peri-)urban areas,
where the biowaste potential with regard to municipal and
private (plant-based) biowaste is elevated, decentralised waste-
processing facilities could contribute greatly to strengthening the
local circular bio-economy (Thiriet et al., 2020; Glivin et al., 2021;

FIGURE 1 | Outline of the proposed decision support tool. This paper focusses on the inventory tool.
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Angouria-Tsorochidou et al., 2022). However, when designing
such biorefinery systems, it is of the essence that the local
biowaste potential is well-known, as its suitability to its
geographical context is crucial with regard to its economic and
environmental sustainability (Angouria-Tsorochidou et al.,
2021).

As the symbiosis between the local context of the biorefinery,
the conversion processes used (and how they are operated), and
the products produced is too complex to be considered as such,
decision makers must rely on in silico tools to support their
planning and designing efforts.

2.2 A Decision Support Tool for Designing a
Small-Scale Biorefinery
Thanks to their decreased size, small-scale biorefineries are
significantly more inexpensive than their large-scale
counterparts, rendering them an attainable option for
communities, farms, and other, less financially powerful,
interested parties. Nonetheless, as the biowaste feedstocks
these facilities require are inherently accompanied with many
uncertainties (Geraili et al., 2016), nor are the processes they
employ yet widely implemented (Jeevahan et al., 2021). An
(online) decision support tool can bridge this gap in
knowledge potential biorefinery investors are facing by
providing an in-depth in silico assessment of the biorefinery’s
potential performance and suitability for its local setting at the
early stage of biorefinery design.

The biowaste potential assessment approaches presented in
this contribution make up the first tool (the bio-inventory tool) of
an online decision support tool for designing and optimising a
local, small-scale biorefinery. Figure 1 represents the ultimate
foreseen outline of the decision support tool. Starting from the
bio-inventory toolbox, the feedstocks available in a local setting will
be identified and quantified. Employing two methods, as presented
in this paper, the bio-inventory tool will enable the decisionmakers
to assess which feedstocks are locally available and in which
quantities. The assessment of the biowaste potential (and, thus,
the biowaste biorefinery potential) of a certain area, is a first and
crucial step towards designing a sustainable biorefinery system.

Subsequently, the obtained knowledge from the bio-inventory
toolbox will be sent to the process toolbox where, based on a
multitude of (sustainability) indicators, optimal biorefinery
layouts will be designed, all tailored for the feedstocks that are
available in the defined catchment area. A process framework has
been designed, based on expert knowledge, and will be used as the
initial modelling framework for the BR (Sbarciog et al., 2022).
Depending on the properties of the defined catchment area,
certain conversion processes will become more or less suitable
for processing the selected biorefinery feedstock.

Because of the inherent diffuse nature of biowaste, any given
catchment area will mostly contain multiple biowaste feedstocks.
Consequently, multiple BR designs could be drafted for one
certain catchment area. In order to aid the decision maker to
select one design for further investigation and, potentially,
implementation, the final step of the proposed DST consists of
comparing all the designs with each other, employing

comparative visualisation techniques. Based on this, the
decision and/or policy maker will eventually be able to select a
certain design.

2.2.1 Strategic Planning of a Biorefinery
A biorefinery system can be divided into three main parts: 1) the
feedstock part, 2) the process part, and 3) the product part. Each
part is defined by its own set of strategic decisions (Figure 2).
Depending on the available local facilities and/or needs, a
biorefinery can be designed starting from any part. However,
as all three parts are dependent on each other, it is crucial to
know how decisions made with regard to a certain part influence
the freedom of choice of the remaining strategic decisions with
regard to the other two parts. E.g., when a certain process is
selected as a conversion process for the biorefinery plant, the
choice of feedstocks that can be processed with this specific
technology will be constrained and, simultaneously, the
products the biorefinery will be able to produce for the
(local) market are too. Therefore, when designing an
integrated biorefinery that is optimally embedded in its local
setting, it is essential to know the rippling effect, i.e., the
influence certain decisions have on others.

For this purpose, initial steps towards a strategic planning
model are taken, which will be incorporated in the decision
support tool. A strategic planning model (SPM) is defined as a
set of interdependent present and future decisions and their
reciprocal links (Radford, 1979). The SPM provides a
framework for taking strategic decisions that have a big
influence on how, e.g., a biorefinery plant is run and, thus, its
(economic) viability. Often, these decisions have major rippling
effects, meaning that they heavily affect the outcome of other
decisions and/or limit the decision options available. As their
outcomes are often not easily reversible, they need to be taken
after thorough deliberation. Amongst others, Sharma et al. (2011)
and Geraili et al. (2016) have developed tools for aiding decision
makers in designing a biorefinery whilst simultaneously taking
strategic considerations into account. Sharma et al. (2011) have
proposed a design and optimisation framework for a biorefinery
which is: 1) economically sustainable by creating value, 2)
environmentally sustainable when considering greenhouse gas
(GHG) emissions and waste streams, and 3) socially sustainable
by minimising its (negative) impact on the local community.
Geraili et al. (2016) consider the uncertainty that accompanies the
strategic and operational decisions. Knowing this, as well as how
these uncertainties propagate to other decisions, is essential when
designing a biorefinery system. Therefore, one of the main targets
of a strategic planning model is to estimate how a certain decision
influences other decisions, and what its effect will be on the
long term.

Within the presented design and optimisation framework, at
each step of the designing process, the tool will provide the DM
with a set of options for each strategic decision that needs to be
made whilst simultaneously showcasing how decisions influence
one another and additionally suggesting, if necessary, more
economically viable and sustainable alternatives. Eventually,
users will be able to compare their foreseen design with
designs proposed by the tool, using a multitude of indicators.
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Figure 3 represents the biorefinery designing process starting
from the feedstock part and gives an overview of the order of
strategic decisions that need to be taken, as well as how they
influence each other. Strategic decisions that can be attributed to
the feedstock entry point include the catchment area, i.e., the area

fromwhich feedstocks will be harvested. Choosing this catchment
area will already constrain a horde of other strategic decisions as it
(potentially) limits the feedstock types that will be available, their
volumes, and, depending on local competition for a certain
feedstock, their availability. These designing aspects limit, on
their turn, the freedom of choice with regard to strategic decisions
at both the process and product entry points. In general, as the
rippling effect of decisions made at the feedstock entry point is the
biggest of all three designing entry points, it is deemed that
ostentatiously starting the designing exercise from this entry
point is a reasonable modelling simplification. As the ultimate
goal of the decision support tool is to support decision and policy
makers in assessing the viability of a biorefinery design in their
own local setting, this entry point will also be the most likely one
to be selected, as both often start from assessing what is possible
in a certain catchment area of interest. Only when there is already
dedicated equipment available, or when a certain biorefinery
product is especially desirable in a local area, the other two
designing entry points could be considered.

2.2.2 Modelling the Local Setting of a Biorefinery
When designing an integrated small-scale biorefinery, the
employed conversion processes must be optimally coordinated
to the feedstock that is processed: the biorefinery should be
optimised for their local setting. However, in order to be able
to do so, this requires a thorough knowledge of the locally
available waste streams, their amounts, and their seasonality
and harvest times. As displayed in Figure 3, the properties of
the feedstock that is to be processed, has major influences on
which conversion processes are available and, consequently,
which products can be produced. Accordingly, a thorough and
reliable estimation and/or model of the local setting of the SSBR
(i.e., its supply area), is an essential first step in the design process.

The modelling and performance analysis of biorefinery supply
chains has been considered in a multitude of previous works.
Especially while their overall implementation is still limited, most
supply chain modelling efforts and/or decision support tools
focus on meeting the lack of commercial experience most
biorefinery set-ups are facing, both with regard to their supply
chains and the conversion technologies they use. Wang et al.
(2015) have, for instance, produced mathematical models to
estimate the production of energy crops by modelling their
growth kinetics, whereas Elia and Floudas (2014) provided a

FIGURE 2 | Flowsheet representing the three biorefinery design entry points and their accompanying main strategic design decisions.

FIGURE 3 | Flowsheet representing the biorefinery designing process
and the accompanying strategic decisions, starting from the feedstock
entry point.
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thorough review of supply chain optimisation and the usage of
hybrid feedstocks. They coined that hybrid processes, which can
process a multitude of different feedstocks, provide their
exploiters with synergetic advantages in the sense of reducing
costs and/or increasing feedstock security. Note that they mostly
discussed the hybridisation of fossil and biomass-based
feedstocks, whereas this paper focusses on modelling supply
chains for small-scale flexible feed biorefineries that can
process a multitude of lignocellulosic biomass-based feedstocks.
Combined with optimising supply chains comes the issue with
regard to siting the biorefinery, which was considered in the work
of Schröder et al. (2018) and Martinkus et al. (2019). Lemire et al.
(2019) employed GIS-data to analyse how a decentralised supply
chain and biorefinery system, as coined in this contribution as
well, compares to a centralised system, ascribing an increased
efficiency to the former. Note that the biorefinery siting will not
be considered in the supply chain modelling presented in this
paper. Schröder and Geldermann (2019) additionally presented a
generic method on how to employ spatial data obtained from
GIS-datasets for the quantification of geo-spatially spread
biomass. On a more holistic level, Sukumara et al. (2014),
developed a decision support tool for assessing different
biorefinery technologies by simultaneously considering the
performance and economic viability of the (required) supply
chains and, by doing so, taking first steps towards an overall
sustainable biorefinery designing process. Lastly, Junqueira et al.
(2016) presented the major strength of decision support tools in
the context of supporting the formulation of novel and ambitious
policies in view of making the energy sector more sustainable.
Virtual biorefineries, as coined by Junqueira et al. (2016), can fill
the gap that is left by the few real-life implementations of these
technologies to increase investors’ trust in the considered
technologies.

As mentioned before, the biowaste potential assessment
approaches presented in this paper will be part of a more
thorough decision support tool, whose main goal will also be
to provide decision and policy makers with an easy and low-entry
method to assess the overall sustainability of a potential
biorefinery design in a local setting.

3 MATERIALS AND METHODS

3.1 GIS-Datasets
The case study region of this contribution is Flanders, and more
specifically the commune of De Pinte in the province of Eastern-
Flanders. Therefore, the presented GIS-datasets all focus on this
particular area.

3.1.1 Ground Cover Map
The colour clustering method proposed in this paper employs the
Bodembedekkingskaart (BBK), 1m resolutie, opname 2015
(Agentschap Informatie Vlaanderen, 2019) (hereafter referred
to as ground cover map). Figure 4 represents an excerpt of this
ground cover map of the Flanders region, Belgium. Every type of
ground cover, i.e., buildings, vegetation, watercourses, etc., is
represented in a different colour depending on its usage and/
or properties. The ground cover map provides a surface area-
based categorisation of different geographical locations, with a
resolution of 1 m2. The colour clustering method will enable users
to calculate the total surface area belonging to certain ground
cover and/or usage. This information can be further used to make
a surface area-based assessment of the expected amounts of
biomass and/or biowaste coming from this particular ground
cover category. The colour clustering method is explained more
in detail in Section 4.1.

FIGURE 4 | Ground cover map.
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3.1.2 Buildings’ Register and Residential and Ribbon
Clusters
The building clustering method, presented in Section 4.2, does
not employ a surface-based quantification approach but instead
allocates periodic biowaste yields to discrete points on a map.
More specifically, the used Gebouwen- en Adressenregister
(Agentschap Informatie Vlaanderen, 2021) (hereafter referred
to as buildings’ register) provides a dataset containing all the
building units in Flanders (i.e., one data point per building unit).
Every data point contains information about, i. a. the building
unit’s state (i.e., historical, realised, or planned) and it is
geographical location. Every building unit (or data point) is
characterised by a unique ID, which will be used in the
building clustering method to allocate additional data to a
selection of data points or building units. Figure 5 visually
represents an excerpt of this dataset.

Next to densely built-up clusters of housing (e.g.: village or city
centres) and rural building, Flanders is known for a third type of
development: the, so-called, ribbon development. As all three
categories of building development are relatively different from
each other, it is important to know to which development type a
building belongs. To achieve this, an additional dataset,
i.e., Kernen, linten, verspreide bebouwing in Vlaanderen
(Vlaamse Overheid - Departement Omgeving - Afdeling
Vlaams Planbureau voor Omgeving, 2013b) (hereafter referred
to as Cluster and ribbon database), is used as a filter for
categorising all the building units in the case study area to

their according development type. In Figure 6, a visual
fragment of this dataset is presented.

3.2 Software
The GIS-datasets were handled and manipulated using QGIS
3.10 (QGIS Development Team, 2021) on a 64-bit Windows 10
system with an Intel Core i5-8500 CPU @ 3.00 GHz processor
and 16 GB of RAM installed. The colour clustering method was
developed in Python 3.9.6, using the k-means clustering
method of the sci-kit learn Python module (Pedregosa
et al., 2011).

4 RESULTS AND DISCUSSION

In order to link quantitative data about biowaste availability and
composition to geographic locations, two methods are proposed:
1) The colour clustering method, which employs the ground
cover map, and 2) The building type clustering method, which
uses the buildings’ register. Whereas the first method employs a
surface area based method for assessing the amounts of biowaste
that can be anticipated in an area, the second method is based on
allocating anticipated biowaste amounts to discrete points on the
map. Combining these two methods will allow users of the small-
scale biorefinery decision support tool to draw the borders of their
foreseen collection area and calculate the locally available
biowaste types and quantities.

FIGURE 5 | Buildings’ register.
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4.1 Colour Clustering Method
The first biowaste quantification method focusses on agricultural
biowaste and employs an area-based quantification approach.
Based on the boundaries of the collection area, the ground cover
map of this area is retrieved and processed, resulting in area-
based estimations of the yields of agricultural waste streams. The
two types of agricultural waste streams that will be quantified
using this technique are stover and/or straw obtained from the
cultivation of cereals and grains, and grass cuttings and/or silage
obtained from the maintenance of agricultural grasslands.

4.1.1 Quantifying Colours in a Figure
The ground cover map is made up out of 14 different colours,
each representing a different ground coverage and/or usage.
Table 1 summarises all the colours with their RGB-code and

the coverage or usage they represent. The clustering method uses
a k-means clustering method to cluster all the pixels of a selected
part of the ground cover map into 14 different colour clusters.
The ratio of pixels attributed to a certain colour clusters is equal to
the relative total occurrence of the ground cover that can be
linked to that colour as the total surface of the selected area
is known.

The ground cover map is largely based on aerial photos,
obtained during the summer of 2015 (Agentschap Informatie
Vlaanderen, 2019). Due to the fact that high and low ground
coverages overlap, e.g., trees and roads, their corresponding
colours on the ground cover map overlap too (Figure 7). Due
to these overlapping colours, the ground cover map counts more
unique colours than the 14 colours that are listed and linked to a
certain ground cover type. Therefore, quantifying the relative

FIGURE 6 | Clustered and ribbon development in the case study region.

TABLE 1 | Summary of the colours of the ground cover map.

ID RGB-code Definition

Original High-contrast

1 (175; 0; 0) (34; 34; 34) Building
2 (100; 100; 100) (243; 195; 0) Roads
3 (125; 125; 125) (135; 86; 146) Other covered
4 (150; 150; 150) (243; 132; 0) Railways
5 (0; 175; 255) (161; 202; 241) Water
6 (175; 150; 100) (190; 0; 50) Other uncovered
7 (255; 255; 125) (194; 178; 128) Field (arable)
8 (150; 255; 0) (132; 132; 130) Grass, shrubs
9 (0; 200; 0) (230; 143; 172) Trees
10 (200; 255; 0) (0; 103; 165) Grass, shrubs (agriculture)
11 (150; 200; 0) (249; 147; 121) Grass, shrubs (roadside)
12 (0; 150; 0) (96; 78; 151) Trees (roadside)
13 (150; 255; 150) (246; 166; 0) Grass, shrubs (waterways)
14 (0; 200; 150) (179; 68; 108) Trees (waterways)

FIGURE 7 | Zoomed in snippet of the ground cover, clearly displaying
overlapping colours (area = 0.427 km2).
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occurrence of each colour by simply counting the number of
pixels with the corresponding RGB-code was not a feasible
quantification technique. To illustrate this, the ground cover
map image displayed in Figure 7 has a width of 2,661 pixels
and a height of 1867 pixels and covers an area of 0.427 km2. For
this particular example, each pixel of the image represents an area
of 0.086 m2, which is more than ten times smaller than the
resolution of the ground cover map itself. As the zoom level
of a map-image will influence the eventual resolution of the map
and, therefore, the colours that are showcased, it is essential to
keep the area represented by one pixel smaller or, in the worst-
case, equal to the resolution of the ground cover map itself.
However, even when the area represented by one pixel is more
than ten times smaller than the resolution of the ground cover
map, the image still counts 178 unique colours.

Data analysis allows for extracting useful information from a
dataset. More specifically, the set of pixels, and their
corresponding RGB-codes, representing an area of interest
could be clustered in x clusters using data analysis techniques.
The clustering technique selected for this, is the k-means
clustering method. The k-means clustering method allocates n
elements to k clusters, with k ≤ n, by minimising the squared
Euclidean distance between all elements in a cluster ki and their
mean value μi:

arg min
K

∑k
i�1

∑
n∈Ki

‖n − μi‖2 (1)

with K = {K1, K2, . . . , Kk} the set of clusters. The k-means
clustering method was deemed the most suitable for the task at
hand as it clusters elements based on their distance to the cluster
centres. In the context of clustering pixels of an image in k
clusters, each element n is made up out of three features xi, i.e., its
corresponding RGB-code. Figure 8 displays the location of the
unique colours of the snippet displayed in Figure 7 versus the
location of the colours that correspond with a certain ground
cover type. It can be seen that for this sample, the unique colours

are either mostly already clustered around a colour that was listed
in the legend or are located on the connecting line between two
listed colours as they are a linear combination of both. Both
observations further substantiate the selection of the k-means
clustering method. As most unique colours are located in the
proximity of listed colours, the clusters centres that are defined by
the k-means clustering method will, most likely, be located in the
vicinity of the centres of these already existing clusters.
Furthermore, unique colours located on the connecting line
between two listed colours will most likely be attributed to
either of the corresponding clusters. As those unique colours
represent an overlap of both of these listed colours, they can be
attributed to either one. The colour clustering method is
presented in Algorithm 1.

Algorithm 1. Colour clustering algorithm

The colour clustering algorithm starts with storing all the
RGB-codes of the pixels making up the image of the ground cover
map representing the area of interest. This list of w × h vectors
(with w the width of the image and h the height in pixels) is
clustered into k clusters. Each vector has a dimension of (1 × 3),
or, is made up out of 3 features. Subsequently, a normalised
histogram is drafted to quantify the number of pixels that are
attributed to each cluster. The ratio of pixels attributed to a
certain cluster, which can on its turn be linked to a certain ground
cover, is equal to the ratio of surface area that is covered with this
particular ground cover in the studied region.

k is set to 14, by default, as the ground cover map links, in
theory, 14 unique colours to a certain ground cover. However,
initial results of random snippets of the ground cover map show
that the colour clustering method struggles to distinguish
between the different grey colours, used to indicate roads,
railways, and other covered areas, and the colours resulting
from overlapping ground coverages. A first remediation trial
was to decrease the number of clusters, k, to 13, 12, and 11.
The results of this approach are presented in Figure 9.

FIGURE 8 | Unique colours (red) vs listed colours in the legend (blue).
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From (Figures 9B–E), it can be seen that by reducing the
number of clusters, the most prominent colours of the ground
cover map are more accurately approximated by the clustering

method than when using a higher number. In order to verify this
observation, the inertia of each clustering process was calculated.
The inertia is a measure for assessing how accurately a set of data

FIGURE 9 | Effect of cluster reduction. (A) Snippet, (B) 14 clusters, (C) 13 clusters, (D) 12 clusters, (E) 11 clusters, (F) inertia in function of cluster centres.
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points is clustered by the k-means clustering method by
calculating the spread of data points within each cluster [see
Eqs (2, 3)]:

I � ∑k
n�1

In (2)

with

In � ∑m
i�1

‖xi − μn‖2 (3)

andm the number of data points x assigned to a cluster n, defined
by a centroid μn.

By calculating the overall inertia for a different number of
clusters, the most optimal number of clusters can be defined using
the elbow method. As the overall inertia will inevitably decrease
with an increasing number of clusters k, the most optimal number
of clusters corresponds with the lowest k that simultaneously
displays a low overall inertia. When looking at the evolution of
the inertia of the clustering method (Figure 9F), it can be seen
that this so-called elbow corresponds with a number of clusters
higher than 14. Nonetheless, even though a higher number of

clusters would more accurately represent the trends of the data set
(including the additional, non-listed, colours obtained from
overlapping), the number of clusters k is kept at 14 since only
14 different types of ground coverage have been defined. Using a
higher number of clusters would result in more cluster centres
than listed colours, i.e., multiple cluster centres will have to be
assigned to one listed colour or ground cover type. Due to the
high level of overlapping colours (or noise on the data), using a
higher number of clusters would result in an increased influence
of this noise on the clustering performance and, therefore, a
decrease in the accuracy of the estimation of the (prominent)
cluster centres.

Another remediation approach was to seed the k-means
clustering algorithm with the RGB-codes of the original, listed
colours. In Figure 10 it is visible that the clusters eventually
defined by the algorithm are not identical to those that were
seeded. The downside of this approach is that the algorithm only
initialises the clustering procedure once, i.e., with the seeded set of
listed colours. Nonetheless, as can be seen in Figure 10, seeding
the k-means clustering algorithm with RGB-codes of the original,
listed colours resulted in a better clustering effort than without
seeding. Especially the different types of so-called covered areas

A

B C

FIGURE 10 | Effect of seeding the original colour centres. (A) Snippet, (B) 10 random initialisations, (C) Listed colours seeded.
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FIGURE 11 | Effect of the employment of highly contrasting colours on the colour clustering method using the k-means. (A)Ground cover map snippet with original
colours, (B) Ground cover map snippet with highly contrasting colour (C) 10 random initialisations (D) 10 random initialisations (E) Seeded initialisation (F) Seeded
initialisation (G) Inertia in function of cluster centres (10 random initialisations).
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(i.e., roads, railways, and other covered areas) are more accurately
approximated by the clusters’ centroids.

Finally, the third remediation approach to improve the
clustering method’s accuracy was to replace the colours of the
ground cover map with a set of 14 colours from the list of most
contrasting colours as presented by Kelly and Judd (1976); Green-
Armytage (2010). The colours of the original ground cover map
are namely chosen in such a way that the link between the used
colour and the ground cover it represents, is intuitive. E.g., green
vegetation, like grass and trees, are represented using green
colours (see colours 7 to 14 in Table 1 and Figure 4).
However, for the purpose at hand, the intuitive link between
the colour and the ground cover it is representing is subordinate
to the ease of clustering them in k clusters. Figure 11 displays the
same snippet of the ground cover map, once in the original
colours, and once in the highly contrasting colours, and the
obtained centroids for k equal to 14, once with 10 random
initialisations, and once with seeding the 14 original/highly-
contrasting colours (Table 1). The ground cover map snippet
with the original colour scheme counts 176 unique colours
whereas the high-contrasting one counts 212 unique colours.
Nevertheless, both the seeded and unseeded clustering efforts of
the ground cover map with highly contrasting colours displayed
an overall inertia of 2.0 109, compared to overall inertias of 3.5 109

and 3.2 109, respectively, for the clustering efforts of the ground
cover map using the original colour scheme. Additionally, in
Figure 11G, it can be seen that the inertia of the clustering
performed by the k-means algorithm on the ground cover map
snippet employing the highly contrasting colours, is consistently
lower than those using the original colours, indicating an overall
improved clustering performance. Therefore, as themethod using
the highly contrasting colours clearly displays a significant
decrease in inertia for the same clustering exercise,
independent whether or not the used colours’ RGB-codes were
seeded, this method will be used when applied to the case study.

4.1.2 Area-Based Biowaste Quantification
The presented colour clustering approach is especially useful for
quantifying biowaste-streams that are sporadically harvested and
which volumes are influenced by the surface area that is
harvested. Specifically agricultural waste, like grass cuttings,
silage, corn stover, and wheat straw, are easily quantifiable
using a surface area-based technique.

Regarding surface area-based yields for grass cuttings, Van
Meerbeek et al. (2015) assessed the biowaste yields obtained from
the maintenance of conservation areas and roadsides in Flanders,
Belgium. It is assumed that the grass cuttings obtained from
agricultural land in Flanders are most alike to the grass cuttings
obtained from roadside maintenance. Van Meerbeek et al. (2015)
obtained a value of 4.48 ± 1.59 ton DM/ha per mowing cycle. At
this stage of the decision support tool, only one mowing cycle is
taken into account. In a later development stage, it would be
desirable to allow users to interact more with the tool, especially at
the level of characterising their local conditions. Note that when
two or more mowing cycles are considered, biomass re-growth
needs to be considered too (De Meyer et al., 2016).

When considering the surface-area based yields of straws and
stover obtained from the cultivation of cereals and grains, like
corn, wheat, barley, oats and rye, a further simplification has to be
made. As the database of the ground cover map (Agentschap
Informatie Vlaanderen, 2019) does not provide sufficient detail to
assess which types of cereals and/or grains are grown on arable
land, additional information is required on the occurrence of
certain cereals and grain crops in Flanders, Belgium. Using the
information provided by the Landbouwgebruikspercelen LV, 2020
database Vlaamse Overheid - Departement Landbouw en Visserij
(2020) (hereafter referred to as the agricultural usage database), it
is first assessed how much of the total arable land in Flanders is
used for the tillage of grains and cereals. Subsequently, as the
agricultural usage database additionally provides information on
which crop is grown on a certain plot of arable land in Flanders,
the ratio of the five major grains grown in Flanders (i.e., corn,
wheat, barley, oats, and rye) is determined. The Food and
Agriculture Organization of the United Nations (FAO)
reported that in 2017, Belgium produced 9.05 ton DM/ha of
cereals and grains (Food and Agriculture Organization of the
United Nations, 2020). In that same year, 48.58% of arable land in
Flanders was used for the cultivation of corn, 16.87% for the
cultivation of wheat, 4.46% for the cultivation of barley, 0.12% for
the cultivation of oats, and 0.09% for the cultivation of rye.
Renard et al. (1997) reported for these crops a residue to
harvest ratio of 1.00, 1.50 (average between winter and
summer wheat), 2.00, 2.00, and 1.50 kg residue/kg DM
harvested, respectively. The weighted average residue to
harvest of grains for Flanders, based on the ratio of arable
land used for cultivating a particular grain, equals 6.35 ton
DM/ha. Applying the same weight ratio for calculating the
weighted average residue yield per ton DM harvest, renders
1.18 ton residue/ton DM harvested. Combining the weighted
yield of cereals and grains in Flanders with the weighted
residue yield renders a weighted average residue yield of
7.49 ton residue/ha of arable land.

The proposed colour clustering method, together with the
surface-area based biowaste quantification approach presented
above has been applied to quantify the yearly to-be-expected
volumes of agricultural biowaste in the region of De Pinte,
Belgium (see Section 5).

4.2 Building Unit Clustering Method
Whereas the first quantification method mainly focussed on
agricultural waste and presented a surface area-based approach
to assess the amounts of biowaste that can be expected in a local
area, the building unit clustering method employs scattered data
points on the map. More specifically, each data point represents
one building unit. A building unit is defined as (Agentschap
Informatie Vlaanderen, 2021):

“(a building unit is) The smallest unit within a building
that is suited for residential, commercial, or recreational
purposes, that is accessed via a private lockable entrance
from the public road, a yard, or a shared circulation
space. The unit is independent from a functional point
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of view. Additionally, a building unit can be a common
part.”

In essence, every building unit can be considered as a
production site of kitchen and/or garden waste. In the studied
case study region, this particular type of waste is collected biweekly
via door-to-door collection. Therefore, while the agricultural waste,
that was considered in the colour clustering method, is only
harvested once a year, the kitchen waste provides a much more
steady flow of biowaste that is readily available and cheap to obtain.

The major challenge of this approach, however, comes with
the fact that correlation between the amounts of biowaste
produced per building unit is depended on the number of
people living in or using the unit in question. Especially when
looking at densely populated city centres, it becomes obvious that
there is no one-to-one relationship between the number of
building units present in a certain area versus the amount of
people occupying them. Based on the definition given above, for
example, high rise apartment buildings are also only one building
unit even though they house multiple households. For the sake of
simplicity, it is assumed that, on average, households of the same
size generate the same amount of kitchen waste, regardless of
whether they live in a single family home or in an apartment
building or another type of shared housing. However, the
problem still remains that, depending on their location,
building units represent more or less households and, thus,
more or less kitchen and garden waste. To address this, the
building clustering method uses freely available geographical
information to cluster building units based on their location in
order to be able to assess the number of people occupying or
using them.

4.2.1 Categorising Building Units
The presented clustering technique considers two different
categories for clustering building units based on their
geographical location: 1) Clustered development, and 2) rural
development. In Flanders, a third building development type
could be considered, being ribbon development. These building
units are located outside typical residential areas and are
structured in a ribbon-like layout around main roads
connecting residential clusters. However, while ribbon
development can also be considered as a densely populated
area, the building units located in ribbon development are, at
this development stage, also considered as clustered development.
Figure 12 shows a snippet of the boundaries of clustered and
ribbon development areas, taken from Vlaamse Overheid -
Departement Omgeving - Afdeling Vlaams Planbureau voor
Omgeving (2013b), overlaying a map displaying the
population density of the same area, taken from Vlaamse
Overheid - Departement Omgeving - Afdeling Vlaams
Planbureau voor Omgeving (2013a). It is clearly visible that
clustered development and ribbon development overlap with
areas that have a higher population density, thus, the
assumption stated above is admissible.

4.2.2 Linking Kitchen and Garden Waste Data
In the case study region, kitchen and garden waste is collected
door-to-door every 2 weeks. Figure 13 displays the collected
waste on a monthly basis. The collected volumes are listed per
collection round. Based on the coverage of both collection rounds,
the number of rural and clustered building units per collection
round are determined. Based on the average amount of kitchen
and garden waste collected each month per collection round, the

FIGURE 12 | Cluster and ribbon development linked with population density.
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average mass of biowaste collected per building unit per month is
quantified using Equation (4):

Waste collected/month

� nc,1 · wc + nr,1 · wr � BWtot,1 for collection area 1
nc,2 · wc + nr,2 · wr � BWtot,2 for collection area 2

{ (4)

with wc and wr the average monthly biowaste collected per
clustered and rural building unit and nc,i and nr,i the number
of clustered and rural building units in collection area i,
respectively. BWtot,i is the total amount of biowaste that is
collected on average each month in collection area i.

One must note that the distinction between building units
could be more detailed than the one presented. E.g., Vlaamse
Overheid - Departement Omgeving - Afdeling Vlaams
Planbureau voor Omgeving (2013a) lists the inhabitants
density in Flanders per hectare in 2013. This information
could be used to determine, per hectare, the average number
of people living in a building unit. However, for this approach, the
average amount of kitchen and garden waste produced per person
per month has to be known. Most likely, an additional distinction
will have to be made based on whether the person in question
lives in a densely populated area or not. Unfortunately, at the time
of writing this paper, this information was not available.

The proposed building clustering method, together with the
monthly surface-area based biowaste quantification approach
presented above has been applied for quantifying the yearly
to-be-expected volumes of agricultural biowaste in the region
of De Pinte, Belgium (see Section 5).

4.3 Towards Drafting an Optimal
Small-Scale Biorefinery Design
The quantification methods presented in Sections 4.1 and 4.2
provide an estimation about the periodically available biowaste,
from either agricultural or residential sources, in the considered

collection area. The methods presented in this paper make up
the bio-inventory tool of the decision support tool (DST)
(Figure 1). The information obtained from the bio-inventory
tool is fed to the process design tool and multi-objective
optimisation tool in order to design an optimal small-scale
biorefinery, specifically tailored for processing the locally
available biowaste streams. The process design tool presently
considers four process models that are particularly suited for a
small-scale set-up: 1) Steam refining (Borrega et al., 2011a,b), 2)
anaerobic digestion (Batstone et al., 2002; Nguyen, 2014), 3)
ammonia stripping (Adu-Wusu et al., 2005; Değermenci et al.,
2012), and 4) composting (Martalò et al., 2020). These process
models rely on the amount of feedstock and its various
characteristics to predict the outcome, hence, only the type
of feedstock and its volume or flow is passed to the process
design tool (Sbarciog et al., 2022). Based on the type of feedstock
that is passed to a model, the conversion and quantification of
the required feedstock properties is conducted in the preamble
of each process. Although this method might seem fairly hard-
coded at first hand, it offers a lot of flexibility with regard to
combining different processes together whilst maintaining a
small database. This significantly increases the speed of
designing (multiple) suitable biorefinery process layouts.

As technical advances in decision support tools, process
optimisation, and biorefineries are increasing rapidly, the
decision support tool is developed using an open (-source)
architecture, allowing for an easy extension of the tool’s
capabilities employing other, already developed methods.
For instance, the process model library can be easily
extended with additional (kinetic) models of other
biorefinery processes (De Buck et al., 2020; Sbarciog et al.,
2022), or can be entirely circumvented by employing custom
models. Using multi-platform communication techniques,
e.g., INPROP (Muñoz López et al., 2018), the information
on the available feedstocks provided by the bio-inventory tool
can be passed to a stand-alone process simulator, like Aspen

FIGURE 13 | Monthly collection of kitchen and garden waste in the case study region: De Pinte, Flanders, Belgium.
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Plus, in order to simulate the performance of a custom/already
existing biorefinery system. Moreover, complementing the
optimisation approaches used in the DST, the eventually
selected biorefinery design’s model can be employed for
developing an optimal control strategy of the entire
biorefinery system (Bhonsale et al., 2018).

5 APPLICATION TO CASE STUDY REGION:
DE PINTE, BELGIUM

Figure 14 represents the case study region, with Figures 14A, B
the building units and ground cover map of the studied area,

respectively. The case study region has a surface area of 17.78 km2

and has a maritime climate (Köppen classification Cfb).
De Pinte counts a total of 5,016 clustered building units

(i.e., building units located in a area dedicated as clustered or
ribbon development) and 654 rural building units. The kitchen
waste of 1768 of the clustered building units and 403 rural
building units is collected on Wednesday on a biweekly basis,
whereas the remainder of the building units’ kitchen waste is
collected on Thursday on biweekly basis. Eq. (4) can therefore be
translated into Equation (5):

Waste collected/month

� 1768 · wc + 403 · wr � 12 408 forWednesday
3248 · wc + 251 · wr � 20 556 for Thursday

{ (5)

The two collection areas are graphically represented in
Figure 14A. Note that the Thursday collection area covers a
smaller surface area, but one that is densely built-up. Solving the
linear system of Eq. (5) renders wc = 5.98 kg/month and wr =
4.58 kg/month. One could argue that the obtained amounts forwc

and wr are fairly small for one building unit per month. A first
clarification for these low values is that the majority of building
units in the case study region, for which the monthly collected
amounts were available, are single household residences.
Moreover, the linear system of Eq. (4) assumes that, during
every biweekly collection round, biowaste is collected from every
building unit that is called on during the collection round. In
practice, however, not all building units on a collection round will
have their kitchen and garden waste collected.

As kitchen waste has, on average, a high relative N-content, it
is especially suited to be processed in an anaerobic digestion
facility, combined with an ammonia stripping process. Note,
however, as a C: N ratio between 20 and 30 is deemed to be
the most favourable for a digestion process, it could be more
preferable to mix the kitchen waste feedstock with other, e.g.,
more C-rich feedstocks (Nguyen, 2014). Additionally, as the
water content of kitchen waste is fairly high, one must
consider that this feedstock is more prone to rotting.

Using the colour clustering method, 19.10% of the surface area
of the case study region is covered by arable land and 14.10% is
covered in grassland for agricultural use, resulting in a surface
area of 340 and 251 ha, respectively. Using the surface area-based
biowaste quantification values defined in Section 4.1.2, this
results in a maximum agricultural biowaste stream of 2,547
ton residue due to the cultivation of cereals per year and
1,125 ± 399 tons of dry grass per mowing cycle. For both
residue streams, however, the remark should be made that
they are not necessarily entirely harvested as residue streams.
Corn stalks, e.g., are usually left in the soil to counteract soil
erosion during the winter months (Renard et al., 1997). Dry grass,
on the other hand, is usually harvested as fodder rather than being
regarded as a waste stream.

These local exceptions highlight the necessity of a decision
support tool taking the local setting into account as every local
scenario is different. The decision support tool can provide a first,
holistic overview of what is possible in a certain area, but even

FIGURE 14 | Building units with the two collection rounds and ground
cover map of the case study region. (A)Building units, (B)Ground Cover map.
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then, this information needs to be backed-up by expert
knowledge on the availability of certain biowaste streams, etc.

6 EXTENDIBILITY OF THE PRESENTED
METHODS AND FUTURE RESEARCH

Both biowaste potential assessment methods have been
developed with the future in mind, meaning that their
extendibility and application potential to multiple feedstock
types was an important development criteria. Especially with
regard to the building clustering method, this approach can be
easily extended to include other types of discrete and
geographically spread feedstock production sites. For
example, at the current point of development, agricultural
waste is estimated using a surface area-based quantification
approach. Farms, however, can also be identified as discrete
points on a map from which a (steady) stream of biowaste can
be expected. With regard to strengthening local collaborations
between farmers that wish to process their biowaste in a more
independent manner, the tool could easily be extended by
adding a GIS-layer to the bio-inventory tool’s database that
contains the considered farms and their periodic biowaste
yields. When considering landscape maintenance in cities,
for instance, GIS-layers containing the parks and natural
city-scape elements, could be added to the bio-inventory tool
database. Especially when these geographically spread biowaste
production sites can be linked with in-depth expert knowledge
on the type and amounts of biowaste that can be periodically
harvested at each point, the proposed biowaste potential
assessment methods provide a sturdy framework for
developing and designing tailored biorefinery plants. With
regard to the composition of the biowaste streams that can
be quantified using the presented biowaste potential assessment
approaches, the current bio-inventory toolbox is developed
with a Flemish application area in mind. As biowaste
collection in Flanders is characterised by a high level of
waste sorting (both on size and type), the need for assessing
the waste’s composition using the bio-inventory tool is non-
existent as the collected biowaste streams of garden waste
and kitchen waste can be assumed to have a uniform
composition. Thus, at present, the main goal of the bio-
inventory tool remains to assess quantities. For the
composition of the biowaste, default compositions will
be employed (Nguyen, 2014). However, if necessary, in
the final DST, the decision maker will be able to
complement the bio-inventory tool’s assessment of the
biowaste potential of a certain area with their own data and
knowledge.

The colour clustering method could additionally be further
improved by considering different clustering algorithms. One of
the main issues this approach currently faces, is the high level of
noise on the data due to the overlapping of colours, potentially
leading to a sub-optimal clustering of the currently employed
k-means algorithm. Other clustering methods, like density-
based clustering, have the advantage that they can
distinguish clusters and noise from each other (Wang et al.,

2018). Using similar methods, the true clusters centres could
potentially be more accurately estimated by their capability of
disregarding noise. Data points corresponding to the latter
category can be attributed a posteriori to the already
estimated clusters centres. However, as the clustering
performance of the k-means algorithm with regard to the
most prominent ground cover types/colours (i.e., those of
interest) is satisfactory, the extension of the colour clustering
method with additional clustering algorithms is set as a next
step in the further development of the proposed biowaste
potential assessment technique.

7 CONCLUSION

Biomass, and more specifically biowaste, can be used as a
sustainable alternative feedstock for the production of energy
and chemicals. To unlock the full potential of biowaste,
however, it needs to be refined into manageable and value-
added components. This is done in a biorefinery plant. Initial
biorefinery plants were designed as bio-based copies of
ordinary petroleum refineries, i.e., they were designed to
compete with petroleum refineries for the production of
fuels, etc., rather than as an environmentally friendly and
vital alternative for the petroleum sector. These large-scale
facilities mainly relied on the economy of scale to become
economically viable enterprises and required large quantities of
a uniform feedstock, often food-based. As these practices were,
rightfully so, deemed to be ethically skewed as the more
profitable energy industry started competing with the food
industry for land, alternative feedstocks were sought in the
form of biowaste. These streams could still be food-based but
are no longer suitable for human consumption and/or do not
compete with the food producing industry for arable land.
Especially small-scale and locally embedded biorefineries are
considered to be extremely suitable for processing these types of
waste streams (Bruins and Sanders, 2012). In order to do so,
however, the biorefinery plant needs to be maximally optimised
and tailored to its local setting. For this, it is required to have a
good understanding of the local setting that is considered,
especially when it comes to the available biowaste streams
types and their expected periodic volumes. This paper
presents two biowaste potential assessment approaches,
employing GIS techniques, for categorising and quantifying
biowaste feedstocks: 1) the colour clustering method, using a
ground cover map, and 2) the building units clustering method,
using geographically spread data points representing biowaste
production sites. Both methods are tailored for a Flemish
(Belgian) setting and were applied to a local case study
region: De Pinte. Both methods enable potential biorefinery
exploiters to efficiently analyse the types and amounts of
biowaste feedstocks that are present in the foreseen
catchment area of the biorefinery. Using this information, an
optimised biorefinery design can be drafted, especially tailored
for the locally available feedstock. By doing so, the lack of
confidence investors may have in these biorefinery processes
may be eliminated by providing a in-depth, a priori, and
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in silico analysis of the overall sustainability of the presented
biorefinery design in its local setting.
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