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In this mini-review, we describe the currently available literature concerning synthesis and
applications of layered double hydroxides (LDHs) containing rare earth cations (RE-LDHs),
focusing on the catalytic activity of those compounds. The lack of studies of some rare
earth elements (REE) and the insufficient knowledge of their catalytic activity in the structure
of LDHs indicate the need for further research.
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INTRODUCTION

REE are a set of metals including lanthanides [lanthanum (La) by lutetium (Lu)]. Scandium (Sc) and
yttrium (Y) are often included in the set.

REE have a well-known history of use as catalysts. Since the 1960s, REE-based catalytic materials
found application in different fields from the petroleum chemistry industry to olefin polymerization
(Zhan et al., 2014).

LDHs are a system of positively charged brucite-like octahedral layers alternating with an interlayer of
anions and water molecules. Structural stability of LDHs is ensured by electrostatic interaction between
hydroxide layers and interlayer anions (Cavani et al., 1991; Evans and Slade, 2006). The general formula of
LDHs is [M(II)1−x M (III)x (HO

−)2]
x+ [An−

x/n·yH2O]
x− where M (II) and M (III) are cations of divalent and

trivalent metals, respectively, and An− is an n-valent anion. LDHs thermal destruction forms another
important compound—mixed metal oxides (MO). MO obtained as a result of LDHs calcination have a
higher dispersion than mixtures obtained by the simple mechanical method and find wide application in
catalysis (Xie et al., 2006; Mikulová et al., 2007).

Compositional flexibility is one of the most important properties of layered double hydroxides.
The ability to include in their composition various cations both of divalent and trivalent metals, as
well as anionic complexes in the interlayer space, makes it possible to create materials with unique
characteristics. In recent years, interest has grown in the incorporation of REE into LDHs structure,
which allows us to expect the appearance of new materials with promising properties on their basis,
including new catalysts. Most often REE have a +3 charge and take place of tri-charged cations in the
LDHs crystal lattice. It should be noted that samarium, europium, thulium, and ytterbium can be
reduced to +2 at some conditions so one could expect them to play the role of double-charged cations
too. Cerium, praseodymium, and terbium can be oxidized to +4 and that can lead to their anomalous
behavior in various processes and the structure of LDHs as well.

The modification of LDHs with REE in the preparation step can lead to changes in various
physicochemical properties. For instance, the basicity of the samples can increase in the presence of
REE cations due to their low electronegativity (Zăvoianu et al., 2018). At the same time, the addition
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of REE ions not only reduces the crystallinity, but also expands
the basal spacing and improves hydrophobicity and mechanical
properties of the LDHs (Wang et al., 2012).

Although REE cations are included in the structure of LDHs
mostly only partially and co-existed with another triply charged
cation, several articles demonstrated the successful synthesis of
binary RE-LDHs—Mg/Tb (Wang et al., 2017), Zn/Eu (Chen
et al., 2018), Ca/Sc (Szabados et al., 2020), and Ni/La (Ensafi
et al., 2016; Jiang et al., 2019). Our group is one of the first to
synthesize Sc-containing LDHs (including the first binary Mg/Sc
LDHs) (Vorontsova et al., 2007). Part of our studies is also
dedicated to the synthesis and applications of Ce-containing
LDHs (Golovin et al., 2020).

There is recently discovered and synthesized a new family of
layered host compounds—layered rare earth hydroxides (LREHs)
with typical structure [R4(OH)10(H2O)4]nAn (where R = RE ions,
A = intercalated organic anions) (Gándara et al., 2006). LREHs
were not included in our mini-review since this novel class of
compounds requires separate consideration.

We carried out a thorough search and analysis of articles
dedicated to RE-LDHs in the Scopus database preparing this
mini-review. 216 articles were found in total, including 51
describing the application of LDHs and LDHs-derived MO in
catalysis. We found that studies of RE-LDHs are unevenly
distributed (Figure 1A)—most of the articles are devoted to
Ce-LDHs, La-LDHs, and Eu-LDHs, while promethium (the
only radioactive REE), holmium, and thulium are not
represented at all, and lutetium is mentioned in one article
where Hu et al. reported an unsuccessful attempt to
incorporate it into Ni/Al LDHs (Hu et al., 2015).

SYNTHESIS OF RARE EARTH LAYERED
DOUBLE HYDROXIDES

Standard and simple coprecipitation at constant pH and
hydrothermal synthesis remains the most common methods
for the synthesis of RE-LDHs (Figure 1B). Adriana Urdă et al.
synthesized Mg/AlLn LDH (Ln = Ce, Sm, Dy, and Yb) methane
oxidation catalyst by coprecipitation from an appropriate nitrate

solution (Urdă et al., 2013). Li et al. by hydrothermal synthesis
obtained Ni/FeGd LDH for oxygen evolution (Li et al., 2021).
This RE-LDH showed higher catalytic activity than Ni/Fe LDH
and even commercial RuO2.

At the same time, methods for synthesizing RE-LDHs are not
limited to the above-mentioned and include many variations that
have advantages for certain purposes. In the work of Hunter et al.
surfactant-free Ni/FeTiLa LDH was synthesized by pulsed-laser
ablation in liquids, where nanoparticles are formed by very rapid
cooling of a plasma comprised of elements from the solid ablation
target and the surrounding liquid (Hunter et al., 2014). The addition
of Ti4+ and La3+ ions enhanced the electrocatalytic water oxidation
activity of these nanocatalysts. Jing et al. managed to obtain Ni/AlCe
MO from LDHs precursors synthesized by the urea homogeneous
precipitation method, which allows preparing material with a better
crystallinity and control of the particle size (Jing et al., 2020). The
resultingmaterial showed high catalytic activity in steam reforming of
glycerol for the production of hydrogen. Ensafi et al. synthesized Ni/
La LDH with N-doped graphene using a sonochemical method
during which the mixed solution of reagents was ultrasonicated
for 2 h (Ensafi et al., 2016). The resulting catalyst was used in a
hydrogen evolution reaction. Using an electrodeposition technique
with a three-electrode system in potentiostatic mode Jadhav et al.
synthesized Ni/FeCe LDH electrocatalyst, which outperformed bare
Ni/Fe LDH in an overall water splitting (Jadhav et al., 2020).
Mechanochemical synthesis route with direct milling certain
amounts of chemicals in a mortar allowed Pavel et al. to modify
Mg/Al LDH by La, which afforded higher cyclohexene conversions
and the higher selectivity to epoxide than unmodified samples (Pavel
et al., 2017). The addition of La preserves the epoxidation activity in
the absence of the reconstruction effect and under the CO2

atmosphere.

APPLICATIONS OF RARE EARTH LAYERED
DOUBLE HYDROXIDES

There are frequent studies devoted to the luminescent properties
of RE-LDHs. E.g., a single-phase Mg/AlTb LDH with various
terbium contents was obtained by the hydrothermal method

FIGURE 1 | Distribution of the number of articles on RE-LDH in the Scopus database (A) and the distribution of methods for preparing RE-LDH in articles (B).
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(Yanase et al., 2019). Green emission was observed in the samples
with the correlation of the intensity increasing with the rise of
terbium content. Then the nitrate ions were replaced by
carbonates by ion exchange. It was found that the intensity of
emission of the carbonate form increased with an increase in the
concentration of CO3

2− in the solution. Thus, the resulting
sample was able to capture carbonate ions dissolved in water
and react to them. In another study, Mg/AlTb LDHs with
different contents of the REE were obtained by the sol-gel
method and then intercalated with terephthalate anions
(Smalenskaite et al., 2018). The study of their luminescent
properties showed that the inclusion of terephthalates
increased the intensity of luminescence due to the sensitization
effect. For Mg/AlTb LDHs, the change in their luminescent
properties upon calcination was also studied (Chen et al.,
2016). It was found that upon heating up to 600°C the
luminescence intensity increased and then started to decrease.

The work describing the synthesis of Mg/Tb LDH with
different cation ratios deserves special attention since studies
on binary RE-LDHs are quite scarce (Wang et al., 2017). The
synthesis was carried out by coprecipitation with aqueous
ammonia followed by hydrothermal treatment. The authors
managed to find out that obtained materials were capable of
photoluminescence.

The luminescent properties of europium-containing LDHs are
also being studied very actively. Mg/AlEu and Ca/AlEu LDHs
were synthesized by coprecipitation and then calcined to obtain a
mixture of oxides (including europium (II) doped) exhibiting red
luminescence (Sonoyama et al., 2020). By calcining in a quartz
tube in the presence of titanium powder it was possible to obtain
Mg/AlEu and Ca/AlEu MO, which luminesced in the green and
blue regions, respectively. Thus, stable phosphors were obtained
for the three primary RGB colors.

RE-LDHs can be used to target drug delivery and magnetic
resonance imaging (MRI) contrasting. Gadolinium-based
contrast agents are among the most widely used materials for
MRI, which is one of the world’s most recognized non-invasive
methods used in clinical diagnostics (Usman et al., 2017). Usman
et al. created a theranostic system for the delivery of both a
therapeutic agent and a diagnostic agent for MRI based on Zn/
AlGd LDHs (Usman et al., 2020). The drug was chlorogenic acid
intercalated into LDHs and gadolinium ions added for contrast
on MRI. Zn/AlDy LDH was also obtained and successfully
intercalated with ibuprofen, folate, and gallate (Arratia-Quijada
et al., 2016). The resulting LDH can also serve as a basis for the
creation of theranostic systems. By simultaneously incorporating
gadolinium and dysprosium cations in Zn/Al LDHs Andrade
et al. obtained a compound with a better contrast effect for
magnetic resonance imaging than commercial contrast agents
(Nava Andrade et al., 2020).

There are works devoted to more specific properties of RE-
LDHs. For instance, the friction properties of Mg/AlLa LDH,
which was intercalated with dodecyl sulfate anion, were
investigated (Li et al., 2015). According to the results of the
experiments, the use of LDHs nanoparticles as an additive to
lubricants made it possible to reduce friction and increase wear
resistance in comparison with the base oil. The anticorrosive

properties of cerium-containing LDHs were also studied (Zhang
et al., 2017). The synthesis of Zn/Al and Zn/AlCe LDHs was
carried out by the method of coprecipitation in a nitrogen
atmosphere to prevent the ingress of carbonate ions into the
sample. These anti-corrosion coatings showed decent results and
can be used to protect metals and alloys from corrosion.

It is possible to obtain multifunctional LDHs. For example, the
preparation of Mg/AlEu LDH with glycine and Fe3O4

nanoparticles in the interlayer space was described (Wang
et al., 2010). Magnetic measurements showed that the
obtained sample had paramagnetic properties at room
temperature, and the excitation and emission spectra exhibited
the presence of fluorescence.

Catalytic Activity
The possibility of using RE-LDHs and the related MO as catalysts
is being studied by numerous authors.

One of the frequent subjects is the application of RE-LDHs as
photocatalysts. Single-phase Zn/AlCe LDHs samples with different
cerium contents were obtained by coprecipitation from nitrates of the
corresponding metals (Suárez-Quezada et al., 2016). The authors
confirm the co-existence of Ce3+ and Ce4+ species and report that the
inclusion of cerium leads to an improvement in the photocatalytic
properties of hydrotalcite-like materials. Presumably, this LDH
promotes the separation of the photogenerated electron-hole pairs
where Ce4+ acts as electron scavenger, facilitating the electron transfer
toward adsorbed O2 and an accumulation of holes, increasing the
generation of radicals OH•. Comparing the results of the phenol
photodegradation using Zn/Al and Zn/AlCe LDHs, they concluded
that the sample with 5% cerium content showed the best result.
Sarkarat et al. synthesized Zn/NiTiLa LDHs by hydrothermalmethod
and evaluated their MO for the photodegradation of NOx (Sarkarat
et al., 2013). They found that doping of lanthanum in LDH structures
led to poor crystallinity, prevented the formation of pure zinc titanate
phase, and increased specific surface areas. However, Zn/NiTiLa
LDH calcined at 400°C showed the best photocatalytic activity for the
decomposition of NOx among the prepared samples. Khodam et al.
synthesized Co/AlNd LDH by coprecipitation, though the resulting
material contained extraneous phases (Khodam et al., 2018). TheMO
were obtained by calcination. The study of the photocatalytic
properties was carried out in the reaction with the dye AR 14. It
was found that the incorporation of Nd into the crystal lattice of LDH
and its annealing leads to an increase in the absorption of light and a
decrease in the band gap.Moreover, doping and annealing reduce the
photoinduced recombination of charge carriers and contribute to the
efficiency of their separation due to the trapping of photoexcited
electrons in the conduction band. This catalyst can be used in several
cycles.

It should be noted that MO do not always exhibit higher catalytic
activity as compared to their LDH precursors. Andrade et al. showed
that Zn/AlDy LDH demonstrated better catalytic activity in
photodegradation of sulfamethoxazole than derived MO and even
commercial ZnO andP-25TiO2 photocatalysts (Andrade et al., 2020).

Another field of interest is using RE-LDHs and their MO in
esterification and transesterification reactions. Liao et al. synthesized
Ca/AlRE (where REE were La, Ce, and Y) LDHs via coprecipitation
and used their MO as solid basic catalysts for dimethyl carbonate
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TABLE 1 | RE-LDHs as catalysts.

RE-
cation

Type of LDH LDH synthesis method Catalytic activity References

Sc Ca/Sc LDH Coprecipitation Transesterification of dimethyl carbonate with glycerol Szabados et al. (2020)
— Ni/MgAlSc LDH

derived MO
Coprecipitation Methane dry reforming Cao et al. (2016)

Y Mg/AlNiY LDH Coprecipitation Methane dry reforming Taherian et al. (2022)
— Mg/AlNiZrY LDH

derived MO
Coprecipitation Methane dry reforming Świrk et al. (2018)

— Mg/AlNiY LDH
derived MO

Coprecipitation Hydrogenation of CO2 to methane Sun et al. (2021)

— Mg/AlY LDH derived MO Coprecipitation Cyanoethylation of ethanol with acrylonitrile Zăvoianu et al. (2018)
— Ca/AlY LDH derived MO Coprecipitation Transesterification of methanol with propylene carbonate Liao et al. (2017)
— Mg/AlY LDH derived MO Coprecipitation Ammonia synthesis Ni et al. (2018)

La Ca/AlLa LDH derived MO Coprecipitation Transesterification of methanol with propylene carbonate Liao et al. (2017)
— Mg/AlLA LDH

derived MO
Coprecipitation Ammonia synthesis Ni et al. (2018)

— Zn/AlLa LDH derived MO Hydrothermal Esterification of acetic acid with n-butanol Xie et al. (2003)
— Co/MnAlLa LDH

derived MO
Coprecipitation Total oxidation of toluene and ethanol Jirátová et al. (2009)

— Mg/CoAlLa LDH
derived MO

Coprecipitation Ethanol transesterification of canola oil to biodiesel Li et al. (2009)

— rNGO/LaNi-LDH, rNGO/
Au@LaNi-LDH

Sonochemical Hydrogen evolution Ensafi et al. (2016)

— Mg/AlLa LDH
derived MO

Coprecipitation Isomerization of 2,3-dimethyl-1-butene to 2,3-dimethyl-2-butene Cota et al. (2016)

— Ni/FeTiLA LDH Pulsed-laser ablation Water oxidation Hunter et al. (2014)
— Zn/CrLa LDH Coprecipitation Photodegradation of methylene blue Dinari et al. (2016)
— Zn/NiTiLa, Zn/NiAlLa

LDH derived MO
Hydrothermal Photodegradation of NOx Sarkarat et al. (2013)

— Ca/AlLa LDH derived MO Coprecipitation Transesterification of methanol with propylene carbonate Liao et al. (2017)
— AuPd over Ca/

MgAlLa LDH
Coprecipitation Oxidation of 5-hydroxymethylfurfural Gao et al. (2017)

— Ni/La LDH Electrochemical Oxygen evolution Jiang et al. (2019)
— Mg/AlLa LDH Coprecipitation,

mechanochemical
Epoxidation of cyclohexene with hydrogen peroxide in acetonitrile Pavel et al. (2017)

— Mg/AlLa LDH
derived MO

Coprecipitation Selective production of monoglycerides by glycerol transesterification Bálsamo et al. (2020)

— Mg/AlLa LDH
derived MO

Coprecipitation Synthesis of fatty acid isobutyl ester via transesterification between waste
cooking oil and isobutanol

Liu et al. (2020)

— Ni/AlLa LDH derived MO Hydrothermal Hydrogenation of CO2 to methane Dou et al. (2021)
— g-CNR/CoAlLa LDH Coprecipitation Photocatalytic CO2 reduction Khan et al. (2021)
— Zn/AlLa-MoO4 LDH Coprecipitation Desulfurization of diesel oil under UV Gao et al. (2018)
— Zn/AlLa LDH derived MO Coprecipitation Esterification of oleic acid with methanol Tzompantzi et al. (2013)
— Zn/AlLa LDH derived MO Coprecipitation Phenol photodegradation and mineralization Tzompantzi et al. (2014)
— Mg/AlLa LDH

derived MO
Coprecipitation Transfer dehydrogenation of 1-decanol Zhang et al. (2016)

Ce Cu/ZnAlCe LDH
derived MO

Coprecipitation Methanol steam reforming Velu and Suzuki, (2003)

— Mg/AlCe LDH
derived MO

Coprecipitation Propane dehydrogenation Mitran et al. (2009)

— Mg/AlCe LDH
derived MO

Coprecipitation Methane oxidation Urdă et al. (2013)

— Ni/MgAlCe LDH
derived MO

Coprecipitation Methane dry reforming Djebarri et al. (2014)

— Mn/AlCe LDH
derived MO

Hydrothermal Low temperature benzene oxidation Mo et al. (2016)

— Zn/AlCe LDH Coprecipitation Phenol photodegradation and mineralization Suárez-Quezada et al.
(2016)

— Mg/AlCe LDH@Au Hydrothermal Degradation of 4-nitrophenol by NaBH4, methylene blue, methyl orange,
Congo red, rhodamine B, and rhodamine 6G

Iqbal et al. (2017)

— Mg/FeCe LDH Coprecipitation Selective synthesis of dimethyl carbonate by transesterification of ethylene
carbonate with methanol

Nivangune et al. (2017)

— Mg/AlCe LDH
derived MO

Hydrothermal H2S selective oxidation Zhang et al. (2018)

(Continued on following page)
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synthesis by transesterification of methanol with propylene
carbonate (Liao et al., 2017). However, it was found that CaMgAl
MO showed higher catalytic activity in this process thanMOderived
from RE-LDHs. In the article of Bálsamo et al. La and Ce were
incorporated into Mg/Al LDHs by coprecipitation and wet
impregnation methods and corresponding MO were used as
catalysts to produce high-valued derivatives of biodiesel by-
product (Bálsamo et al., 2020). The sample with Ce incorporated
by the impregnation method exhibited the best selective
monoglycerides yield of 77% attributed to the higher density of
medium basic sites. Binary Ca/Sc LDH was successfully obtained by
Szabadoc et al. and tested as a catalyst in the transesterification
reactions of dimethyl carbonate with glycerol (Szabados et al., 2020).
The stability of this sample as well as Ca/In LDHs were the highest
within the investigated compounds. In the oleic acid esterification

with methanol under soft reaction conditions, ZnAlLa MO from
respective LDH reached conversions of 75% to the ester after 15 min
and higher than 88% after 1 h of reaction (Tzompantzi et al., 2013).

Several articles on RE-LDHs are devoted to the dry reforming of
methane. Cao et al. investigated the promotional effects of REE (Sc, Y,
Ce, and Pr) on NiMgAl MO derived from LDHs (Cao et al., 2016).
Compared with unmodified catalysts, the RE promoted catalysts,
especially with the Ce or Pr, showed improved catalytic performance
in terms of both catalytic stability and coke resistance. Authors
supposed that either the addition of Ce or Pr could increase the
amount of strong basic sites and the coexistence of redox pairs (Ce3+/
Ce4+, Pr3+/Pr4+) could contribute to the enhancement of redox
properties and formation of oxygen vacancies. Taherian et al.
studied the impact of the Sm incorporation on the Ni/MgAl
LDHs catalytic activity in both dry and steam reforming of

TABLE 1 | (Continued) RE-LDHs as catalysts.

RE-
cation

Type of LDH LDH synthesis method Catalytic activity References

— Mg/AlCe LDH
derived MO

Coprecipitation Ammonia synthesis Ni et al. (2018)

— Ni/AlCe LDH Hydrothermal Photoreduction of CO2 to methane Li and Yang, (2018)
— Ni/FeCe LDH Electrodeposition Water splitting Jadhav et al. (2020)
— Pt/MgAlCe LDH

derived MO
Coprecipitation Hydrogen evolution in the dehydrogenation of methylcyclohexane Wang et al. (2019)

— C@Ni/RuCe LDH Solvothermal Methanol electrooxidation Xie et al. (2019)
— Mg/AlCe LDH

derived MO
Coprecipitation Selective production of monoglycerides by glycerol transesterification Bálsamo et al. (2020)

— Cu/MgFe LDH
derived MO

Hydrothermal Higher alcohol synthesis via syngas Han et al. (2015)

— Ni/AlCe LDH derived MO Urea hydrolysis Hydrogen production through glycerol steam reforming Jing et al. (2020)
— Cu/AlCe LDH

derived MO
Coprecipitation Total oxidation of toluene and ethanol Dib et al. (2020)

— Ni/AlCe LDH derived MO Coprecipitation Anisole hydrodeoxygenation do Nascimento et al.
(2021)

— Mg/AlCe LDH-GO Coprecipitation Cinnamic acid and 2-benzoyl-3-phenylacrylonitrile synthesis Stamate et al. (2021)

Pr Ni/MgAlPr LDH
derived MO

Coprecipitation Methane dry reforming Cao et al. (2016)

Nd Zn/AlNd LDH Hydrothermal Photocatalytic degradation of Congo red, Rose bengal, Fast green Wani et al. (2021)
— Co/AlNd LDH and MO Coprecipitation Photocatalytic degradation of C.I. Acid Red 14 Khodam et al. (2018)

Sm Ni/MgAlSm LDH Coprecipitation Methane dry and steam reforming Taherian et al. (2021)
— Mg/AlSm LDH

derived MO
Coprecipitation Propane dehydrogenation Mitran et al. (2009)

— Mg/AlSm LDH
derived MO

Coprecipitation Methane oxidation Urdă et al. (2013)

Gd Ni/FeGd LDH Hydrothermal Oxygen evolution Li et al. (2021)

Tb Zn/CrTb LDH Coprecipitation Water splitting Fu et al. (2016)

Dy Zn/AlDy LDH and MO Coprecipitation Photodegradation of sulfamethoxazole Andrade et al. (2020)
— Mg/AlDy LDH

derived MO
Coprecipitation Propane dehydrogenation Mitran et al. (2009)

— Mg/AlDy LDH
derived MO

Coprecipitation Methane oxidation Urdă et al. (2013)

Yb Mg/AlYb LDH
derived MO

Coprecipitation Propane dehydrogenation Mitran et al. (2009)

— Mg/AlYb LDH
derived MO

Coprecipitation Methane oxidation Urdă et al. (2013)
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methane at 700°C (Taherian et al., 2021). The obtained catalyst
showed the highest conversion of methane (72%) and stability
without any carbon formation due to the strong metal-support
interaction which inhibited the sintering and the scaffold
structure. As a result, the mass transportation of feedstock and
products was increased.

The catalytic activity of RE-LDHs and MO is also investigated in
hydrogenation and dehydrogenation reactions. Han et al. tested Cu/
MgFe LDH derived MO for higher alcohol synthesis via carbon
monoxide hydrogenation (Han et al., 2015). The results showed that
Ce promotion mainly contributed to the formation of tetrahedrally
coordinated copper species, which favored the enhancement of the
total alcohol selectivity. Mitran et al. prepared LnMgAl mixed oxide
catalysts (Ln = Ce, Sm, Dy, Yb) from LDH precursors and tested
them in the oxidative dehydrogenation of propane (Mitran et al.,
2009). The best yields of propene were obtained with Dy and Sm
promoted catalysts. A linear correlation between the catalyst basicity
and the propene selectivity was observed. No correlation between the
reducibility of the RE cation and the catalytic performance was
observed.

Investigations of RE-LDHs and their calcined products
catalytic activity are not limited to the aforementioned topics
but some directions are presented by a single article. It indicates
the underdevelopment of such areas of research and requires
further development. E.g., Ni et al. reported the successful effect
of REE (Y, La, and Ce) on the performance of Mg/Al (REE) LDH
derived catalysts for ammonia synthesis (Ni et al., 2018). The
activity of ammonia synthesis was remarkably improved for the
catalyst doped with Y. Ce-containing MgAl LDHs with graphene
oxide was proposed by Stamate et al. as a multifunctional catalyst
in two different types of organic transformations: Knoevenagel
condensation (cinnamic acid synthesis) and one-pot cascade

oxidation-Knoevenagel condensation (2-benzoyl-3-
phenylacrylonitrile synthesis) (Stamate et al., 2021). Cota et al.
investigate the catalytic activity of Mg/AlLa LDH derived MO for
isomerization of 2,3-dimethyl-1-butene to 2,3-dimethyl-2-butene
(Cota et al., 2016). The results of their study indicated that not
only the basicity but also accessibility to the active sites controlled
the catalytic activity.

The overall list of studies on the catalytic activity of RE-LDHs
can be found in Table 1.

PERSPECTIVE

Several RE cations (promethium, holmium, thulium, and
lutetium) mentioned above are not incorporated in the LDH
structure yet. The radioactivity and extreme rarity of promethium
make such work exceedingly difficult but it seems possible with
the other three REE. Another novel research area is the synthesis
and study of binary RE-LDHs, including consideration of the
possibility to use samarium, europium, thulium, and ytterbium as
double-charged cations. Also, there are no studies devoted to Eu-
and Er-LDHs catalytic activity, even though Eu-LDHs are one of
the most discussed in the articles.

Obviously, there are still many applications for the RE-LDHs
to test in the vast area of catalysis and this topic deserves the
attention of scientists in the coming years.
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