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Antibacterial resistance is by far one of the greatest challenges to global health. Many

pharmaceutical ormaterial strategies havebeen explored toovercome this dilemma.

Of these, silver nanoparticles (AgNPs) are known to have a non-specific antibacterial

mechanism that renders it difficult to engender silver-resistant bacteria, enabling

them to bemore powerful antibacterial agents than conventional antibiotics. AgNPs

have shown promising antibacterial effects in both Gram-positive and Gram-

negative bacteria. The aim of this review is to summarize the green synthesis of

AgNPs as antibacterial agents, while other AgNPs-related insights (e.g., antibacterial

mechanisms, potential toxicity, and medical applications) are also reviewed.
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1 Introduction

Along with the long-term use of antibiotics for bacterial treatment, bacteria evolve in order

to survive, leading to bacterial drug resistance (McManus, 1997; Munita et al., 2015). Bacterial

resistance is a symptom of bacteria becoming resistant to previous effective antibiotics. Bacterial

resistance is a growing threat to global public health since patients with drug-resistant bacterial

infections haveworse clinical outcomes, face a higher risk of death (Antoniadou et al., 2007), and

consume more healthcare resources than patients with non-drug-resistant bacterial infections.

For example, Staphylococcus aureus (MRSA) is a common cause of serious infections in health

facilities and communities (David and Daum, 2010), whereas resistance to the first-line drugs

used to treat these infections is universal. Estimated survival rates for patients with methicillin-

resistant MRSA infections are 64% lower than for uninfected patients (Sabbagh et al., 2019).

Whilst the emergence of bacterial resistance is a natural phenomenon, other main reasons for

speeding up the spread of bacterial resistance including the lack of hygienic measures to prevent

and control infections, the excessive and inappropriate use of antibiotics.

As a result, many proactive strategies for bacterial resistance have been proposed, including

calling for rational use of antibiotics (Solomon andOliver, 2014), strengthening health systems

and regulatory capacity (Courtenay et al., 2019), and tapping into new antibiotics and other
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antibacterial drugs (World Health, 2012). AgNPs are currently

gaining widespread attention as antibacterial agents (Alt et al.,

2004; Silver et al., 2006) as it is very difficult for AgNPs to

generate bacterial resistance. Also, it is crucial to manufacture

nanomaterials in a safe, environmentally friendly and economical

manner for further clinical translational applications. Among the

many preparation methods for AgNPs, green synthesis with

environmentally friendly catch our attention. Here, we

overviewed the green preparation methods of AgNPs, including

saccharide-based, irradiation-reduction and biosynthesis methods,

and gave a systematic comparison of the advantages and

disadvantages of these three methods. We also introduced the

antibacterial mechanisms and potential side effects of AgNPs for

balancing the efficacy and toxic effects of AgNPs in antibacterial

therapy. Lastly, a summary of theirmedical applications is presented,

reflecting their potential medical applications.

2 Preparation of AgNPs by green
synthesis method

2.1 Saccharide-based method

Compared with traditional methods for the preparation of

AgNPs, the glycosylation method as the first emerging green

preparation strategy demonstrates many advantages. Water is

used as environmentally friendly solvent throughout the

synthesis process, and sugars are used as reducing and

stabilizing agents, which fully embodies the concept of green

chemistry. In addition, the weak binding interaction of release of

silver and is suitable for biomedical applications.

Raveendran and others (Raveendran et al., 2003; Raveendran

et al., 2006) first reported a green method for preparing AgNPs

(Figure 1A). Silver nitrate (AgNO3) and starch were dissolved in

water, and β-D-glucose was added and the reaction was stirred at

40°C for 20 h. Starch and β-D-glucose functioned as stabilizing

and reducing agent, respectively. The reaction conditions were

mild and no organic solvents or toxic substances were involved.

The mixture turned light yellow indicating the formation of

AgNPs. The absorption maximum was at 419 nm (Figure 1B)

due to the surface plasmon resonance of AgNPs and the size of

AgNPs was around 10 nm (Figures 1C,D). In addition, many

saccharide-based methods were then developed to synthesize

AgNPs, including exploiting different polysaccharides,

optimizing the concentration of silver salts and

polysaccharides and optimizing the reaction conditions. For

example, Many different polysaccharides including heparin

(Huang and Yang, 2004), sucrose (Lee S. H. et al., 2014), corn

starch (Valodkar et al., 2010) and cellulose (Mohammad et al.,

2022) were also explored as reducing and stabilizing agents for

FIGURE 1
(A) Schematic of completely “green” synthesis of AgNPs. (B) The surface-plasmon absorbance spectrumof AgNPs formed in the aqueous starch
dispersion (λmax = 419 nm). (C) Typical TEM image of starched AgNPs. The scale bar corrresponds to 20 nm. (D) Histogram showing the size
distribution of the AgNPs (the average particle size = 5.3 nm and σ = 2.6 nm). The total number of particles counted for the histogram is 624.
Reproduced with permission from ref (Vigneshwaran et al., 2006). Copyright 2003 American Chemical Society.
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the synthesis of AgNPs (Table 1). Vigneshwaran et al.

(Vigneshwaran et al., 2006) used starch to obtain stable

AgNPs by optimizing the resugars with AgNPs facilitates the

action conditions. The mixture was incubated in an autoclave at a

pressure of 15 psi and a temperature of 121°C for 5 min. Tai et al.

(Tai et al., 2008) obtained small and homogeneous AgNPs using

a rotating disc reactor. Subsequently, higher quality AgNPs were

gradually obtained by adjusting the starch concentration, AgNO3

concentration and reactor parameters. Besides, several studies

have developed the usage of polymers as stabilizers, such as poly

(ethylene glycol) (PEG) (Luo et al., 2005; Shameli et al., 2012).

The chain length of the polymer affected the reaction rate and the

size of AgNPs, specifically, longer polymer chains (e.g., PEG

2000) have higher reactivity than PEG 200 or ethylene glycol.

Meanwhile, the large amount of oxygen in the longer PEG chain

provided the coordination saturation of the dangling bonds on

the surface of the AgNPs, helping to prevent the agglomeration of

AgNPs and obtain stable AgNPs (Luo et al., 2005).

2.2 Irradiation-reduction method

Irradiation reduction is another method for green

preparation of AgNPs. This method does not require

additional reducing agents, and the reaction rate induced by

irradiation can be clearly defined, which facilitates the control of

the reaction process. At the same time, complete and

homogeneous AgNPs can be obtained when prepared by this

method (Zhang et al., 2003), avoiding the cumbersome post-

treatment to remove unreacted silver ions.

The main mechanism for the preparation of AgNPs by

irradiation reduction is that water is decomposed by

irradiation to produce hydrated electrons, which subsequently

reduce silver ions to silver and thus promote the formation of

silver clusters (Karim et al., 2007; Long et al., 2007). Therefore,

this method generally requires the addition of a cluster stabilizer

to prevent silver agglomeration caused by direct irradiation

reduction (Shin et al., 2004). The main process for synthesis

of AgNPs by irradiation reduction was first to dissolve a

certain amount of AgNO3 and biocompatible macromolecules

as stabilizer in water, such as amphiphilic polymers (Zhou

et al., 1999; Zhang et al., 2003) or natural polysaccharides

(Chen et al., 2007). Subsequently, the mixed solution was

degassed with nitrogen bubbling for about 30 min, sealed

and irradiated at a certain dose at room temperature. Related

studies focus on the optimization of radioactive sources and

the selection of stabilizers. A variety of radioactive sources

can be used to prepare AgNPs, including ultraviolet light

(Zhou et al., 1999), visible light (Zhang et al., 2003; Zhang

et al., 2010), microwaves (Seku et al., 2018), and high-energy

rays (Karim et al., 2007; Lee et al., 2007) (Table 2). Among them,

microwaves as a radiation source can greatly reduce the

synthesis time because microwaves provide uniform

nucleation and growth conditions for nanoparticles (Chen

et al., 2008; Hu et al., 2008). In addition, light emitting diode

(LED) as radiation sources can control the size, morphology

and optical properties of AgNPs. Stamplecoskie et al.

(Stamplecoskie and Scaiano, 2010) explored the differences in

the size, morphology and optical properties of AgNPs obtained

for radiation at wavelength of 405 nm, 455 nm, 627 nm and

720 nm (Figure 2). Under irradiation with 405 nm LED, the

particle size of AgNPs gradually increased with irradiation time

(Figure 2B). Irradiation of AgNP seeds with a 455 nm LED

induced spectral changes, and subsequently transformed their

morphology into dodecahedra with narrower polydispersity

(Figure 2C). In contrast, AgNPs with a larger distribution of

nanoplates and nanorods were obtained with 627 and 720 nm

light irradiation (Figures 2D,E). Further, the radiation dose

also affects the physicochemical properties of AgNPs. Chen

et al. discussed the effect of radiation dose on the size

distribution (Chen et al., 2007). They used chitosan as a

stabilizer, which degraded into small fragments upon γ-
irradiation, and then its interaction with silver through amino

chelation prevented silver agglomeration. They found that a

slightly lower irradiation dose (~27 kGy) produced AgNPs

with a narrower particle size distribution, while a slightly

higher irradiation dose (~75 kGy) produced AgNPs with a

wider particle size distribution (Chen et al., 2007). Liu et al.

proposed the concept of AgNPs with “clean” surfaces (no

surfactant or polymer contamination) and obtained the

desired clean AgNPs by adjusting the γ-irradiation dose (Liu

et al., 2007). This would be a great advantage for no other

reagents involved during the preparation, which complying

with the concept of green chemistry.

TABLE 1 Summary of saccharide-based AgNPs synthesis method.

Saccharide Precursor Size (nm) Particle shape References

Starch AgNO3 10 isotropic in shape Raveendran et al. (2003)

Heparin AgNO3 10–50 Spherical Huang and Yang, (2004)

Sucrose AgNO3 38–61 Spherical Lee et al. (2014a)

Corn starch AgNO3, Ag2 SO4 20–25 Spherical Valodkar et al. (2010)

Cellulose AgNO 42 Spherical Mohammad et al. (2022)
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2.3 Biosynthesis method

Biosynthesis of AgNPs has been extensively studied as an

emerging preparation strategy (Table 3). Biosynthesis is a very

environmentally friendly process because it does not involve high

temperature, high pressure, energy consumption and toxic

chemicals, which gives it a great advantage over conventional

synthesis methods. The general process of biosynthesis is to

isolate the desired raw material from a natural resource and boil

it, after which the bioactive components are extracted and then

incubated with a silver ion solution to produce AgNPs.

2.3.1 Microorganism
Microorganisms are commonly used for the biosynthesis of

AgNPs, including bacteria (Lateef et al., 2015; Wang et al., 2016;

Saravanan et al., 2018; Ameen et al., 2020), fungi (Guilger-

Casagrande et al., 2019; Hamad, 2019; Hu et al., 2019), and

algae (Sinha et al., 2015; Muthusamy et al., 2017; Massironi et al.,

2019). Microbial-based biosynthesis strategies are generally

classified into intracellular and extracellular synthesis. In

principle, AgNPs with more uniform size and shape

distribution can be obtained by intracellular synthesis, but the

collection and post-processing of the products are relatively

cumbersome and expensive. Therefore, most studies on the

biosynthesis of AgNPs have focused on the extracellular pattern.

Silver-resistant bacteria are the main microorganisms for

microbial-based synthesis of AgNPs. A bacterial strain-Weissella

oryzae DC6, isolated from mountain ginseng, has been first used

for green and convenient synthesis of AgNPs, the secreted

proteins and enzymes are responsible for the reduction of

silver ions (Singh et al., 2016). Gandhi and others (Gandhi

and Khan, 2016) also synthesized AgNPs via Escherichia coli,

incubation of silver ions in the supernatant of Escherichia coli

leaded to the extracellular reduction of metal ions and the

formation of AgNPs (Figure 3). In addition, synthesis of

AgNPs in fungi offers many advantages, as fungi grows

rapidly and can secrete large amounts of enzymes, which

producing abundant raw material for the synthesis.

Furthermore, fungi can withstand the agitation and flow

pressures of bioreactor. Laryssa et al. first reported that

AgNPs were synthesized extracellularly using nematophagous

fungus Duddingtonia flagrans. They obtained the cell-free fungal

filtrates from Duddingtonia flagrans, and analyzed the total

protein content and chitinase activity in the filtrates, which

could act as a reducing agent for the synthesis of AgNPs. This

method produced high yield of AgNPs with good stability (Costa

Silva et al., 2017). Singh et al. prepared AgNPs on the endophytic

fungus Alternaria sp. Isolated from healthy leaves of Raphanus

sativus, which showed effective antibacterial effect against human

pathogenic bacteria (Singh et al., 2017).

Microbial-based method for the preparation of AgNPs has

many advantages, as it is a complete green reaction process

without using industrial chemical reagents, and simple

operations with low energy consumption. In addition, the

prepared AgNPs are naturally coated with proteins secreted

by biomass, showing high stability and excellent

biocompatibility for further applications (Chowdhury et al.,

2014).

2.3.2 Plants
Plant-mediated reduction systems have also been widely

investigated due to their simplicity, eco-friendly and the

potential medicinal value of the plants themselves

(Sengottaiyan et al., 2016a; Sengottaiyan et al., 2016b;

Escárcega-González et al., 2018; Wang et al., 2018; S.S et al.,

2019). A major advantage of using plant extracts for synthesis of

AgNPs is that complex cell culture processes can be avoided,

facilitating the post-processing of the products and their further

industrial application (Sudhakar et al., 2015). The biomolecules

in plant extracts can act as both reducing agents and stabilizer

during AgNPs formation and can even exert their own

antibacterial effect (Ghorbani et al., 2015).

Wang et al. synthesized AgNPs using aqueous extracts from

Psidium guajava L. They demonstrated that AgNPs could be

formed in 10 min after the mix of AgNO3 and extracts, and the

reaction was basically completed after 2 h (Figures 4A,B) (Wang

et al., 2018). The reduction rate of plant-based synthesis was

significantly improved compared to biosynthetic methods based

on fungi, bacteria, etc., which require about 24 h to obtain large

amounts of AgNPs. Also, they found that the resulting AgNPs

had excellent antibacterial effects against both common Gram-

positive and Gram-negative bacteria (Figure 4C) (Wang et al.,

2018). Selvam et al. used Tinospora cordifolia (Thunb.) Miers for

eco-friendly synthesis of AgNPs. They studied the influence

TABLE 2 Summary of irradiation-reduction AgNPs synthesis method.

Types of
irradiations

Irradiation
conditions

Precursor Size (nm) Particle shape References

Ambient light 2.43 W/m2 [Ag(NH3)2]
+ aqueous solution 10–20 spherical Zhang et al. (2003)

γ-rays 10 kGy AgNO3 8 spherical Long et al. (2007)

Ultraviolet light AgNO3 15–20 Nanorods Zhou et al. (1999)

Microwaves 750 W, 50–90 s AgNO3 9 ± 2 spherical Seku et al. (2018)
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factors (AgNO3, leaf, incubation time, and pH) by response

surface methodology of Box--Behnken design (BBD) to

optimize synthesis conditions. Under optimal conditions, the

silver ions were reduced to AgNPs within 30 min by heating (60
°C) of T. cordifolia extract mixed with silver ions (Selvam et al.,

2017). In addition to plant leaves, flowers have also been studied

for the biosynthesis of AgNPs (Aravinthan et al., 2015;

Chinnappan et al., 2018; Ameen et al., 2019), bioactive

components extracted from flowers can also exert

antimicrobial effects. Aravinthan and others reported a rapid

green synthesis of AgNPs using an aqueous extract ofHelianthus

tuberosus (sunroot tuber). The ability of the biomolecules

FIGURE 2
(A) Image of the various colloidal solutions produced under the corresponding LED irradiation at the wavelength indicated (in nm) at the top of
each cuvette. (B) UV-vis spectral change upon 405 nm irradiation (initial in black, final in red) and (inset) change in particle size (determined by
scanning electron microscopy (SEM)) against irradiation time. (C) UV-vis spectral change during 455 nm LED excitation (initial in black, final in red);
note that at ~650 nm themaximum absorbance increases and then decreases at intermediate times (green) during conversion. The inset shows
TEM image for a representative particle (size bar = 20 nm). (D)UV-vis spectral change and TEM image (background) during 627 nm LED excitation of
AgNP seeds with ~900 nm absorption increase and then decrease during the overall conversion. (E) UV-vis spectral change during 720 nm LED
irradiation as well as an exceptionally large aspect ratio nanorod (inset). Reproduced with permission from ref (Stamplecoskie and Scaiano, 2010).
Copyright 2010 American Chemical Society.
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extracted from tuber reducing Ag+ in solution was confirmed by

the stretching vibrations of amines and alkaloids observed

by fourier transform infrared spectroscopy (FTIR). They

also investigated the antibacterial activity of AgNPs

synthesized from tuber extracts against phytopathogenic

bacteria, namely, R. solanacearum and X. axonopodis, and the

results showed that the tuber extracts synergistically enhanced

the antibacterial properties of AgNPs against the

phytopathogenic bacteria (Aravinthan et al., 2015). Mango

flower extract was also used as a bio-reducing agent for

the synthesis of AgNPs. The obtained AgNPs were effective

against Gram-negative bacteria Klebsiella sp., P. agglomerans,

and Rahnella sp. At 10 mM of AgNPs (Ameen et al., 2019).

In addition, other abundant seaweed extracts have also

been developed for the synthesis of AgNPs, such as Spyridia

filamentosa (Valarmathi et al., 2020), Caulerpa racemose

(Kathiraven et al., 2015) and Gracilaria birdiae (de Aragão

et al., 2019). The wide source of plants and their easy

availability, and some plants possess antibacterial activity, all

these contribute to the beneficial prospect of this method.

TABLE 3 Summary of biosynthesis AgNPs synthesis method.

Types of biomaterials Precursor Size
(nm)

Particle
shape

References

Microorganism Bacteria AgNO3 10–50 spherical Lateef et al. (2015); Wang et al. (2016); Saravanan et al.
(2018); Ameen et al. (2020)

Fungi AgNO3 3–20 spherical Guilger-Casagrande et al. (2019); Hamad, (2019); Hu
et al. (2019)

Algae AgNO3 5–50 spherical Sinha et al. (2015); Muthusamy et al. (2017); Massironi
et al. (2019)

Plants Leafs AgNO3 25 spherical Wang et al. (2018)

Flowers AgNO3 10–20 spherical Aravinthan et al. (2015); Chinnappan et al. (2018);
Ameen et al. (2019)

Seaweed AgNO3 20–30 spherical Valarmathi et al. (2020)

Food and agricultural
waste

cow milk AgNO3 10–100 spherical Williams et al. (2022)

Coffee AgNO3 25 spherical Chien et al. (2019)

vegetable oilcake AgNO3 30–150 polygonal Singhal and Gupta, (2019)

Peels AgNO3 10–50 spherical Soto et al. (2019)

Wood Ag(NH3)2OH, AgNO3,
Ag(NH3)2NO3, Ag2O

5–50 spherical Xue et al. (2018)

other agricultural
industrial wastes

AgNO3 10–90 spherical Mythili et al. (2018)

FIGURE 3
Color change from yellow to brown after incubation with Escherichia coli indicates presence of silver nanoparticles. Reproduced with
permission from ref (Gandhi and Khan, 2016). Copyright 2016 Elsevier.
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2.3.3 Food and agricultural waste
The development of food and agricultural waste for the

synthesis of AgNPs provides a sustainable way to effectively

utilize the waste. In recent years, cow milk (Williams et al., 2022),

coffee extracts (Chien et al., 2019), vegetable oilcake (Singhal and

Gupta, 2019), peels (Soto et al., 2019), wood (Xue et al., 2018) and

other agricultural industrial wastes (Mythili et al., 2018) have

been widely developed for the synthesis of AgNPs.

FIGURE 4
(A) Schematic of synthesis of AgNPs using P. guajava L. leaf extracts. (B)UV-vis spectra of the bioreduction kinetics in the range of 200–700 nm
for a colloidal AgNO3 solution with P. guajava L. leaf extracts; the inset upper right is the UV-vis spectra of P. guajava L. leaf extracts and the inset
below shows the solution color changes over time. CK: the aqueous extracts of P. guajava L. leaf. (C) Activity of P-AgNPs formed by the reduction of
AgNO3with aqueous extracts from P. guajava L. leaves against selected bacterials depicting zones of inhibition of (a) positive control-ampicillin,
(b) P-AgNPs, (c) AgNO3 control, (d) P. guajava leaf aqueous extracts. Reproduced with permission from ref (Wang et al., 2018). Copyright
2018 Elsevier.
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Economical and readily available milk was reported to

synthesize AgNPs, and the presence of proteins in milk may

be responsible for the reduction of Ag+. TEM results showed that

AgNPs mainly existed in the form of aggregates, which might be

caused by the presence of lipids in milk (Lee et al., 2013).

However, this problem could be controlled by changing the

reaction parameters, such as pH, temperature and reactant

concentration (Nguyen et al., 2013). Due to reducing active

ingredient chlorogenic acid (CGA), green coffee bean extracts

have also been developed for the synthesis of AgNPs (Wang et al.,

2017). Govarthanan et al. (Govarthanan et al., 2014) used a

traditional Indian agricultural formulation panchakavya, a

mixture of microorganisms, to synthesize AgNPs without any

contamination. Coconut (Cocos nucifera) oil cake (COC) is a by-

product that extracts oil from the dried copra. It contains starch,

soluble sugar, protein, lipid and trace nitrogen, the reducing

components of which can also be used for the synthesis of AgNPs

(Govarthanan et al., 2016). And plant waste Sal deoiled seed cake

(DOC) can also be used to extract AgNPs from discarded X-ray

sheets (Singhal and Gupta, 2019). In addition, the synthesis of

AgNPs using vegetable waste extracts from the market has also

been reported (Mythili et al., 2018). The raw materials for this

method are all waste, representing a promising sustainable route.

This synthetic route is “green” in that: 1) waste is used as a

resource for the synthesis of AgNPs, 2) non-critical

environmental synthesis conditions make it energy-efficient

and cost-effective, and 3) no organic solvents are involved,

making it environmentally friendly and economical (Devadiga

et al., 2015).

In short, several environmentally friendly green methods for

the synthesis of AgNPs are presented in this section, including

saccharide-based method, irradiation reduction method and

biosynthesis method. The saccharide-based method as the first

emerged green synthesis does not involve environmentally

unfriendly materials in the whole process. However, as a

preliminary attempt, there are some disadvantages, such as

the need for high temperature and pressure, and the unclean

surface of the obtained AgNPs, requiring suitable post-treatment

for their further applications. While irradiation-reduction

method shows some advantages, such as the high

controllability of the reaction process. It allows the obtained

AgNPs to be controlled in size and morphology, and even to

achieve a completely clean surface, which is great beneficial for

further applications. But it has special requirements for the

equipment and the reaction process is more tedious.

Specifically, the reducing and stabilizing agents used in the

biosynthesis process come from nature, which are widely

available and easily accessible for mass production. Among

them, plant-mediated synthesis could significantly increase the

reaction rate, and own medicinal value of extracted plants might

be synergistic with AgNPs for efficient antibacterial purposes.

While the food and agricultural waste method reflects the

concept of economic benefits of waste utilization and

sustainable development, which is very compatible with the

concept of green synthesis. Altogether, each of these green

synthesis methods has its own advantages and can be chosen

specifically according to the purpose of application of AgNPs.

3 Antibacterial mechanisms of AgNPs

The resistance of bacteria to antibiotics is based on three

general mechanisms (Kumarasamy et al., 2010; Wilson, 2014;

Blair et al., 2015): 1) production of enzymes that degrade drugs,

2) alteration of drug targets, and 3) reduction of the permeability

of bacterial cell membranes to drugs. Unlike the antibacterial

mechanism of traditional antibiotics, the unique antibacterial

mechanism of AgNPs effectively avoid the occurrence of

bacterial resistance.

3.1 Release of silver ions from AgNPs

Many hypotheses have been proposed for the antibacterial

mechanism of AgNPs, presenting that AgNPs are transformed

into silver ions after entering bacterial cells and exert

antibacterial effects by interacting with various intracellular

biomolecules. For example, silver ions can bind to sulfhydryl

enzymes within bacteria, thereby denaturing the enzymes, which

are necessary for the normal metabolism of antibacterial drugs

(Liau et al., 1997; McDonnell and Russell, 1999). Silver ions can

also bind to the DNA of bacteria, changing the conformation of

DNA, causing dysfunctional DNA and exerting antibacterial

effects (Feng et al., 2000; Arakawa et al., 2001). In addition,

silver ions can mediate the release of potassium ions from

microbial plasma (Russell and Hugo, 1994b; Holt and Bard,

2005). It has also been reported that silver ions are associated

with elevated intracellular ROS levels (Park et al., 2009). The

interference of silver ions with the respiratory chain of bacteria

increases the production of ROS and exhibits efficient

bactericidal activity.

3.2 AgNPs-mediated destructive effect on
bacterial membranes

Apart from releasing silver ions for antibacterial activity,

AgNPs can also perform antibacterial functions by directly

disrupting bacterial membranes and then penetrating to

microorganisms, as evidenced by the forming “pits” on the

membrane surface after treating with AgNPs (Sondi and

Salopek-Sondi, 2004; Choi et al., 2008). Nevertheless, the size

and shape of AgNPs have a significant effect on their ability to

bind to bacterial membranes. AgNPs with {111} facets had been

reported to interact directly with the bacterial surface (Morones

et al., 2005), while the truncated triangular AgNPs with {111}
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lattice plane showed stronger bactericidal effects than other

shape structures, such as spheres (Pal et al., 2007).

3.3 Other antibacterial mechanisms of
AgNPs

Additional antibacterial mechanisms of AgNPs have been

reported. For exsample, Kalishwaralal et al. (Kalishwaralal et al.,

2010) explored the potential anti-biofilm activity of AgNPs with

Pseudomonas aeruginosa and Staphylococcus epidermidis, which

were the source of many chronic bacterial infections. More than

95% of biofilm formation were inhibited by treating these

bacteria with AgNPs, resulting in inhibition of bacterial

growth. The other well mentioned antibacterial mechanism is

that AgNPs may induce an apoptosis-like response with bacteria

(Lee W. et al., 2014), including phosphatidylserine

externalization (early apoptosis) and DNA damage (late

apoptosis) (Bao et al., 2015).

Taken together, AgNPs are different from conventional

antibiotics that can trigger bacterial resistance. AgNPs are

acting in a new antibacterial paradigm that contribute to

breaking the dilemma of antibiotic-induced bacterial resistance.

4 Potential toxicity

AgNPs-containing products are widely used in daily life.

Human being may be exposed to AgNPs-containing products in

different ways (inhalation, skin contact and ingestion), thus

unconsciously taking in heavy metal compounds and causing

potential harm to the body. Ji et al. (Ji et al., 2007) exposed rats to

certain concentrations of silver and showed no significant

changes in lung tissue after 28 days, according to the current

American Conference of Governmental Industrial Hygienists

(ACGIH) silver dust limit (100 μg/m3). Park et al. (Park et al.,

2007) studied the cytotoxicity of AgNPs in alveolar epithelial cells

and found that even at high concentrations of AgNPs (200 μg/

ml), the apoptosis rate was less than 12% and the degree of DNA

fragmentation was less than 2%, confirming the relatively low

toxicity of AgNPs to the lung. From these works, it can be

concluded that the effect of AgNPs on the lung is negligible,

probably due to the high atomic mass of Ag. The effect of AgNPs

on the skin has also been investigated. The cytotoxicity of

AgNPs-containing antimicrobial wound dressings was

evaluated with human epidermal keratin-forming cells and

human fibroblasts, and it was found that AgNPs could not

distinguish between healthy cells and pathogenic bacteria

involved in wound healing and had a certain degree of

cytotoxicity (Lam et al., 2004; Poon and Burd, 2004; Paddle-

Ledinek et al., 2006; Arora et al., 2008; Samberg et al., 2010).

The liver and kidneys are the main organs that take up and

metabolize nanoparticles, so it is crucial to assess the effects of

AgNPs on these organs. To that end, the BRL 3A immortal rat

liver cells were incubated with AgNPs for 24 h. Hepatocytes

showed increased leakage of lactate dehydrogenase (LDH) and

mitochondrial dysfunction, displaying marked cytotoxicity

(Figure 5) (Hussain et al., 2005). And the depletion of

reduced glutathione (GSH) in hepatocytes suggests that

hepatotoxicity is related to oxidative stress, which is one of

the antibacterial mechanisms of AgNPs. Cytotoxicity of

AgNPs to HepG2 human hepatoma cells at high

concentrations (>1 mg/L), but no apparent cytotoxicity below

that concentration (Kawata et al., 2009). Moreover, gender

differences in renal silver accumulation have been reported

(Kim et al., 2008). Female rats showed large accumulation of

AgNPs in all regions of the kidney (cortex, outer medulla and

inner medulla), and the accumulation of AgNPs in cortical

glomeruli was obviously higher in females than in males (Kim

et al., 2009). These relevant studies illustrate the tendency of

silver to accumulate in the liver and kidneys with toxic effects.

There are also studies reported that AgNPs could accumulate in

the brain and exhibit neurotoxicity. Tang et al. found that AgNPs

could cross the blood-brain barrier. Long-term exposure to

AgNPs might lead to neuronal lesions and necrosis (Tang

et al., 2008). Lee et al. (Lee et al., 2010) investigated the effect

of AgNPs on gene expression in the mouse brain using affymetrix

mouse genome arrays and found that 468 genes in the brain and

952 genes in the cerebellum were sensitive to AgNPs. Given the

potential hazards of AgNPs to humans, we need to take a critical

view of the antibacterial activity and potential toxicity of AgNPs.

It should prescribe appropriate doses for administration

according to different therapeutic purposes. Importantly, the

size and morphology of AgNPs can be modulated, their

surface can be optimized modification to reduce cytotoxicity

and enhance therapeutic effects.

5 Medical application of AgNPs

As described above, it is difficult for AgNPs to develop

resistance to antimicrobial therapy because silver resistance

requires a generation of bacteria to undergo three

independent mutations in three different bacterial systems

(Alt et al., 2004; Silver et al., 2006). Owing to the unique

advantages, AgNPs are often employed as antimicrobial agents

in medical applications to ward off infections (Table 4).

5.1 Wound dressing

Blisters repeatedly appear during wound healing after deep

burns, which are prone to ulcerate and infect to form residual

wounds (Huang et al., 2007). Additionally, local wounds are

classified into acute and chronic wounds according to their

nature and recovery time. Chronic trauma is a fertile ground
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for biofilm formation, which is one of the causes of bacterial

resistance (Sacco et al., 2015). Over the past decades, AgNPs have

been extensively studied in wound healing, and although silver is

relatively inert and difficult to absorb by mammalian or bacterial

cells, it is readily ionized by wound fluid or other secretions.

When bound to proteins and cell membranes, ionized silver

becomes highly active, inhibiting biofilm formation and wound

infection (Atiyeh et al., 2007). Silver sulfadiazine has been

considered the gold standard for the treatment of local burns,

but subsequent studies have found that it delays the wound

healing process and is accompanied by severe cytotoxicity

(Russell and Hugo, 1994a; Atiyeh et al., 2007). Actually, ideal

wound dressing should meet the following requirements: good

mechanical strength and breathability, excellent exudate

absorption, blood and cell compatibility, etc. AgNPs-

containing antibacterial wound dressings prepared by

electrostatic spinning and in situ reduction of surface silver

ions using biocompatible macromolecules such as polymers

(Hong et al., 2006; GhavamiNejad et al., 2015; GhavamiNejad

et al., 2016; Unnithan et al., 2016; Augustine et al., 2018) and

biomacromolecules (Lu et al., 2008; Madhumathi et al., 2010;

Singh and Singh, 2014; Biswas et al., 2018; Wu et al., 2018) as

substrates can achieve good therapeutic effects. For example, a

wound dressing consisting of AgNPs and chitosan was prepared

by self-assembly, which passed sterility and pyrogenic safety

evaluations in tests with deeper thick wound Sprague-Dawley

rat model (Lu et al., 2008). Further, MADO-AgNPs prepared by

coating AgNPs on a novel electrospun nanofiber material, poly

(methyl methacrylate-dopamine methacrylamide, MADO),

exhibited good antibacterial activity in vitro and good wound

healing ability in vivo (Figure 6) (GhavamiNejad et al., 2015).

5.2 Implants

Implants are widely used in clinical treatment, but since they

are exogenous materials, they tend to trigger an immune response

in the body and expose patients to infections. Bacterial infections

FIGURE 5
(A) Effect of AgNPs on LDH leakage in rat liver cells BRL 3A cells. (B) Effect of nanoparticles on mitochondrial function in rat liver cells (BRL 3A
cells). Cells were treated with different concentrations of AgNPs for 24 h. Reproduced with permission from ref (Hussain et al., 2005). Copyright
2005 Elsevier.

TABLE 4 Summary of medical products containing AgNPs.

Medical products
containing
AgNPs

Functions Applications References

Wound dressing to inhibit biofilm formation and
wound infection

wound dressing Huang et al. (2007); Sacco et al. (2015)

Implants to avoid infection heart valves, bone graft devices,
orthopedic implants

de Mel et al. (2012); Huang et al. (2017); van Hengel et al.
(2020)

Medical catheters for clinical care indwelling catheters Thokala et al. (2018); Bhargava et al. (2018)

Dental composites to inhibit the adhesion and
proliferation of pathogens

dental bone cements, titanium
implants

Akhavan et al. (2013); Chladek et al. (2013); Ai et al.
(2017); Chambers et al. (2017)
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of implants are usually caused by Staphylococci, as the bacteria tend

to adhere to the surface of the implants, forming biofilm and

inducing infection (van de Belt et al., 2001). The use of high-dose

antibiotics to prevent implant infection during transplantation has

been attempted in the clinic, but the action duration is limited

(Oliveira et al., 2018). Therefore, it is an urgent need to develop

implants that are resistant to bacteria. A potential strategy is to

deposit antimicrobial substances on the surface of the implant.

AgNPs are excellent antibacterial agents with drug-resistant

Staphylococci, widely deposited on the implant surface to avoid

infection. To date, implants surface deposited with AgNPs have

focused on various medical devices, such as heart valves

(Grunkemeier et al., 2006; Ghanbari et al., 2009; de Mel et al.,

2012), bone graft devices (Zheng et al., 2010; Travan et al., 2011;

Zhao et al., 2011; DeVasConCellos et al., 2012; van Hengel et al.,

2020) and orthopedic implants (Liu et al., 2012; Fordham et al.,

2014; Huang et al., 2017). For example, Andara et al. developed a

multi-component target pulse laser deposition process to prepare a

diamond-like carbon-silver composites and validated their

promising hemocompatibility as a coating for cardiovascular

FIGURE 6
(A) and (B) Field emission scanning electron microscopy (FESEM) images of MADO nanofibers and MADO-AgNPs nanofibers. (C) Results of the
antibacterial activity of MADO-AgNPs electrospun membranes against Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli. The
inset shows a comparison of (A)MADO-AgNPs nanofiber and (B)MADO nanofiber on a Lysogeny broth (LB)-agar plate covered with Pseudomonas
aeruginosa. (D) Wound appearance at 0, 5, 10, and 15 days after grafting with MADO-AgNPs, MADO nanofiber, and bare. Reproduced with
permission from ref (GhavamiNejad et al., 2015). Copyright 2015 American Chemical Society.
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implants (Andara et al., 2006). Liu et al. reported AgNPs/poly (DL-

lactic-co-glycolic acid)-coated stainless steel alloy (SNPSA) as a

potential antibacterial implant material that exhibited strong

antibacterial activity in vitro and in vivo without interfering

with bone morphogenetic protein 2 (BMP-2) for bone

formation (Figure 7) (Liu et al., 2012).

FIGURE 7
Radiographic images of contaminated 0 %- and 2 %-SNPSA implants in rat femoral canal (FC) model. 103 CFU S. aureus Mu50 (A) or P.
aeruginosa PAO-1 (B) in 10 μL PBS (105 CFU/ml) was pipetted into the canal before implantation for bacterial invasion. Radiographic evidence of
osseous destruction (red arrows), without any obvious signs of bone formation up to 8 weeks post-surgery, was detected in the contaminated 0%-
SNPSA group. In contrast, significant bone formation surrounding 2%-SNPSAs implanted in rat FCs at week eight post-implantation (shown as
blue arrows in 2D resolution micro-computed tomography (microCT) images), without significant osteolysis, was detected. Newly formed bone
around 2%-SNPSA implants was highlighted in 3D microCT reconstruction images (blue shading). Reproduced with permission from ref (Liu et al.,
2012). Copyright 2012 Elsevier.
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FIGURE 8
(A) Biofilm formation by bacterial cells exposed to CNPs and FNPs assessed by Crystal violet (CV) staining assay (n = 8). (B) Composite confocal
laser scanning microscopy (CLSM)-stacked image of live/dead stained biofilm formed by cells exposed to CNPs and FNPs: i) Untreated/control, ii)
15 μg [Ag] mL−1 CNPs, iii) 15 μg [Ag] mL−1 FNPs, iv) 30 μg [Ag] mL−1 CNPs, and v) 30 μg [Ag] mL−1 FNPs. (C) Effect of CNPs and FNPs on the bacterial
viability in established biofilm. (D) SEM imaging of the silicone rubber disc: i) blank, ii) control, iii) CNP- and (iv) FNP-loaded discs at a
concentration of 80 μg [Ag] g−1. Reproduced with permission from ref (Bhargava et al., 2018). Copyright 2018 American Chemical Society.
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5.3 Medical catheters

The risk of chronic catheterization-related infections is

extremely high, such as catheter-associated urinary tract

infections (Thokala et al., 2018), intravascular infections

(Hsu et al., 2010; Paladini et al., 2013) and cerebrospinal

fluid infections (Lackner et al., 2008). AgNPs could also be

utilized to coat catheters destined for clinical care. Roe et al.

demonstrated that surfactant-modified AgNPs coated on the

surface of catheters can reduce the risk of infectious

complications in patients with indwelling catheters by

continuously releasing sterilized silver at the implantation

site (Roe et al., 2008). Besides, Zhang et al. developed a

silver-tetrafluoroethylene nanocomposite coating with

catheters by simple wet chemical method, which was

able to decrease biofilm coverage up to 97.4% compared to

commercial silicone tubes (Zhang et al., 2019). The

colonization of fucose-functionalized silver nanoparticles

(FNPs) on urinary catheters revealed superior biofilm

resistance and antibacterial effect on silicone rubber

compared to citrate-encapsulated silver nanoparticles

(CNPs), attributed to their strong attachment capacity with

bacterial and penetrating into bacterial cells (Figure 8)

(Bhargava et al., 2018).

5.4 Dental composites

Streptococcus mutans is the main microorganism that causes

tooth decay. Initial adhesion of specific oral bacteria to the tooth

surface or artificial dental matrix is a prerequisite for the

formation of pathogenic biofilms (Magalhães et al., 2012).

Dental modification materials should preferentially manifest

antimicrobial properties at an early stage in order to inhibit

the adhesion and proliferation of pathogens. For this purpose, the

incorporation of AgNPs into dental bone cements or silver

plating on their surface can generate an antibacterial effect

(Akhavan et al., 2013; Chladek et al., 2013; Ai et al., 2017;

Chambers et al., 2017). A report evaluated the antibacterial

activity of three AgNPs-modified dental bone cements

(Sealapex, RelyX ARC and Vitrebond) and noticed that the

antibacterial activity of Vitrebond was enhanced by the

addition of AgNPs (Magalhães et al., 2012). With the aim of

improving biocompatibility, a surface modification of AgNPs-

coated titanium implants with hydroxyapatite was developed,

showing optimum antimicrobial capacity and favorable biosafety

(Salaie et al., 2020).

Evidently, AgNPs are currently widely used in clinical

applications due to their unique antibacterial properties. Not

only can they be used for antibacterial treatment of traumatic

surfaces, but they can even be applied to materials such as

implants and medical devices for the prevention of bacterial

infections.

6 Conclusion

At a time when antibiotic resistance is rampant around the

world, AgNPs are being extensively invented for their

antimicrobial effects. Here, we systematically state the green

method to prepare AgNPs for a sustainable development

concept, including saccharide-based method, irradiation-

reduction reduction method and biosynthesis method. Each of

these methods has advantages in practical application for the

preparation of AgNPs. Overall, the wide source of materials, the

simplicity of operation, and the stability of the products are

greatly in line with the principles of green chemistry and are

instrumental in promoting AgNPs as antibacterial alternative

therapeutics. Unlike conventional antibiotics, it combines

multiple antibacterial effects which is effective for bacteria that

have evolved resistance to antibiotics. Furthermore, AgNPs are

equipped with the activity of inhibiting biofilm, which showing

beneficial effect to the antibiotic-induced biofilm formation.

However, it must take into account that synthesize AgNPs

with batch-to-batch reproducibility and scale-up for the

following pharmaceutical application. Finaly, the function

behavior of AgNP should be reasonably designed to balance

the therapeutic outcome and potential toxicity to normal cells

and tissues, resulting from the heavy ion effect of metals.
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