
Flash functional group-tolerant
biaryl-synthesis based on
integration of lithiation, zincation
and negishi coupling in flow

Yosuke Ashikari, Kaiteng Guan and Aiichiro Nagaki*

Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan

We achieved an integration of a lithiation of aryl bromides, a zincation of thus-

generated aryllithiums, and a Negishi coupling of the arylzinc with an aryl halide

in one flow. Taking advantages of flow microreactors, biaryls bearing a wide

range of functional groups, especially biaryls bearing multiple electrophilic-

functionalities were synthesized.
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Introduction

As awarded the Nobel Prize in Chemistry in 2010, palladium-catalyzed cross-

couplings, particularly coupling of aryl metals with aryl halides, are ubiquitous in our

society. A wide range of molecules have been obtained through cross-coupling in the

pharmaceutical, agrochemical, and material-chemistry fields (Nicolaou et al., 2005;

Corbet and Mignani, 2006; Magano and Dunetz, 2011, respectively). Current social

development has accelerated the demand for novel and high-performance organic

molecules. Thus, a rapid process that allows chemists in R&D to prepare libraries of

candidate molecules quickly and manufacturers to promptly supply their customers with

sufficient products for cross-coupling reactions is urgently required.

We focused on the coupling process referred to as the Murahashi coupling (Murahashi

et al., 1979; Giannerini et al., 2013) using aryl lithium as the aryl metal. Because of the low

electronegativity of lithium (Pauling scale: 0.98, c.f. 1.3 for Mg and 2.0 for B), Murahashi

coupling was assumed to be a rapid synthetic method. We demonstrated continuous-flow

Murahashi-coupling (Nagaki et al., 2010; Nagaki et al., 2012b) that enables the syntheses of

biaryls and biheteroaryls in high yields within 90 s under mild conditions (temperature for

coupling: 50 °C). However, because of the high reactivity of aryl lithium, the functional groups

were limited and no electrophilic functionalities were utilized for both aryl lithium and its

coupling partner (aryl halide). This resulted in lower product diversity and overshadowed the

utility of this process.

To achieve rapid and functional group-tolerant cross-coupling, we applied the

strategy of flash chemistry (Yoshida, 2008; Colella et al., 2020; Nagaki et al., 2021;

Takumi, et al., 2022) and reaction integration (Figure 1) using flow reactors. The use of
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flow reactors, especially micro-meter-sized flow reactors, has

several benefits, such as an efficient heat transfer, a rapid

mixing, a precise control of the reaction time and a direct use

of transient unstable species, in the organic synthesis field (Heinz

et al., 2021; Mazzarella et al., 2021; Ashikari, et al., 2022;

Miyamura and Kobayashi, 2022; Nogami et al., 2022). Taking

FIGURE 1
Schematic for integration of lithiation, zincation and negishi coupling in one flow.

SCHEME 1
Reaction yields of Murahashi (left) and Negishi (right) coupling using aryl halides bearing electrophilic functionalities (2a–2c) in flow
microreactor. Bars are the reaction yields determined by GC.
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TABLE 1 Integrated lithiation-zincation-coupling process of substituted aryl zinc precursors 1 with substituted coupling partner 2 in flowmicro
reactor.a

Entry Aryl
zinc precursor 1

Coupling partner 2 Product Yield (%)

1 98

2 98b

3 90b

4 73b

5 80b

6 57b,c

(Continued on following page)
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the advantage of the flow microreactors, highly-selective

chemical reactions have been achieved (Ashikari et al., 2019;

Sugisawa et al., 2020; Ashikari et al., 2021). Based on this idea, we

envisaged that aryl lithiums bearing electrophilic functionalities

are generated by functional-group-tolerant halogen–lithium

exchange reactions and, before they decompose, are converted

to aryl zincs. Reaction integration (Nagaki, 2021) allows the

generated aryl zincs to be subsequently engaged in Negishi

coupling in one flow. The modest electronegativity of zinc

(1.7) causes adequate reactivity, resulting in functional group

tolerance. Herein, we report the flow microsynthesis of

functionalized biaryls by integrating lithiation, zincation, and

coupling reactions mediated by functionalized aryl zinc. We

applied this strategy to metal-selective cross-coupling reactions

and demonstrated the synthesis of biaryls bearing metal

substituents. Moreover, by utilizing flash chemistry

thoroughly, we demonstrated room-temperature coupling of

aryl halides.

Materials and methods

Materials

Chemicals were purchased from Kanto Chemical, FUJIFILM

Wako Pure Chemical, Tokyo Chemical Industry, and

Sigma–Aldrich, and were used without further purification

unless otherwise stated.

Flow synthesis

T-shaped stainless steel (SUS304) micromixers with inner

diameters of 500 and 250 μm were manufactured by Sanko Seiki.

Stainless steel (SUS316) flow reactors with inner diameters of

1000 and 2,170 μm were purchased from GL Sciences. PTFE

tubes with inner diameters of 1000 and 1588 μm were purchased

from ISIS. Syringe pumps (Harvard Model PHD 2000 or PHD

TABLE 1 (Continued) Integrated lithiation-zincation-coupling process of substituted aryl zinc precursors 1 with substituted coupling partner 2 in
flowmicro reactor.a

Entry Aryl
zinc precursor 1

Coupling partner 2 Product Yield (%)

7 99d

8 99d

aYields were determined by GC.
bResidence time for the coupling reaction is 172 s.
cSec-BuLi was used. Temperature of the first bath (lithiation and zincation) is −30°C.
dTemperature of the second bath (coupling) is 20°C, and residence time for coupling is 131 s. A 5 mol% of Pd(PPh3)4 and 0.75 eq of ZnCl2 were used.
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FIGURE 3
Full-room-temperature process of integrated lithiation-metalation-coupling for synthesizing the key intermediate of valsartan.

FIGURE 2
Schematic for metal-selective cross-coupling in flow microreactor. Yields were determined by GC. aAdditional stirring in batch for 30 min
bAdditional stirring in batch for 12 h at 50°C, c Aryl iodide was used as the coupling partner, and Pd(PPh3)4 was used as the catalyst. 0.75 eq of ZnCl2
was used. For the coupling, the temperature was 20°C and the residence time was 131 s.
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ULTRA) equipped with gastight syringes (purchased from SGE)

were used to introduce the reaction solutions. Product yields

were determined through GC analyses (Shimadzu GC-2014)

calibrated using internal standards with commercial samples.

Results and discussion

Initially, we studied the feasibility, rapidity and the flexibility of

this concept. Using conditions similar to those described in a previous

publication (Nagaki et al., 2010), we attempted the flow Murahashi

coupling of 4-anisyl lithium with arylbromides bearing electrophilic

functional groups in a flow microreactor (Scheme 1). After the

halogen–lithium exchange reaction of 4-bromoanisole (1a) with

n-butyllithium (0°C, 2.4 s), aryl lithium was reacted with aryl

bromides (2a–c) and 5mol% palladium catalyst (PEPPSI-IPr) at

50 °C for 89 s. As anticipated, the presence of electrophilic groups led

to very low yields (less than 3%) if compared to system where such

functions are not present (Nagaki et al., 2010). GC-MS analyses

indicated that the crude mixture of the reaction using 4-

bromobenzaldehyde (2a) contained 4-methoxybenzhydrol, which

can be generated by a nucleophilic attack of the aryl lithium on

the formyl group of 2a. These results demonstrate that aryl lithiums

tend to react with electrophilic functional groups before initiating the

Murahashi coupling; therefore, we investigated the integration

strategy. After lithiation, aryl lithium was reacted with

0.5 equivalent amount of zinc chloride to be converted to aryl

zinc, which was subsequently reacted under similar coupling

conditions. The corresponding biaryls (3aa–ac) were obtained in

high yields. Notably, this series of transformations ended within 92 s

owing to the fast generation of aryl lithium and the sufficient reactivity

of aryl zinc.

Once the feasibility of the flow integration of lithiation, zincation,

and coupling was confirmed, the coupling of different aryl zinc and

aryl halides bearing electrophilic functional groups was investigated.

As summarized in Table 1, aryl halides bearing electrophilic

functional groups were introduced into micromixer M1 (internal

diameter: 500 μm) at 0°C, where a solution of n-butyllithiumwas also

introduced. After 2.4 s, the resulting solution was introduced into

micromixer M2 (internal diameter: 500 μm) and mixed with a

solution of zinc chloride to generate the functionalized aryl zinc.

Thereafter, aryl zinc was mixed with another aryl halide bearing

electrophilic functionalities and PEPPSI-IPr or Pd(PPh3)4 in

micromixer M3. The resulting solution was passed through a tube

reactor and heated to 50°C to promote the cross-coupling reaction,

and to increase the reaction conversion we utilized longer tube

reactor to prolong the reaction time. From the aryl halides

bearing a cyano group (1b and 1c, entries 1–5) and an ester

moiety (1d, entry 6), the corresponding biaryls were obtained in

good to high yields. Interestingly, when using aryl iodides (2f and 2g)

as coupling partners, bromo-substituted aryl zincs, which were

generated from the selective mono-lithiation of dibromobenzene

1e based on the previously reported conditions (Nagaki et al., 2007;

Usutani et al., 2007), selectively reacted at the iodo groups of 2f and

2g to generate bromo-substituted biaryls 3ef and 3eg (entries 7 and

8), respectively. Notably, because the aryl lithiums were generated by

the halogen–lithium exchange reaction, the position of the

substituents (ortho- and para-position) could be controlled by

changing the starting materials (for instance, entry 1 vs 2), which

deprotonative lithiation such as directed ortho-lithiation (Snieckus,

1990) seldom achieved.

The success of the halogen-selective cross-coupling of this

process prompted us to attempt metal-selective cross-coupling to

generate metal-substituted biaryls. Based on our previous efforts to

synthesize bimettalic arenes, which are arenes bearing multiple

metal substituents and their cross-coupling reactions (Ashikari

et al., 2020), we designed the flow system shown in Figure 2. In

the flow reactors, aryl zincs were generated and subsequently

reacted with aryl halides bearing boryl groups catalyzed by

PEPPSI-IPr or Pd(PPh3)4. Using 4-bromobenzonitrile (1c) as the

precursor of aryl zinc and 4-bromophenylboronic acid pinacol ester

as the coupling partner, the corresponding biphenyl bearing the

boryl group (3ch) was obtained in high yields. This Negishi-

selectivity is derived from that the Suzuki coupling basically

requires basic conditions and this flow reaction was carried out

in the absence of a base. Because the coupling product 3ch still has a

metal substituent (the boryl group), further transformations

including Suzuki–Miyaura coupling are achievable. When the

position of the cyano group is varied, the corresponding

biphenyl with ortho- (3bh) and meta-substitution (3fh) can be

obtained in high yields, demonstrating the advantage of site-

selective lithiation enabled by the halogen–lithium exchange.

Notably, from the bromo-substituted aryl zinc and an aryl

iodide bearing a boryl group, the corresponding biphenyl

bearing the bromo and boryl groups (3eh) was obtained in a

high yield. This is an excellent example of halogen- (Br vs I)

and metal-selective (Zn vs B) cross-couplings.

To prevent side reactions, lithiation and metalation steps for

synthesizing aryl metal species were performed at cryogenic

temperatures such as −78°C. However, the coupling reaction

usually requires high temperatures such as the boiling points of

the solvents. Thus, this series of transformations requires both

low and high temperatures, leading to a waste of energy. Because

the demand for products synthesized through cross-coupling is

increasing, the energy loss of this process is also increasing. To

save energy, in the context of Sustainable Development Goals, we

investigated the integrated lithiation-zincation-coupling process

at room temperature as a demonstration for the greener process.

With the flowmicro reactor dipped in a water bath as

depicted in Figure 3, the cyano-substituted aryl bromide (1b)

was mixed with n-butyllithium at 24°C, and 0.014 s later, zinc

chloride was added to the mixture. After the addition of coupling

partner 2f and palladium catalyst (Pd(PPh3)4, 5 mol% to the aryl

iodide), the resulting mixture was passed through a tube reactor

in a water bath (24 °C) until the reaction was quenched (residence

time: 131 s). Under this full-room-temperature condition, 2f was
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fully consumed and the desired product, which is a key

intermediate (Goossen and Melzer, 2007; Nagaki et al., 2016)

of valsartan (Diovan, Novartis: US $773 million sales in 2021

(Novartis, 2022)), the angiotensin-II-receptor antagonist, was

obtained in a quantitative yield.

Conclusion

In conclusion, we achieved the integration of the

halogen–lithium exchange reaction, zincation, and Negishi

coupling in a flow microreactor. Using this methodology, a

range of biphenyls with multiple electrophilic functionalities

were synthesized within several minutes. The use of the zincyl

group enables the boryl-group tolerant coupling, which flow

Suzuki coupling (Shu et al., 2011; Nagaki et al., 2012a; Takahashi

et al., 2020) cannot achieve. Although Knochel (Becker et al.,

2015; Becker and Knochel, 2015) and Buchwald (Roesner and

Buchwald, 2016) reported numerous examples of flow Negishi

coupling, the proposed method has a higher flow rate of the

substrate solution (typically 4 ml/min whereas those of the

previous reports are 2 ml/min or less) and shorter reaction

times, allowing higher productivity. Moreover, since this

present method utilizes the halogen–lithium exchange

reaction, site-selective lithiation can be achieved, which

provides biaryls with varying substitution patterns.

Another aspect of the proposed method is flash chemistry in

which intermediates with extremely short lifetimes can be

utilized. The integrated lithiation-metalation-coupling process

was achieved in a single pass at room temperature by controlling

the reaction time of the lithiation step at 14 ms. Because no

heating or cooling is required, the cross-coupling of aryl halides

saves energy. We assert that this environmentally benign

synthetic method will contribute to save energy and satisfy the

increasing demand for cross-coupling products by supplying

fruitful organic molecules.
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