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The intensification of agricultural systems has increased the food production

efficiency, increasing the productivity while the production costs are reduced.

Although these factors are key to global food security in a context of continued

human population growth, the use of intensive agricultural techniques results in

different environmental issues. Mitigating these negative impacts is a

requirement for adopting sustainable food production systems. Notably,

nutrient pollution is one of the main environmental issues associated with

both livestock and crop production. These activities result in different point and

non-point source releases of phosphorus, which eventually reach surface and

ground waterbodies. This might result in the accumulation of phosphorus over

time, contributing to the eutrophication of water ecosystems, and the

development of harmful algal bloom (HABs) episodes. The releases of

nutrients from agricultural activities can be abated through different

management strategies, including the implementation of nutrient recovery

techniques at livestock facilities, embracing precision fertilization methods,

and developing integrated crop-livestock systems for achieving circular food

production systems. In this work, we describe opportunities for Process System

Engineering (PSE) to address the development of phosphorus management

techniques for mitigating phosphorus pollution from agricultural systems

balancing trade-offs between recovery cost and environmental impact

mitigation. These techniques integrate the spatial analysis of nutrient

pollution from agriculture using geographical information systems (GIS) with

the assessment and the selection of phosphorus management techniques

combining techno-economic analysis (TEA) and environmental metrics

through multi-criteria decision analysis (MCDA) frameworks, and use

mathematical programming for the conceptual design of integrated crop-

livestock systems.
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1 Introduction

Human development requires the use of natural resources for

different purposes from food production to the construction of

infrastructures and goods manufacturing. Natural resources can

be classified upon their availability at human timescale in

renewable and no-renewable resources. A certain natural

resource is only considered as renewable if the amount

consumed is replenished by natural means at human

timescale, while if the replenishment pace is too slow to

replace the consumed amount in a finite time at human

timescale it is considered as non-renewable. Although the use

of renewable natural resources is desirable for sustainability,

some non-renewable resources cannot be currently replaced

by any renewable resource or synthetic material. This is the

case of phosphorus, which is an essential nutrient for food

production.

Despite the increase in productivity obtained from the

intensive use of phosphorus in agriculture and farming

industries (Ashley et al., 2011), multiple environmental

impacts emerge from the alteration of the natural cycle of

phosphorus (Bouwman et al., 2009). Phosphorus accumulates

in soils as a consequence of the continuous application of

phosphorus in excess of crop needs, either in the form of

synthetic fertilizers or manure, leading to a long-term legacy P

(Baligar et al., 2001; Cordell, 2010). Although soils play the role of

phosphorus reservoir, since it might be available for future crops,

the phosphorus accumulated in soil may eventually be

transported to waterbodies through erosion and runoff,

representing a source of nutrient pollution. The

eutrophication of waters might result in algal blooms altering

the normal functioning of aquatic ecosystems and harmful

effects, including hypoxia episodes and the release of toxins

from some type of algae. These effects negatively impact the

environment, but they also represent public health threats

restricting the use waterbodies as a source of freshwater for

human consumption (Hoagland and Scatasta, 2006).

In addition, the use of phosphorus as an essential nutrient for

food production involves a geopolitical dimension as a

consequence of the non-renewable nature of this resource,

with no synthetic substitute known. Phosphorous reserves are

not evenly distributed worldwide, but they are concentrated in a

few number of regions, and they are expected to be depleted over

the next century (Cordell et al., 2009) assuming the current linear

economy paradigm of phosphorus use. This linear economy of

phosphorus is based on phosphorus rock mining, which is

processed for the manufacturing of fertilizers and livestock

feed supplements used in the agricultural sector, and it is

finally released to the environment (Jacobs et al., 2017). As a

consequence, the supply of phosphorus from a limited number of

sources results in a high dependency on a few number of

suppliers that jeopardizes the food security and sovereignty of

numerous social groups.

The challenges described must be faced in order to develop a

sustainable and circular use of phosphorus for food production.

The optimization of phosphorus use and the recovery of this

material from waste streams could result not only in the

mitigation of phosphorus releases into the environment, but

phosphorus recycling also contributes to lower dependence on

phosphorus imports from other territories and ensures food

security.

2 Process systems engineering for
phosphorus management in the
agricultural sector

Phosphorus management practices can be classified into

those strategies for optimizing the use of phosphorus in the

agricultural sector and increasing its efficiency, and those actions

intended for the recovery of phosphorus from waste flows.

Among the first actions, we can list the optimization of the

application rate and schedule of fertilizers tailoring the supply of

phosphorus to the local requirements of each crop and field, the

integration of crop and livestock systems, and the

implementation of closed loop greenhouse nutrient feedwater

systems; while phosphorus recovery processes can be

implemented in some material flows of the agricultural sector

such as manure, slaughterhouse waste, and the releases from

greenhouse nutrient feedwater systems, as shown in Figure 1.

The study of these practices, shown in Figure 2, including the

comparison of phosphorus management techniques, the

investment and operating costs associated with them, and the

mitigation of environmental impacts achieved through their

implementation requires the integration of different

methodologies, such as the techno-economic assessment

(TEA), life-cycle analysis (LCA), and environmental impact

assessment (EIA) of the different phosphorus management

practices. The combination of these methodologies with

geographical information systems (GIS) and multi-criteria

decision analysis (MCDA) techniques result in powerful

computational methods for supporting the decision-making

processes for the selection of the most suitable phosphorus

management strategy for a certain agricultural activity.

2.1 Phosphorus recovery systems

Phosphorus can be recovered and recycled from different

streams of the agricultural sector, mainly from manure,

slaughterhouse waste, and greenhouse nutrient feedwater

systems. Manure is generated in large amounts at livestock

facilities, which can be either extensive or intensive

production systems. While for extensive farms manure

management should not be a concern if the accumulating

rates of manure in soil are not excessive, the production of
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large amounts of manure at concentrated animal feeding

operations (CAFOs) (U.S. Department of Agriculture, 2011)

results in an environmental threat due to the release of

significant amounts of phosphorus in a single location

(Sampat et al., 2017). Although manure can be spread on

croplands as a source of phosphorus for crops, it is a bulky

material expensive to transport, restricting its application to the

croplands in the vicinity of the production site and hindering the

redistribution of phosphorus to nutrient deficient locations.

Slaughterhouse waste is currently treated before being released

into the environment, including the removal of phosphorus.

However, phosphorus is removed as sludge and it cannot be

further recycled (Australian Meat Processor Corporation, 2018).

Finally, the outflows from the greenhouse nutrient feedwater

systems might contain phosphorus if they are not recirculated in

a closed system, releasing phosphorus into the environment

(Ontario Ministry of Agriculture, Food and Rural Affairs,

2021). These flows are point sources of phosphorus, and they

can be treated for phosphorus recovery in the form of useful

materials such as struvite (Tao et al., 2016) or calcium

precipitates (Ehbrecht et al., 2011), providing an opportunity

for phosphorus recycling and redistribution to nutrient-deficient

areas, creating an effective circular economy around phosphorus.

It should be noted that, although extensive research on

phosphorus recovery using processes such as struvite

formation has been performed for wastewater (Doyle and

Parsons, 2002; Le Corre et al., 2009), there are some factors of

agricultural flows that must be considered for phosphorus

recovery. Particularly, some characteristics of manure hinder

struvite recovery, including the high ionic strength and the

presence of calcium (Tao et al., 2016). Therefore, specific

physico-chemical or empirical models for phosphorus

recovery from agricultural outflows are needed to estimate the

performance of these processes (Çelen et al., 2007; Martín-

Hernández et al., 2020).

Even though the use of phosphorus recovery technologies in

the agricultural sector is a promising approach, their effective

implementation faces several significant challenges that requires

the use of different computational methods to be addressed.

Firstly, there exist different phosphorus recovery technologies at

FIGURE 1
Flows of phosphorus used in agriculture.
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commercial development stage, and several more at advanced

research stages that could be considered for the treatment of

phosphorus outflows at a certain facility (Martín-Hernández

et al., 2021). Therefore, the decision-making process for the

selection of the most suitable phosphorus recovery system for

a certain system under evaluation requires the integration of the

techno-economic assessment (TEA) of the different technologies

available in order to compare their recovery efficiency,

investment and operating cost, and in turn to determine the

recovery cost of phosphorus, and their life cycle assessment

(LCA) to determine the environmental impacts derived from

the deployment of each process. Additionally, the current

environmental vulnerability to nutrient pollution can be

included to provide a holistic framework, determining if the

recovery of phosphorus must be more intensive even though

involves the implementation of more costly processes through

analysis of the local environmental parameters.

If the assessment is performed for a reduced number of

facilities, it includes a limited number of recovery processes, and

the process selection is made considering a little number of

parameters, the information from TEA, LCA, and eutrophication

vulnerability studies can be manually analyzed to reach a

decision. However, if many processes are considered, or

multiple parameters must be analyzed for the selection of the

optimal process, the information obtained from the process

analyses requires to be assessed through a multi-criteria

decision analysis (MCDA) model. These models structure the

information for the systematic assessment and comparison of

alternatives after defining the relevant criteria (which can be in

conflict among them), their relative priority, and the system for

criteria evaluation. The goal of an MCDA model is to provide

justifiable and explainable solutions aiding in the selection of the

most suitable phosphorus recovery process (Belton and Stewart,

2002). Additionally, if the analysis is performed over a region

either defined by natural boundaries, such as a watershed, or

political borders, such as a county, the framework comprised of

TEA, LCA, and environmental evaluationmust be embedded in a

GIS system to systematically analyze the eutrophication risk of

each area. The complete set of information is then provided to an

MCDA model to determine the most suitable solution based on

the relevant criteria defined.

This scheme has been used in different studies to determine

the optimal phosphorus recovery processes for agricultural

activities, selection, sizing, and placement of phosphorus

recovery processes from livestock waste (Vaneeckhaute et al.,

2018; Martín-Hernández et al., 2021), to determine the optimal

transportation routes to recover value-added materials and

energy from organic waste (Hu et al., 2020), and to design

and analyze incentive policies for promoting the

implementation of phosphorus recovery processes at CAFOs

(Martín-Hernández et al., 2022).

Further challenges must be faced for the effective deployment

of phosphorus recovery systems at livestock facilities in which

PSE plays a crucial role. Particularly, the scale of livestock

facilities is diverse, while the current commercial phosphorus

recovery systems are available in fixed sizes. As a consequence,

usually the capacity of the units installed for phosphorus recovery

does not fit the waste flow to be treated, resulting in suboptimal

operation and additional phosphorus recovery costs. Moreover,

the economies of scale play a main role in the feasibility of

phosphorus recovery processes at livestock facilities, hindering

their deployment at small-scale CAFOs. The development of

modular and transportable systems could be an alternative for

these facilities, so that a single system could be used for the

processing of the waste generated in multiple small CAFOs.

However, the economic viability of these systems, as well as their

optimal routing and scheduling, have to be explored to determine

their feasibility and the target facilities on which these processes

could be deployed.

FIGURE 2
Computational methods for the assessment of phosphorus
management practices in the agricultural sector.
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2.2 Methods for optimizing phosphorus
use in agricultural systems

2.2.1 Crop production
The application rate and schedule of fertilizers, which can be

either manure or synthetic fertilizers, are driven by a myriad of

factors, including the type of crop, soil properties, weather

conditions, etc. Formerly, phosphorus was applied in a excess

in order to guarantee that phosphorus was available for crops,

resulting in a continuous accumulation of phosphorus in soil

over time (Baligar et al., 2001; Cordell, 2010). However, in the last

years agriculture precision techniques have been implemented

for optimizing the supply of phosphorus to croplands, adjusting

the application rate to the requirements of each crop field and

selecting the most appropriate application schedule to increase

the efficiency of the phosphorus applied (Cisternas et al., 2020).

This not only mitigates phosphorus releases into the

environment, but also reduces the food production costs. As a

result, phosphorus concentration in soils has remained constant

over the last 2 decades in the developed countries (International

Fertilizer Industry Association, 2007; Probe, 2022), although they

are not yet completely implemented in many developing areas

(International Fertilizer Industry Association, 2007).

The optimization of phosphorus supply to crops is achieved

through the development of models considering soil properties,

crop requirements, and weather patterns to determine the

available phosphorus in soil and the optimal application rate

of fertilizers. The simplest models are empirical correlations

relating the supply of phosphorus to crop yields, and

sometimes to other related outputs such as greenhouse gas

(GHGs) emissions (Chi et al., 2020). These correlations, based

on empirical data, can be used to adjust the amount of

phosphorus to minimize the cost of fertilizer supply and the

environmental impacts. Nevertheless, these models are limited to

the particular conditions under which the experimental data were

obtained, hindering their use for different field conditions. In

order to address these limitations, more general and complex

models have been developed through the integration of multiple

empirical correlations to evaluate the effect of a large spectrum of

factors affecting the growth of crops, including water, nutrients,

soil properties, and other environmental conditions on crop

growth (Carberry et al., 1989; Basso et al., 2009). This allows

adjusting the amount of fertilizer according to the amount of

nutrients in the soil or the growth stage of a certain crop. The

main drawback of these models is the large amount of

information they need, although this can be overcome by

combining them with GIS tools and data obtained by on-field

sensors (Basso et al., 2007).

In addition to the models for determining the efficient

application of fertilizers, the determination of the phosphorus

transported from cropfields to waterbodies provides key

information for determining what areas are more vulnerable

to nutrient pollution, and in turn to define the areas where the

phosphorus supply must be more severely controlled and more

resources should be directed to control its accumulation and

release. Different phosphorus fate and transport models have

been proposed in the literature, including but not limited to

Spatially Referenced Regression on Watershed Attributes

(SPARROW) (Smith et al., 1997), Nutrient Export from

Watersheds 2 (NEWS 2) (Mayorga et al., 2010), Soil and

Water Assessment Tool (SWAT) (Arnold et al., 1998), and

Erosion Productivity Impact Calculator (EPIC) (Sharpley,

1990). These models have the potential of being integrated

into wider frameworks in order to perform integrated analysis

of phosphorus fluxes in a certain area, and different applications

of these models have been explored for determining significant

contributors to phosphorus releases at watershed level under

uncertainty (Kim et al., 2017), as well as the contribution of

nutrient flows from croplands, weather patterns and other

environmental factors in the occurrence of harmful algal

blooms (HABs) and the mitigating effect of implementing

phosphorus recovery processes (Hu et al., 2019).

2.2.2 Livestock production
Phosphorus is also an essential nutrient for livestock

production, and it is usually supplied through feed crops and

synthetic supplements. Since the production of livestock requires

large amounts of feeding materials, the optimal selection of the

crops used for animal feed has an important role to reduce the

consumption of fertilizer by agricultural systems. Some crops

exclusively used for animal feed, such as alfalfa or certain types of

forage, have higher yields and lower nutrient requirements than

cereals. Besides, straws of certain field crops such as barley and

wheat can also be used for this purpose, reducing the production

of specific crops for livestock feed, and, in turn, the supply of

phosphorus needed for the growth of these crops.

Livestock feed must meet the nutritional and energy

requirements of each animal attending to its type and life

stage. These feeding requirements can be estimated through

empirical correlations and yields, resulting in a variety of

mathematical models. The simplest ones are based on linear

relationships between the animal weight and the feeding

requirements (Munford, 1996), while more detailed models

are able to tailor the feeding requirements of a certain animal

based on defining factors, including breed, sex, stage of growth,

and whether it is pregnant or breastfeeding (Council, 2001). The

most complete models are not only able to estimate the

nutritional requirements, but they can also be used to

determine the composition of wastes and animal products

through the analysis of the digestion stages. As a result, they

can be used to map the phosphorus flows from feed to the

production of manure and different animal products such as milk

or meat, providing an opportunity to adjust the supply of

phosphorus to the requirements of each animal, minimizing

the losses of phosphorus from the excessive supply of this

material, and thus mitigating the negative environmental
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impacts of releasing phosphorus into the environment, reducing

the production costs as well (Cerosaletti et al., 2004; Knowlton

et al., 2004).

2.3 Integrated crop-livestock systems

The separation between the livestock and cropping systems

and the intensification of the agricultural techniques have altered

the natural cycles of nutrients, resulting in areas with an excessive

accumulation of phosphorus in soils causing nutrient pollution,

while other regions are deficient on this nutrient (Bouwman

et al., 2013). The integration of both systems and the control of

nutrient flows, including phosphorus, nitrogen, and potassium

between them have been proposed as a solution to close the

nutrient loops use since the outputs of one system can be used as

inputs in the next (Ellen Mac Arthur Foundation, 2017).

Similarly, the recycling of materials between crop and

livestock systems can be extended to other essential materials,

such as water and carbon sources. This does not only reduce the

environmental impact of both sectors, reducing the transport of

materials and making more efficient use of nutrients, but also

adapts the crops to the nutritional and energy requirements of

the animals at each stage of their growth, or conversely, limits the

number of animals of the system to the feed that can be supplied

by the crops of the close system. Crops can be either grown to

obtain food products or as animal feed, while manure and other

waste can be used as organic fertilizer, reducing the use of

mineral fertilizer and the pollution produced by the transport

of feed and waste. As a result, a circular system is developed

around the use of phosphorus. However, it must be noted that the

integrated crop-livestock systems might not be able to perfectly

balance the nutritional requirements of both crops and livestock

systems, hence external supplies might be needed, and/or

material outflows might occur, although the goal is to

minimize the external flows.

The integration of crop production and extensive livestock

farming has been widely studied in the literature. In this type of

integrated crop-livestock systems, the exchange of phosphorus is

carried out through the direct application of manure during

animal grazing reducing the requirements of synthetic fertilizer

(Peyraud et al., 2014; Salton et al., 2014; Sulc and Franzluebbers,

2014; Sekaran et al., 2021). Conversely, the development of

integrated crop production and intensive livestock farming

involves an intensive exchange of nutrients, and thus the

control of nutrient flows in the system is more critical in

order to guarantee that the nutrient releases from the

livestock system do not exceed the requirements of crops. The

conceptual design of these systems can be performed through the

development of frameworks that optimize nutrient flows between

intensive livestock and crops system integrating models for

estimating the nutritional and energy requirements of the

animals, and the nutrient requirements and production yields

of crops, as well as the potential integration of nutrient recovery

systems for those scenarios where a closed loop of nutrients

cannot be achieved (Reddy, 2016). These models, which are

described in Section 2.2, often include nonlinear correlations,

leading to frameworks comprised of nonlinear programming

(NLP) models (Council, 2000).

These models can be used to formulate multi-objective

optimization frameworks for the conceptual design of

integrated agricultural systems for different objective scenarios

such as the maximization of the economic profit of the system,

the minimization of the environmental impacts of the system

(including the global warming potential, eutrophication potential

and the water footprint), or the search of the trade-off solutions

between the profitability of the system and the reduction of its

environmental impacts, reducing the external supply of

phosphorus and the emissions of greenhouse gases (Taifouris

and Martin, 2021).

In addition, the design of integrated crop-livestock systemsmust

consider the local environmental context. Therefore, the spatial

dimension is a key factor in the design of such facilities since

crop yields depend on weather conditions and soil properties, which

also determine the availability of nutrients, and thus, the required

supply of phosphorus. Moreover, certain locations can be more

sensitive to nutrient pollution, which might result in restrictions to

the application of fertilizers (either synthetic or manure) and the

deployment of nutrient recovery systems, resulting in additional

costs and reducing the economic performance of the agricultural

systems. The combination of integrated crop-livestock system

models with GIS tools results in a new dimension where a large

set of potential locations can be evaluated in a supply chain

framework in order to determine the optimal location from the

economic and environmental perspectives simultaneously. When

farm location is an additional variable in the problem, binary

variables may be necessary transforming them into mixed-integer

linear programming (MILP) or mixed-integer non-linear

programming (MINLP) models.

3 Outlook

The implementation of practices for reducing and optimizing

the use of phosphorus, as well as the recovery and recycling of the

material in the agricultural sector, is crucial to abate the

environmental impact of food production and ensure food

security and sovereignty reducing the dependency on global

supply chains to gain access to phosphorus for agriculture.

Some practices have been implemented along the last decades,

particularly those aimed at tailoring the application of fertilizers

to the requirements of crops and soil properties, and setting the

optimal application schedule. However, research is continuously

ongoing in order to reach high efficiency standards through the

application of precision agriculture based on big data (Mallarino

and Schepers, 2005). Other phosphorus management practices,
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including the dynamic adaptation of the supply of phosphorus to

livestock, the development of intensive crop-livestock integrated

systems, and the implementation of phosphorus recovery

systems at livestock facilities and greenhouses are still under

development and they are not widely deployed in commercial

agricultural facilities.

The development and effective implementation of these

practices requires computational methods for the assessment,

comparison, and selection of techniques. In practice, different

computational methods are commonly integrated to assess

different dimensions simultaneously. However, criteria often

conflict each other, leading to complex decision-making

processes managing large amounts of information of

conflicting nature. Moreover, the study of the agricultural

sector involves the integration of the geographical aspect,

since many parameters have a geographic component

(becoming geospatial data) to determine the eutrophication

vulnerability level at each location, find relationships between

human activities and environmental damages, measure the

nutrient pollution mitigation performance of different

phosphorus management practices at a certain location, etc.

As a result, the development of multi-dimensional assessment

frameworks evaluating environmental, technical, and economic

criteria, as well as the geographical component of the agricultural

systems within multi-criteria decision analysis (MCDA) models

are powerful tools for assessing and selecting the most suitable

phosphorus management technique for each particular case

studied, providing solutions tailored to the particular context

of each activity. There exist a variety of MCDAmethods that can

be applied to the nutrient pollution problem. These can be

divided into multi-objective decision analysis (MODA) and

multi-attribute decision analysis (MADA) methods. MODA

methods are used when it exists an infinite number of

solutions, and are based on multi-objective optimization

models, where multiple conflicting criteria are combined in an

objective function. MADA methods are used for discrete choice

problems, where the number of feasible solutions is finite. There

exist a large number of MADA methods, such as the indicator-

based methods, also known as multi-attribute value theory

(MAVT) methods used by Martín-Hernández et al. (2021),

which is described in Section 2.1. For more informaiton about

suitable MCDA methods for addressing the nutrient pollution

problem, we refer the reader to Giove et al. (2009).
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