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The blood-brain barrier (BBB) is a highly impermeable barrier separating
circulating blood and brain tissue. A functional BBB is critical for brain health,
and BBB dysfunction has been linked to the pathophysiology of diseases such as
stroke and Alzheimer’s disease. A variety of models have been developed to study
the formation andmaintenance of the BBB, ranging from in vivo animal models to
in vitro models consisting of primary cells or cells differentiated from human
pluripotent stem cells (hPSCs). These models must consider the composition and
source of the cellular components of the neurovascular unit (NVU), including brain
microvascular endothelial cells (BMECs), brain pericytes, astrocytes, and neurons,
and how these cell types interact. In addition, the non-cellular components of the
BBBmicroenvironment, such as the brain vascular basement membrane (BM) that
is in direct contact with the NVU, also play key roles in BBB function. Here, we
review how extracellular matrix (ECM) proteins in the brain vascular BM affect the
BBB, with a particular focus on studies using hPSC-derived in vitro BBB models,
and discuss how future studies are needed to advance our understanding of how
the ECM affects BBB models to improve model performance and expand our
knowledge on the formation and maintenance of the BBB.
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1 Introduction

The neuronal network in the central nervous system (CNS) is highly complex, requiring
a specific microenvironmental composition to function properly (Abbott, 1992; Shao et al.,
2021). Brain capillaries, which account for ~85% of the ~644 km cerebral vessels (Zlokovic,
2008; Sweeney et al., 2018), not only supply nutrients and oxygen and remove wastes to
support the metabolic demands of the CNS, but also form a highly impermeable, regulated
barrier that restricts the entry of most molecules in the bloodstream and actively transports
specific classes of molecules in a polarized manner. This barrier is referred to as the blood-
brain barrier (BBB) and is essential to a healthy brain, with dysfunction linked to prevalent
and debilitating diseases such as Alzheimer’s disease (AD), multiple sclerosis (MS), stroke,
and traumatic brain injury (Cirrito, 2005; Weiss et al., 2009; Shlosberg et al., 2010).
Anatomically, the BBB consists of brain microvascular endothelial cells (BMECs)
surrounded by brain pericytes embedded in a shared basement membrane (BM), and
encased by astrocytic endfeet (Figure 1) (Abbott et al., 2006; Tornabene and Brodin, 2016).
The BM is mainly composed of extracellular matrix (ECM) proteins that are secreted and
deposited by BMECs, pericytes, and astrocytes.
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Compared to microvascular endothelial cells (ECs) outside of
the CNS, BMECs have no fenestra, few intracellular vesicles, and
high expression of tight junction (TJ) and TJ-related proteins such as
Occludin, Claudin-5, and ZO-1. These differences result in low rates
of endocytosis and transcytosis, and continuous tight junctions that
restrict paracellular permeability, respectively. BMECs also
differentiate themselves from non-brain ECs by the expression of
nutrient transporters and polarized efflux transporters such as
glucose transporter (Glut-1), and P-glycoprotein (P-gp),
respectively. The quality of the barrier formed by BMECs is
typically measured by its low permeability to molecular tracers
such as fluorescent dyes and other small molecules, its high
transendothelial electrical resistance (TEER), and by the
directional transport of specific transporter substrates.

The cellular neighbors of BMECs within the neurovascular unit
(NVU), brain pericytes and astrocytes, also are crucial to a
functional BBB. As early as the 1970s, Bradbury et al. suggested a
special relationship between brain capillaries and astrocytes
(Bradbury, 1979), soon after which in vivo and in vitro studies
confirmed the importance of endothelial-astrocyte interactions for
barrier properties in BMECs (Debault and Cancilla, 1980; Janzer and
Raff, 1987). Building upon this knowledge, a standardized, reliable
in vitro co-culture protocol was described in 1990 using primary rat
astrocytes for improved barrier function in bovine BMECs
(Dehouck et al., 1990). More recent studies described how
pericytes stabilize capillary structures and upregulate barrier
function in endothelial cells (Ramsauer et al., 2002; Hori et al.,
2004; Dohgu et al., 2005). In 2010, two independent studies
demonstrated how brain pericytes are required for both
development of the embryonic BBB and maintenance of the

adult BBB (Armulik et al., 2010; Daneman et al., 2010). More
specifically, these studies demonstrated that BBB permeability
was inversely correlated to brain pericyte coverage in developing
mouse brains (Daneman et al., 2010) and that pericyte deficiency
increased BBB permeability in adult mice (Armulik et al., 2010).

While these studies have provided insight into the role of the
cellular components of the NVU in regulating the BBB, we have
less of an understanding of how the BM regulates BBB formation
and maintenance. Here, we first introduce the major components
of the vascular BM and review studies demonstrating the
importance of each component as it relates to the in vivo BBB.
We then discuss the impact of ECM components on in vitro BBB
models, focusing on models comprised of hPSC-derived cells,
and briefly discuss how cell type-specific ECM could be
important in BBB models. Finally, we describe how hPSC-
derived models can be used to explore the effects of brain BM
on the BBB to improve these models, to advance our
understanding of the BBB in development and disease, and to
develop improved strategies to target therapies across the BBB.

2 Major ECM components and
dynamics of the BM

Biochemically, the vascular BM has been profiled on the protein
level, primarily by targeted in situ immunostaining and western
blotting (Barber and Lieth, 1997; Paulsson, 1992; Po€schl et al., 2004;
Sixt et al., 2001; Song et al., 2017; Sorokin et al., 1994). These
experiments have demonstrated that the primary constituents of the
BM can be classified into four major types of ECM proteins: collagen

FIGURE 1
Schematic of a brain capillary cross-section. The blood-brain barrier (BBB) anatomically consists of brain microvascular endothelial cells (BMECs),
surrounded by brain pericytes embedded in a shared basement membrane (BM), and astrocyte endfeet. The major extracellular matrix (ECM) proteins in
the BM, collagen type IV (C4), laminin (LN), nidogen (N), agrin (A) and perlecan (P), are listed with examples of corresponding receptors in the figure. ECM
proteins and example receptors expressed by each cell type are in respective colored boxes.
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IV, laminin, nidogen (also called entactin), and heparan sulfate
proteoglycans (HSPGs), which include perlecan and agrin.

2.1 Collagen

Collagens are proteins with a characteristic triple helix of three
α-chains. There are more than 20 types of collagens. Type I collagen,
the most abundant and well-studied collagen, is found in bones,
tendons, skin, ligaments, cornea and many interstitial connective
tissues (Gelse, 2003). Type IV collagen is mainly found in basement
membranes, and six different collagen IV α-chains have been
identified. Collagen IV, with mainly α1 and α2 chains (encoded
by COL4A1 and COL4A2), is synthesized by BMECs, pericytes, and
astrocytes (Webersinke et al., 1992; Tilling et al., 2002; Stratman
et al., 2009; Vanlandewijck et al., 2018). Collagen IV can bind to
α1β1 and α3β1 integrins which are expressed by BMECs and
astrocytes (Baeten and Akassoglou, 2011).

Collagen IV is a major structural component of vascular BMs
throughout the body. Global knockout of COL4A1/2 results in
lethality as early as embryonic day 10.5 (E10.5) in mouse models
(Po€schl et al., 2004). COL4A1 mutations are also correlated with
cerebrovascular and neurological diseases such as ischemic stroke,
intracerebral hemorrhage (ICH), and porencephaly in human
families (Gould et al., 2006, 2005). Conditional deletion of
COL4A1 in mouse BMECs or pericytes caused fully penetrant
ICH, incompletely penetrant porencephaly, and macro-
angiopathy, demonstrating a central role of collagen IV in
vascular defects and brain damage (Jeanne et al., 2015).

2.2 Laminin

Laminins are trimeric proteins composed of α, β, γ chains. Five
different α, four β, and three γ chains have been identified, and
laminin isoforms are denoted by their chain composition (e.g.,
laminin 111, or LN111, for the heterotrimer consisting of α1, β1,
γ1 chains) (Aumailley, 2013). BMECs mainly synthesize LN411 and
LN511 (Sorokin et al., 1997; Sixt et al., 2001), and pericytes also
secrete α2/4/5- and γ1-containing laminins (Stratman et al., 2009;
Gautam et al., 2016; Vanlandewijck et al., 2018). Astrocytes
primarily generate LN211 (Jucker et al., 1996; Sixt et al., 2001).
Laminins can bind to α-dystroglycan and integrins such as α1β1,
α2β1, α3β1, α6β1, α6β4, to activate a variety of signaling pathways
that regulate cell proliferation, differentiation and migration (Belkin
and Stepp, 2000; Baeten and Akassoglou, 2011; Arimori et al., 2021).
For example, endothelial cells exhibit growth arrest when their
α2β1 integrins bind to laminins and activate cyclin-dependent
kinases (CDKs) CDK4 and CDK6 (Mettouchi et al., 2001).

Like collagen IV, laminin is a major structural component of
vascular BM, and most global knockouts of its subunits (e.g., α5, β1,
γ1) are embryonically lethal. Recently, viable genetic mouse models
revealed that laminin contributes to BBB integrity. In 2014, Yao et al.
(2014) showed that conditional deletion of laminin γ1 in mouse
neural progenitor cells (and thus astrocytes differentiated from these
cells) resulted in BBB breakdown and spontaneous ICH. Menezes
et al. (2014) showed that global knockout of laminin α2 in mice
resulted in defective BBB with increased permeability to Evans blue.

In 2019, Gautam et al. (2019) showed that conditional deletion of
laminin α5 in mouse endothelial cells had little effect under
homeostatic conditions, but resulted in elevated BBB permeability
after ICH was induced by intracerebral injection of collagenase. In
2020, Gautam et al. (2020) reported that conditional knockout of
pericyte-derived laminins in mice resulted in mild BBB breakdown
during aging. In short, laminins are important to the BBB, especially
for maintaining BBB integrity.

2.3 Nidogen, perlecan, agrin

Nidogen has two isoforms, nidogen-1 and nidogen-2. Neither
self-polymerizes, but both can crosslink collagen IV and laminin
(Fox et al., 1991). Similarly, perlecan (HSPG2) does not self-
assemble into sheet-like structures but can interact with other
BM components and heparin-binding growth factors (Farach-
Carson and Carson, 2007). Both nidogens and perlecan are
synthesized by BMECs and pericytes (Vanlandewijck et al.,
2018). Agrin can self-aggregate or interact with laminin
(Bezakova and Ruegg, 2003), and is produced by BMECs,
pericytes, and astrocytes (Vanlandewijck et al., 2018). It was
found that nidogen can bind to αvβ3 and α3β1 integrins,
perlecan to α-dystroglycan, α2β1 and α5β1 integrins, and agrin
to α-dystroglycan (Baeten and Akassoglou, 2011; Nakamura et al.,
2019).

Global knockout of both nidogen isoforms in mice is perinatally
lethal (Bader et al., 2005), although mice lacking nidogen-2 showed
no overt abnormalities (Schymeinsky et al., 2002). In mice with
global knockout of nidogen-1, the thickness of brain capillary BM
was significantly reduced compared to the wild type. In some cases,
the brain capillary BM was completely absent and the BMECs
appeared swollen in the cerebral cortex, which suggests possible
functional defects of the CNS (Dong et al., 2002). However, in a later
study, the authors reported no significant defects or abnormalities in
the CNS of nidogen-1-null mice and concluded that there was no
significant difference between mutant mice and wild type mice in
terms of the exclusion of Evans blue by the BBB (Vasudevan et al.,
2009).

Global knockout of perlecan leads to embryonic lethality in mice
(Arikawa-Hirasawa et al., 1999; Costell et al., 1999). In 2019,
Nakamura et al. (2019) reported that even though perlecan
deficiency does not appear to affect the BBB under normal
conditions, more BBB leakage and larger infarct volumes were
detected in conditional perlecan-deficient mice after transient
middle cerebral artery occlusion. Moreover, primary human
BMECs and brain pericytes attached to substrates coated with
either full-length or the C-terminal domain V of perlecan
(perlecan DV) in vitro, and the use of perlecan DV coating
promoted PDGF-BB-induced pericyte migration in an in vitro
wound healing assay.

Global knockout of agrin is also embryonically lethal in mice
(Gautam et al., 1996). Conditional knockout of agrin in mouse
endothelial cells resulted in increased brain vascular accumulation of
β-amyloid (Aβ), which is linked to AD pathology (Rauch et al.,
2011). During chick and rat development, agrin was detected in
association with brain microvessels around the time when the BBB
was formed (Barber and Lieth, 1997). Taken together, nidogen and
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agrin have been linked to BBB formation and function, although
their mechanisms of action are unclear, while perlecan has been
suggested to support BBB maintenance and repair via pericyte
recruitment following ischemic stroke.

2.4 Other ECM components of the
vascular BM

Unlike capillaries and postcapillary venules, arterioles and venules
are not surrounded by pericytes embedded in endothelial BM, but
instead vascular ECs are surrounded by endothelial BM, interstitial
matrix, then smooth muscle cells and their BM, in that order. The
interstitial matrix consists mainly of collagen I and collagen III, together
with other minor components such as decorin, biglycan, fibronectin,
and vitronectin (Thyberg et al., 1990; Dufourcq et al., 1998; Yousif et al.,
2013). However, it is noteworthy that most of our understanding of the
composition of the vascular BM surrounding arterioles and venules is
based on studies of vessels from organs other than the brain. Profiling
the composition of the BM in larger vessels in the brain will be
important to identify similarities and differences to the BM in other
vessels in the body.

2.5 Developmental dynamics of the BM

The composition of the vascular BM during development is
dynamic, guiding formation and maturation of vessels. For instance,
based on in situ hybridization, capillary ECs did not express LAMA5
in embryonic and newborn mouse brains, but LAMA5 was found in
mouse brain capillary ECs ~4 weeks after birth (Sorokin et al., 1997).
LAMA4 expression on the other hand, was detected by in situ
hybridization in mouse brain capillary ECs as early as embryonic
day 13 (Frieser et al., 1997). Thus, laminin composition appears to
be developmentally dynamic in brain with LAMA4 expressed
throughout development but LAMA5 induced in mature
capillaries. Other than laminin, the details of the developmental
dynamics of brain-specific vascular BM and their role in regulating
BBB induction remain largely unclear.

2.6 Changes in BM in neurological
degenerative diseases

AD is the most common form of dementia, and one of the
pathological hallmarks of AD is cerebral amyloid angiopathy (CAA),
the abnormal accumulation of Aβ in cerebral blood vessel walls. Recent
hypotheses propose a combination of genetic factors and vascular
factors, such as BBB dysfunction (Nelson et al., 2016), in AD
pathogenesis. For instance, BMECs and pericytes are found to be
impaired in terms of their Aβ-clearing abilities in the early stage of
AD (Gorelick et al., 2011; Montagne et al., 2018). At the same time,
various studies using mouse models and post-mortem human tissues
have demonstrated BM thickening in AD brains (Mancardi et al., 1980;
Claudio, 1995; ZAROW et al., 1997; Bourasset et al., 2009; Gama Sosa
et al., 2010; Merlini et al., 2011; Lepelletier et al., 2017), thus it is
hypothesized that BM thickening may play a role in compromising
overall Aβ clearance and exacerbating Aβ accumulation. However,

variable results have been reported regarding the changes in specific BM
components enriched or depleted using transgenic AD model mice
and/or post-mortem human tissues. For instance, Hawkes et al. (2013),
Hawkes et al. (2012) reported increased collagen IV in the BMofmouse
models of AD, while Bourasset et al. (2009) and Mehta et al. (2013)
reported decreased collagen IV.

The second most common neurodegenerative disease,
Parkinson’s disease (PD), is also linked to BBB dysfunction (Li
et al., 2014; Booth et al., 2017) and to thickening of brain capillary
BM (Farkas et al., 2000; Bertrand et al., 2008). The number of string
vessels (collapsed BM without endothelium) was found to be
significantly increased in PD patient samples (Yang et al., 2015).
In addition to AD and PD, BM changes coincided with BBB
dysfunction or breakdown in amyotrophic lateral sclerosis (ALS)
(Garbuzova-Davis et al., 2007; Coatti et al., 2017; Yoshikawa et al.,
2022). However, similar to AD, it is unclear how specific BM
components change as a result of ALS. For instance, while
Wiksten et al. (2007) reported increased laminin in the BM of
ALS patients, Liu et al. (2011) reported decreased laminin.

Unlike AD and PD which were associated with BM thickening,
degradation or dissolution of the BM was found following stroke in
mice, rats and baboons (Hamann et al., 1995; Fukuda et al., 2004;
Hamann et al., 2004; Kwon et al., 2009; Katsu et al., 2010). Most
stroke studies reported that collagen IV, laminin, perlecan and agrin
were degraded in both animal models and human postmortem
tissues (Hamann et al., 1995; Horstmann et al., 2003; Vosko
et al., 2003; Fukuda et al., 2004; Solé et al., 2004; Gu et al., 2005;
McColl et al., 2008; Rosell et al., 2008; Baumann et al., 2009; Lee
et al., 2011). However, some studies reported increased abundance
of collagen IV and laminins following ischemic stroke in rodents
(Anik et al., 2011; Ji and Tsirka, 2012). In addition to AD, PD and
stroke, MS was also found to be associated with changes in NVU BM
structure and composition. Specifically, BM in MS lesions was
irregular and discontinuous, and BM components including
laminins and HSPGs were abnormally deposited into the ECM of
the CNS white matter in MS patients (van Horssen et al., 2006,
2005). Future studies may be able to address how BM composition
changes during disease and uncover mechanisms by which ECM
components affect neurodegenerative disease pathologies using
disease models built with patient-derived induced pluripotent
stem cells (iPSCs) or genetically modified hPSCs, in conjunction
with animal studies and human postmortem samples.

3 Use of BM ECM components in
modeling the BBB in vitro

3.1 Collagen IV

3.1.1 Primary culture models
In vitro studies often use collagen-coated surfaces to culture

primary BMECs or purify for primary BMECs via selective
adhesion. In 1986, one of the first established protocols for
in vitro culturing of primary animal BMECs used a rat tail
collagen coating which mainly consists of collagen I (Freshney,
1986; Abbott et al., 1992). In 1998, Tilling et al. (1998) found that
Transwell inserts coated with collagen IV, laminin, fibronectin, or 1:
1 (mass ratio) mixtures of any two of these proteins all significantly
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increased TEER across the barrier formed by primary porcine
BMECs, compared to the rat tail collagen coating. Since then,
many studies adopted collagen IV or collagen IV + fibronectin
(C4/Fn) coatings to culture primary BMECs. For example, in 1999,
Igarashi et al. (1999) cultured primary porcine BMECs on collagen
IV-coated plates to study how glial cell-derived neurotropic factor
affects barrier function. Perrière et al. (2005) cultured primary rat
BMECs on collagen IV-coated Petri dishes in 2005, and Calabria
et al. (2006) cultured primary rat BMECs on C4/Fn-coated surfaces
including Transwell inserts in 2006 to study how puromycin can be
used to purify primary BMECs in in vitro cultures. Other studies
followed a protocol published in 2013 (Navone et al., 2013) where
primary human and mouse BMECs were purified by selective
adhesion to collagen I-coated flasks and cultured on collagen
I-coated surfaces, such as Transwell inserts (Chan et al., 2018;
Fan et al., 2019; Zhong et al., 2020).

3.1.2 Stem cell-based BBB models
In the last decade, an increasing number of studies have used

hPSC-derived cells to build human in vitro BBB models for their
human origin, high scalability, and physiological barrier properties.
It was first reported in 2012 that cells possessing some key functional
characteristics of BMECs can be derived from hPSCs. These
characteristics include expression of tight junction proteins,
nutrient transporters and polarized efflux transporters, the ability
to form a barrier with high, physiological TEER and low passive
permeability comparable to that of primary animal BMECs, and
responsiveness to astrocyte- and pericyte-derived cues (Lippmann
et al., 2012; Canfield et al., 2019; Di Marco et al., 2020). These hPSC-
derived BMEC-like cells (hPSC-BMECs for short) were generated
with the following steps (Figure 2A): hPSCs were seeded and
expanded in hPSC culture medium on plates coated with

Matrigel, a complex ECM protein mixture (largely laminin,
collagen IV and nidogen) derived from Engelbreth-Holm-Swarm
mouse sarcomas (Hughes et al., 2010). The medium was first
switched to unconditioned medium which drives simultaneous
differentiation of neural cells and BMEC-like cells, simulating the
microenvironment of the developing brain. The medium was then
switched to one that selectively expands endothelial cells, and the
mixed population was re-plated onto C4/Fn-coated surfaces to
purify the endothelial cells.

Since the initial success of generating hPSC-BMECs, numerous
modifications have been made to the differentiation protocol, but
the vast majority of the published protocols use the same ECM
coatings: Matrigel for the 1st phase of the differentiation, and C4/Fn
for the 2nd phase (Figure 2A) (Lippmann et al., 2014, 2012;
Hollmann et al., 2017; Qian et al., 2017; Neal et al., 2019). The
authors of the first hPSC-BMEC publication chose C4/Fn coating
because it is “commonly used for primary BMEC culture”
(Lippmann et al., 2012). However, the C4/Fn coating may not
optimally support all BMEC phenotypes. For example, Nakakura
et al. (2021) reported in 2021 that fibronectin can maintain
functional fenestra in rat ECs from fenestrated capillaries
(i.e., leaky capillaries, as opposed to highly impermeable, barrier-
possessing capillaries in the brain), which suggests that the use of
fibronectin may not be the best choice for BBB models. However, at
the same time, recent in silico analyses of RNA sequencing results
indicate that human brain pericytes express FN1 (the gene encoding
fibronectin) at a higher level than mouse brain pericytes (Gastfriend
et al., 2021a), thus future studies are needed to uncover species-
specific effects of fibronectin on the BBB formation and/or
maintenance.

C4 is not only used in ECM coatings to aid in purifying
endothelial-like cells from a mixed cell population during the 1st

FIGURE 2
Schematics of differentiation and characterization of hPSC-BMEC like cells. (A) BMEC-like cells can be derived from human pluripotent stem cells
(hPSCs) by first co-differentiating hPSCs to neural cells and BMEC-like cells on plates coated with Matrigel, then purifying and maintaining endothelial
cells on endothelial-selective collagen IV/fibronectin (C4/Fn)-coated surfaces such as Transwell inserts for transendothelial electrical resistance (TEER)
measurement(Lippmann et al., 2012). (B–C) Schematics of experimental setups for studies on how laminin isoforms affect hPSC-BBBmodels. It was
found that laminin isoforms 221 and 511 can replace or supplement Matrigel in hPSC-BMEC differentiation phase 1(Aoki et al., 2020) and C4/Fn in phase
2(Motallebnejad and Azarin, 2020), respectively, for improved hPSC-BMEC characteristics such as higher TEER and lower permeability.
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phase of hPSC-BMEC differentiation, but also supports the
continued culture of differentiated hPSC-BMECs during the 2nd
phase. It was reported that hPSC-BMECs can also be purified and
cultured until the formation of confluent monolayers on collagen
I-coated glass surfaces for simultaneous imaging analyses and
permeability assays (Ruano-Salguero and Lee, 2018). The final
cell products expressed Occludin, Claudin-5, Glut-1 and Mfsd2a.
Permeabilities of sodium fluorescein (NaFL) and IgG measured
through confocal microscopy of hPSC-BMECs cultured on collagen
I-coated glass surfaces were comparable to previously reported
values from hPSC-BMECs cultured on C4/Fn-coated Transwell
inserts (Ruano-Salguero and Lee, 2018). It is possible that this
system may be further improved in terms of physiological
relevance if ECM components found in the brain vascular BM
are used in conjunction with collagen I gels, for example, if the
collagen I gel was coated with collagen IV and/or laminin.

In contrast to 2D studies where hPSC-BMECs are cultured on C4/
Fn-coated plastic surfaces or porous polymer membranes, recent
studies aiming to construct 3D brain microvessels often use collagen
I gels as the scaffolds, adjust and optimize gel stiffness, then coat the gel
with physiologically relevant BM components. In pilot 2D experiments
preparing for 3D microvessel construction, Katt et al. (2018) noticed
that gels with a higher collagen I concentration, thus higher stiffness, led
to better cell coverage after seeding hPSC-BMECs. Katt et al. (2018) also
found that the collagen I gel fabricated with or without LN/nidogen
before coating the gel with C4/Fn had no effects on cell coverage.
Eventually, Katt et al. (2018) chose to construct 3D microvessels by
seeding hPSC-BMECs into cylindrical collagen I gels coated with C4/Fn
(Figures 3A, B). The resulting microvessels expressed ZO-1 and
exhibited much lower permeability to Lucifer yellow (LY) than in
previous studies using microvessels formed by human umbilical vein
endothelial cells (HUVECs). In 2019, two additional studies used the
cross-linker genipin to adjust the stiffness of a collagen I gel used to
generate the cylindrical structure. Grifno et al. (2019) coated the 3D
structure with Matrigel before seeding hPSC-BMECs, and the resulting

microvessels expressed Claudin-5 and exhibited low permeability to LY.
Linville et al. (2019) coated the collagen I gel with C4/Fn before seeding
hPSC-BMECs. The resulting hPSC-BMEC vessels expressed BBB
markers such as Claudin-5 and Glut-1, and exhibited low
permeability to LY, Rhodamine 123 (R123), and 10 kD dextran
compared to vessels formed with HUVECs. These two studies
reported consistent results of low permeability across hPSC-BMECs
cultured in 3D vessels built with collagen I gels coated with Matrigel or
C4/Fn (Figures 3A, B).

Recent studies have also demonstrated effectiveness of C4/Fn
coatings on other substrates and scaffolds in hPSC-BMEC models.
For instance, in a study published in 2022, electrospun fiber mats
from gelatin and/or poly-ε-caprolactone (PCL) solutions were
synthesized, and then the fiber mats were coated with C4/Fn
before seeding hPSC-BMECs. This study showed that NaFL
permeability was significantly lower for hPSC-BMECs cultured
on PCL fiber mats coated with C4/Fn compared to those
cultured on Matrigel-coated Transwell inserts (Rohde et al.,
2022). Another study published in 2022 used the capillary lane of
a MIMETAS OrganoPlate® 3-lane (a device with three divided lanes,
namely, capillary, middle (hydrogel), and brain lanes) coated with
C4/Fn (Figures 3C, D). BMECs cultured in this system expressed
BBB markers such as Claudin-5, ZO-1, Glut-1 and Breast Cancer
Resistance Protein (BCRP) and exhibited low permeability to LY.
Notably, the authors found that ABCG2 (gene encoding BCRP)
expression in BMECs was 3.3-fold higher in their 3D system
compared to 2D monolayer culture measured by qRT-PCR, and
that transport of BCRP substrates in their 3D system was
comparable to that in previous in vivo rat studies (Kurosawa
et al., 2022). It is possible that these systems could be further
improved and lead to better in vitro BBB models if coatings
alternative to C4/Fn were tested and optimized.

Collagen gels have also been used to embed cells for co-culture
experiments tomodel cellular interactions in the NVU. For example,
in 2019, hPSC-derived mesodermal pericytes were embedded in

FIGURE 3
Schematics of three-dimensional models built with hPSC-BMEC like cells. (A) Side view of the collagen I gel during model construction. Neutralized
collagen I was injected into glass enclosure around a template rod. (B) Cross-sectional view of finished model. The cylindrical gel was treated with ECM
coating solutions, then seeded with hPSC-derived BMEC-like cells. (C) One well in the OrganoPlate 3-lane plate (with 40 clusters of 9 wells on each
plate). (D) Cross-sectional view of the finished model. Three lanes are separated by artificial membranes. Capillary lane was coated with collagen IV
and fibronectin, then seeded with hPSC-derived BMEC-like cells. The middle lane was filled with collagen I gel.
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collagen I gels placed onto Transwell inserts, then hPSC-BMECs
were cultured on the gel. There were no significant differences in
barrier tightness measured by TEER with and without embedded
pericytes. However, the authors found that the presence of hPSC-
BMECs caused the pericytes to migrate further away from the gel
surface compared to pericytes in gels without BMEC coverage,
demonstrating that hPSC-pericytes respond to cues derived from
hPSC-BMECs (Jamieson et al., 2019). While brain pericytes are
indeed embedded in vascular BM in vivo [Figure 1], the use of brain
vascular BM components (e.g., collagen IV instead of collagen I) to
embed primary human pericytes or hPSC-derived brain pericyte-
like cells (Stebbins et al., 2019) may provide an in vitro platform that
better models BMEC-pericyte interactions.

3.2 Laminin

Isolating and purifying specific laminin isoforms from tissues has
been difficult or impractical, and production protocols for
recombinant laminins have a relatively short history (~10 years)
(Miyazaki et al., 2012) compared to laminin-containing ECM
mixtures such as Matrigel (30+ years) (Kleinman et al., 1986;
Guzelian et al., 1988; Fridman et al., 1990; Taub et al., 1990). This
results in considerably higher costs of purified laminin isoforms
compared to Matrigel. As discussed in Section 3.1.2, most studies
developing and optimizing hPSC-BMEC differentiation protocols
focused on the composition of the culture media and parameters
such as the seeding density of hPSCs, with little regard to the
composition of the ECM coatings (Lu et al., 2021a; Yan et al.,
2021). Due to limited access to purified laminins and lack of
consideration of the ECM in hPSC-BMEC differentiation, effects
of specific laminins in in vitro BBB models were not systematically
studied until recently. In the past few years, researchers hypothesized
that the use of specific laminins can influence performance of in vitro
BBBmodels given the physiological roles of laminins in the NVU BM.
Specifically, Aoki et al. (2020) compared coating 2D cell-culture
surfaces with Matrigel, Fn, vitronectin, LN221, LN411, and
LN511 during the 1st phase (days 0–8) of hPSC-BMEC
differentiation (Figure 2B). All groups were re-plated onto the
standard C4/Fn-coated surfaces for the 2nd phase of
differentiation. The authors found that hPSC-BMECs differentiated
on LN211 and those on vitronectin had significantly higher TEER
compared to those differentiated on Matrigel. hPSC-BMECs
differentiated on LN221 also exhibited significantly lower
permeabilities to FD4 and LY and significantly higher P-gp and
BCRP activities, measured by accumulation of their substrates
R123 and Hoechst, respectively. The authors speculated that
LN211 coating might be optimal for the 1st phase of hPSC-BMEC
differentiation because the laminin α2 subunit plays a role in BBB
formation, as demonstrated by previous in vivo study conducted by
Menezes et al. (2014).

In another study published in 2020, Motallebnejad et al.
hypothesized that the use of laminin coating might be beneficial for
later phases of hPSC-BMEC differentiation, since there exists evidence
for a switch from fibronectin-mediated signaling during development to
laminin-mediated signaling during maturation in mouse CNS (Milner,
2002). The authors compared LN511, LN411, and C4/Fn coatings
following a shortened (1–2 h incubation instead of up to several days)

2nd phase of hPSC-BMEC differentiation (Figure 2C), while keeping
the preceding differentiation substrates unchanged from standard
protocols (i.e., Matrigel for the 1st phase and C4/Fn for the selective
purification). The authors found that LN511, but not LN411, improved
expression and localization of Occludin, Claudin-5, ZO-1, and VE-
cadherin. The use of LN511 resulted in a more activated phenotype in
hPSC-BMECs (e.g., significantly lower expression of ANGPT2,MMP1,
MMP9, FN1 and LAMA5 measured by mRNA abundance, and more
prominent migration in wound healing assay). The use of LN511 also
enhanced responses of hPSC-BMECs to shear stress under dynamic
flow conditions: Analysis of phase contrast images revealed a significant
increase in cell elongation measured by aspect ratio of the cells;
fluorescent staining for F-actin demonstrated formation of stress
fibers which were not present in the static culture, and
immunocytochemistry analysis showed increased expression of
Claudin-5, ZO-1, and VE-cadherin compared to cells cultured in
static conditions (Motallebnejad and Azarin, 2020). Few studies
building 3D models of the BBB using hPSC-BMECs have
incorporated laminins in the scaffolds. Katt et al. (2018) compared
various ECM coatings on collagen I gels and found no significant
differences in cell adhesion or coverage between coatings with one, two,
or three components among collagen IV, Fn, and laminin.

NVU cell types other than BMECs differentiated on specific
laminin isoforms were also found to differ in their BMEC barrier-
inducing capacities. For instance, in 2019, hPSC-astroglia
differentiated on human LN521 were found to induce barrier
properties in hPSC-BMECs (e.g., lower NaFL permeability and
higher VE-cadherin expression level) more than those
differentiated on murine laminins (Delsing et al., 2019),
demonstrating that BM components can also affect the BMEC
barrier indirectly through associated NVU cells.

3.3 Nidogen, perlecan, agrin, and other ECM
proteins

There has been very little exploration of the roles of nidogen,
perlecan, agrin, or other ECM proteins using in vitro BBB models. In
2018, Katt et al. (2018) found that the addition of agrin, but not perlecan,
to the C4/Fn coating on collagen I gels significantly increased coverage of
hPSC-BMECs. However, the addition of agrin and laminin to C4/Fn
coating also significantly decreased TEER of the final hPSC-BMEC
monolayers. This effect was speculated by the authors to be agrin/
laminin-mediated enhancement of focal adhesion formation to the
detriment of barrier function. In 2019, Qian et al. (2017) found that
Synthemax or recombinant human vitronectin coating can be used to
replace Matrigel for hPSC culture and the 1st phase of hPSC-BMEC
differentiation (Figure 2A), and that the resulting cells expressed key
proteins such as Claudin-5, Occludin, Glut-1, and P-gp, similar to those
differentiated onMatrigel.More systematic and quantitative comparisons
are needed to examine the effects of incorporating nidogen/agrin/
perlecan and other ECM proteins into in vitro BBB models.

4 Decellularized ECM and the BBB

A complementary strategy to systematic comparison of single
or combinations of ECM components is the use of decellularized
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ECM, which is typically obtained using detergent-containing wash
buffers to remove cells from confluent culture, leaving a layer of
ECM deposited by those cells on the cell culture surfaces. In 2007,
Hartmann et al. (2007) cultured primary porcine BMECs on
decellularized ECMs derived from porcine brain pericytes,
mouse astrocytes, porcine aorta ECs, and porcine BMECs. Both
pericyte-ECM and astrocyte-ECM increased TEER, while aorta-
ECM decreased TEER, compared to the BMEC-ECM control. In
2016, Zobel et al. (2016) cultured primary porcine BMECs on
decellularized ECMs derived from porcine brain pericytes, spinal
cord astrocytes, and porcine BMECs. BMECs cultured on pericyte-
derived ECM exhibited significantly higher TEER than those
cultured on ECMs derived from astrocytes or BMECs. Zobel
et al. (2016) also generated layered decellularized ECMs by
sequentially culturing and removing astrocytes followed by
pericytes (AP-ECM), or pericytes followed by astrocytes (PA-
ECM). Both AP-ECM and PA-ECM were found to induce
TEER to a greater extent compared to double layers of BMEC-
ECM. These studies suggest that decellularized ECMs derived from

NVU cell types could enhance BMEC phenotypes in in vitro BBB
models. Compared to using surfaces coated with specific ECM
proteins or protein mixtures, decellularized ECM has the
advantage of better recapitulation of the complex structure and
composition of ECM in vivo, providing appropriate chemical and
mechanical cues for cell function from specific cell types (i.e., cell
types used for generating decellularized ECMs are cell types from
which chemical and mechanical cues are derived). However, the
use of decellularized ECM has some disadvantages as well,
including being largely uncharacterized, thus not directly
providing insights regarding molecular mechanisms, having
larger batch-to-batch variability, and source material availability
issues that complicate large-scale experimentation.

5 Perspectives and conclusion

The vascular BM is an indispensable part of the BBB. Major BM
components in the healthy adult NVU, including collagen IV, laminin,

TABLE 1 ECM coatings used in in vitro hPSC-BBB models. Summary of ECM coatings used in recent in vitro hPSC-BBB models, compared to the established protocol
described in section 3.1.2 and illustrated in Figure 2A.

ECM coatings Substrate Timing Applications/Results Source

(Established protocol)
Matrigel

Cell culture plates hPSC-BMEC Phase 1 (Figure 2A) Support the simultaneous differentiation of neural and
endothelial cells

Lippmann et al.
(2014), (2012)

(Established protocol)
Collagen IV + fibronectin

Cell culture plates or
Transwell inserts

hPSC-BMEC Phase 2 (Figure 2A) Selectively purify for endothelial cells and support their
maintenance

Lippmann et al.
(2014), (2012)

Collagen I Glass slides hPSC-BMEC Phase 2 Can be used for simultaneous imaging and permeability
assays

Ruano-Salguero and
Lee (2018)

Final cell products expressed Occludin, Claudin-5, Glut-1,
Nfsd2a and had low permeabilities to NaFL and IgG

Collagen IV + fibronectin Cylindrical collagen
I gel

hPSC-BMEC Phase 2 (Figures
3A, B)

Formation of 3Dmicrovessels with expression of ZO-1 and
lower permeability to LY compared to HUVECs

Katt et al. (2018)

Matrigel Cylindrical collagen
I gel

hPSC-BMEC Phase 2 (Figures
3A, B)

Formation of 3D microvessels with expression of Claudin-
5 and low permeability to LY

Grifno et al. (2019)

Collagen IV + fibronectin Cylindrical collagen
I gel

hPSC-BMEC Phase 2 (Figures
3A, B)

Formation of 3D microvessels with expression of Claudin-
5, Glut-1, and low permeabilities to LY, R123, 10kD
dextran

Linville et al. (2019)

Collagen IV + fibronectin Electrospun fiber mats hPSC-BMEC Phase 2 Final cell products had lower permeability to NaFL than
cells cultured on Matrigel-coated Transwell inserts

Rohde et al. (2022)

Collagen IV + fibronectin OrganoPlate 3-lane
plates

hPSC-BMEC Phase 2 (Figure
3C, D)

Final cell products expressed Claudin-5, ZO-1, Glut-1,
BCRP, had low permeability to LY and physiological
activity to BCRP substrates

Kurosawa et al.
(2022)

Laminin 221 Cell culture plates hPSCs and hPSC-BMEC Phase 1
(Figure 2B)

Final cell products had higher TEER, lower permeabilities
to FD4 and LY, higher P-gp and BCRP activities compared
to cells generated with the established protocol

Aoki et al. (2020)

Laminin 511 Cell culture plates or
Transwell inserts

Following hPSC-BMEC phase 2
(Figure 2C)

Final cell products had improved expression and
localization of Occludin, Claudin-5, ZO-1 and VE-
cadherin, enhanced responses to shear stress compared to
cells generated with the established protocol

Motallebnejad and
Azarin (2020)

Laminin 521 Cell culture plates hPSC-astroglia differentiation hPSC-BMECs co-cultured with astroglia differentiated on
human LN521 had higher TEER and lower permeability to
NaFL than BMECs co-cultured with astroglia
differentiated on murine laminin mixtures

Delsing et al. (2019)

Synthemax or vitronectin Cell culture plates hPSCs and hPSC-BMEC Phase 1
(Figure 2A; instead of Matrigel)

Final cell products expressed Claudin-5, Occludin, Glut-1,
and P-gp, similar to those differentiated on Matrigel

Qian et al. (2017)
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nidogen, perlecan, and agrin, were all found to play roles in BBB
development and/or organism viability based on animal studies with
targeted deletions. Initial in vitro BBB models were typically comprised
of primary BMECs or hPSC-derived BMEC-like cells cultured on
surfaces coated with Matrigel, collagen I, collagen IV, fibronectin,
and mixtures of these ECM proteins, and the resulting models
capture key BBB phenotypes including barrier formation and
transporter activities. More recent models have cultured hPSC-
BMECs on specific combinations and isoforms of BM components
that are informed by neurovascular development, such as laminin
511 following collagen IV-fibronectin mixture. These combinations
improved BBB phenotypes, including elevated barrier function and/or
enhanced responses to shear stress in hPSC-BMECs, resulting in
improved in vitro human BBB models (Table 1). In this review, we
focused on how hPSC-BMEC models are affected by different ECM
components since the hPSC-BMECmodel is currently the only in vitro
human BBB model with both a physiologically tight barrier (e.g.,
measured by TEER greater than one thousand Ω·cm2) and
organotypic transporter activities (Aazmi et al., 2022), but
admittedly, current hPSC-BMEC models have significant limitations.
For example, it was found that hPSC-BMECs exhibit epithelial
transcriptional signatures and low expression of endothelial genes
(Lippmann et al., 2020; Workman and Svendsen, 2020; Lu et al.,
2021b, 2021a). Introducing endothelial-specific transcription factors
ETV2, ERG, and FLI1 to hPSC-BMECs induced expression of
endothelial transcripts, but also diminished BBB phenotypes,
including barrier properties (Lu et al., 2021b). Generating hPSC-
BMECs that both possess endothelial identity and recapitulate BBB
phenotypes is a critical, current roadblock to employing hPSC-derived
models of the BBB, and identifying appropriate ECM substrates for
differentiation and culture of these cells could play an important role in
improving the fidelity of hPSC-BMECs.

As a complementary approach to inducing endothelial gene
expression in existing hPSC-BMEC models, efforts are underway to
impart BBB phenotypes to naïve or “generic” endothelial cells (ECs) (e.g.,
Lian et al., 2014; Patsch et al., 2015) by expressing transcription factors
(Roudnicky et al., 2020) or treating the cells with small molecules
(Gastfriend et al., 2021b). These strategies can only induce a limited
subset of BBB properties in generic ECs; for example, the resulting cells
do not form physiologically tight barriers and lacked efflux transporter
activity. In addition, the role of ECM in stimulating BBB specification in
these ECs has not yet been studied and could be a fruitful path forward.
While recent reviews of in vitro BBB models have thoroughly
summarized how different models compare and can be used to study
BBB/NVU function (Erickson et al., 2020; Linville and Searson, 2021;
Yan et al., 2021; Aazmi et al., 2022), none has recognized the role of ECM
in hPSC-derived BBB models, indicating a continued need for ECM
exploration in the BBB modeling field.

Moving forward, a better fundamental understanding of the
composition, organization and dynamics of the BBB BM during
development, health, and disease is needed to guide in vitro BBB
model development. Notably, while NVU-specific transcriptomic
data provides some insight into cell type-specific synthesis of ECM
components, quantitative proteomics specific to the NVU BM is
largely lacking, making it difficult to screen and rationally design
biomimetic ECM mixtures for BBB modeling. Thus, future studies
that profile and analyze the brain vascular BM composition and
dynamics would accelerate design of defined mixtures of ECM

components that are more physiologically relevant and/or provide
improved functional phenotypes of BMECs. Although better
proteomic data may inform optimal ECM coatings for in vitro
BBB models, such “bottom-up” methods (i.e., building mixtures
with individual components) could still be difficult due to
challenges in sourcing and scaffolding specific proteins and
protein isoforms. Future studies should also utilize
decellularized matrices from primary or hPSC-derived cells to
elucidate how BM components produced by different cell types
affect BBB properties. Proteomic profiling of the decellularized
matrices followed by “top-down”methods (e.g., selective depletion
of components via gene disruption or protein blocking) may also
provide insight into the roles of various ECM molecules in
regulating BBB function. In addition to the BM on the
abluminal side, the endothelial glycocalyx (EG) on the luminal
side of BMECs is also comprised of a mixture of ECM molecules
(e.g., proteoglycan proteins and glycosaminoglycan chains)
synthesized by BMECs and has been found to be important for
regulating the BBB (Kabedev and Lobaskin, 2018; Jin et al., 2021;
Zhao et al., 2021). Although it would be challenging or impractical
to artificially deposit ECM molecules on BMECs to simulate the
EG in in vitro BBB models, future studies should assess the ECM
secreted by BMECs on the luminal side to benchmark how well the
EG is recapitulated in in vitro models, and to make appropriate
improvements.

Both the BBB and BM change during development and under
disease conditions, but we have insufficient understanding about what
changes occur and the mechanisms by which these changes regulate
developmental or disease progression. As discussed in previous sections,
a few studies have explored how different laminin isoforms used at
certain time points of the experiments affect the in vitro human BBB
models, but none has investigated effects of dynamic changes in laminin
and/or other ECM coating composition that may be physiologically
relevant for BMEC cultures. An hPSC-derived BBB model
incorporating BM dynamics would be a powerful tool to assess the
roles of ECM in human BBB development and neurodegenerative
diseases and to develop new ECM-based strategies to restore BBB
function during disease.
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