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This study presents an overview of and innovations in reverse osmosis (RO)
membrane processes for rejecting chargedmetal ions inwastewater in relation to
the main problems associated with purification methods. It also explains the
emergence of nanomaterials and the different methods applied for RO
membrane modification to improve performance. Membrane regeneration
and retentate management are also considered. The study concludes with an
economic feasibility study for the industrial scale-up of the methodology.
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1 Introduction

Both the environment and human health are under serious pressure from inorganic and
organic micropollutants due to their non-biodegradable nature, persistence, toxicity,
bioaccumulation in the food chain, and biomagnification in higher organisms (Feng
et al., 2021; Peng and Bartzas, 2021). Micropollutants are contaminating flora and
fauna, and the air, atmosphere, water, and soil; they have become progressively more
pronounced over the past decade as a result of global population growth (Peng and
Bartzas, 2021).

In ecological terms, any metal or metalloid that causes environmental pollution or has
no biological interest in the organism can be considered a heavy metal (HM) (Herrera-
Estrella and Guevara-Garcia, 2001). Some of these metals are micronutrients necessary for
plant growth (e.g., Zn, Cu,Mn, Ni, and Co), while others have unknown biological functions
and are toxic (e.g., Cd, Pb, and Hg) According to Feng et al. (2021) and Herrera-Estrella and
Guevara-Garcia (2001), a “heavy metal” is a metal or metalloid element that causes
environmental pollution, has no vital function, and is toxic at low concentrations (such
as Pb and Hg), or has a vital function but is harmful to organisms at high concentrations
(such as Cu and Mo). Heavy metals have been categorized as toxic metals (Hg, Cr, Zn, Cu,
Ni, Cd, As, Co, Sn, etc.), precious metals (Pd, Pt, Ag, Au, Ru, etc.), and radionuclides (U, Th,
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Ra, Am, etc.) (Wang and Chen, 2009). The most common are Pb,
Zn, Hg, Ni, Cd, Cu, Cr, and As, which are always dangerous, even
when detected at trace levels. Table 1 below lists the main sources of
heavy metals, their health effects, and their permissible drinking
water standard. Other metals frequently present in wastewater, such
as Ag, Fe, Mn, Mo, B, Ca, Sb, and Co, must be completely eliminated
(Qasem et al., 2021).

Heavy metals must be treated due to their non-biodegradable
properties (Fu and Wang, 2011). Trace heavy metals can be toxic
through the process of biomagnification, which can increase their
concentration to a point where they become toxic (Khan et al.,
2008). Several processes are used to remove heavy metals,
including chemical precipitation and electrochemical treatment,
but these are not effective for concentrated ions and produce
excessive amounts of sludge. Ion selectivity is high in ion
exchange treatment, but the cost of the resins is too high
(Bashir et al., 2019). Adsorption uses either inorganic
adsorbents—natural minerals, ores, clays and industrial solid
waste such as bauxite red mud, slag, ash, water treatment
sludge (alum), and seawater-neutralized red mud—or organic
adsorbents—waste organic matter from plants or animals (Khan
et al., 2008; Zhu et al., 2019). Sulfate-reducing bacteria (SRB) are
used to biologically remove heavy metals, producing metal sulfide
precipitates on a large scale (Perales-Vela et al., 2006). This
treatment has weaknesses such as long residence times and the
need for continuous feeding substrates and larger bioreactors

(White et al., 1997; Perales-Vela et al., 2006). Moreover,
microalgae are limited and do not purify effluent (Monteiro
et al., 2012).

It has become imperative to look for new technologies to remove
heavy metals, such as membrane technology. The right technology
needs to be scalable, applicable to field conditions, economical, and
capable of eliminating heavy metal concentrations to the established
standard (Sheng et al., 2004). Membrane technologies are therefore
of immediate interest for the quality of treated water. Table 2 below
summarizes the strengths and weaknesses of biological, chemical
precipitation, electrochemical, and pressure filtration processes.

Many studies have reviewed the application of reverse osmosis
(RO) membranes. For example, Abdullah et al. (2019) conducted a
literature review of the use of membrane technologies for heavy
metal removal. They discussed the performance and capabilities of
different membrane processes and their advantages and
disadvantages. Guo et al. (2022) studied the scale inhibition
mechanism and modification strategy, which influences the
biofouling of RO membranes. Xiang et al. (2022) reviewed the
latest developments, discoveries, and prospective applications
related to ultrafiltration (UF), nanofiltration, reverse osmosis, and
electrodialysis, with an in-depth focus on heavy metal removal. They
presented perspectives on opportunities and challenges in the field
of membrane filtration. Saleh et al. (2022) evaluated removal
processes by chemical precipitation, photocatalysis, flotation, ion
exchange, remediation, electrochemical treatment, adsorption,

TABLE 1 Typical heavy metals present in wastewater (WHO, 2017; Qasem et al., 2021).

Heavy
metal

Main sources Krishna Kumar et al.
(2015); WHO, (2017); Demiral et al.
(2021)

Main organ and system affected Ngah
and fatinathan, (2008); Fu and Wang,
(2011); Owalude and Tella, (2016);
Marciniak et al. (2019); Duan et al. (2020)

Permitted amounts (μg)
Demiral et al. (2021)

Pb Lead-based batteries, solder, alloys, cable sheath
pigments, rust inhibitors, ammunition, enamels, and
plastic stabilizers

Bones, liver, kidneys, brain, lungs, spleen, immunological
system, hematological system, cardiovascular system, and
reproductive system

10

As Electronics and glass production Skin, lungs, brain, kidneys, metabolic system,
cardiovascular system, immunological system, and
endocrine

10

Cu Corroded plumbing systems, electronics, and cables
industry

Liver, brain, kidneys, cornea, gastrointestinal system, lungs,
immunological system, and hematological system

2000

Zn Brass coating, rubber products, some cosmetics, and
aerosol deodorants

Stomach cramps, skin irritations, vomiting, nausea, anemia,
and convulsions

3,000

Cr Steel and pulp mills and tanneries Skin, lungs, kidneys, liver, brain, pancreas, tastes,
gastrointestinal system, and reproductive system

50

Cd Batteries, paints, steel industry, plastic industries, metal
refineries, and corroded galvanized pipes

Bones, liver, kidneys, lungs, testes, brain, immunological
system, and cardiovascular system

3

Hg Electrolytic production of chlorine and caustic soda,
runoff from landfill and agriculture, electrical appliances,
industrial and control instruments, laboratory apparatus,
and refineries

Brain, lungs, kidneys, liver, immunological system,
cardiovascular system, endocrine, and reproductive system

6

Sb A rare naturally occurring element; its presence in
aquatic ecosystems, soils, and the atmosphere is justified
by volcanic activity, the weathering of rocks, and the use
of products containing antimony

According to the NCBI (National Center for Biotechnology
Information), antimony poisoning can cause
gastrointestinal distress, nausea, and even ulcers. Inhalation
exposure to antimony causes pneumonitis, and long-term
consumption leads to cancer

6

Ni Stainless steel and nickel alloy production Lung, kidney, gastrointestinal distress, pulmonary fibrosis,
and skin

70
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membrane technologies, and coagulation/flocculation. Qasem et al.
(2021) exhaustively and critically reviewed and discussed methods
in terms of the agents/adsorbents used, metal ion removal efficiency,
operating conditions, and the advantages and disadvantages of each
method. In this study, we focus specifically on the different materials
and specific methods for synthesizing RO membranes, as well as
different wastewater treatment methods. The information available
in this review will allow researchers to understand the available work
and then consider the synthesis of new innovative ROmembranes. It
provides researchers with comprehensive data on metal and
metalloid discharges and describes the performance of different
membranes in terms of permeate flux and methods of heavy metal
removal from wastewater, as well as the necessary information on
chemical membrane cleaning and end-of-life membrane
management.

This review also addresses the technical challenges of the
existing membrane process and recommends future research for
further improving membrane performance to make it the best
alternative for treating water laden with heavy metals. This work is
not the first on the subject to eliminate heavy metals. A great deal
of work has been done to eliminate metal ions from water. For
example, Dompé and Ahoulé, (2016) conducted a study on
borehole water intended for consumption that was
contaminated with arsenic. The removal of As (V) by reverse
osmosis membrane (TW30) was 97.6% effective. A synthetic
tannery effluent was first treated with commercial reverse

osmosis membranes (BW30 and SW30). Next, a CS membrane
on a polyethersulfone (PES) support (cs-PES MFO22) was
prepared. The cs-PES MFO22 membrane was very effective at
removing >99% of chromium. Removal of Cr, Ca, Mg, K, and Na
on a BW 30 membrane ranged from 80%–90%, 85%–98%, 80%–

97%, 60%–80%, and 60%–80%, respectively, and, on a
SW30 membrane, 80%–98%, 80%–98%, 80%–98%, 78%–96%,
and 78%–96%, respectively (Zakmout et al., 2020). Conidi et al.
(2018) conducted a study to reduce the salinity of flue gas
desulphurization (FGD) wastewater. After softening with
Na2CO3 H2O and ultrafiltration, the wastewater was filtered
through two commercial thin-film composite polyamide RO
membranes (SWC-2540 and ESPA-2540 from Hydranautics).
Experimental results indicated that the SWC-2540 membrane
performed better in rejecting ions: Mg2+ ions were completely
rejected, while the rejection of monovalent ions such as Na+ was
approximately 95.5%. The ESPA-2540 membrane showed
rejection of Ca2+ and Mg2+ higher than 86.5%, whilst the
observed rejection of Na+ was 80%. For the SWC-2540
membrane, an increased rejection of Ca2+ and Na+ ions was
observed by increasing the operating pressure in the range of
16–50 bar. Mg2+ ions were totally rejected independently by the
operating pressure. MIL-101 (Cr) nanoparticles were doped into
the dense layer of selective polyamide (PA) on the polysulfone (PS)
ultrafiltration support to prepare a thin-film nanocomposite
membrane for water desalination. sodium chloride (NaCl)

TABLE 2 Strengths and weaknesses of biological and pressure filtration processes (Wang and Chen, 2009; Chen et al., 2018; Perpetuo et al., 2011; Monteiro
et al., 2012; Bashir et al., 2019).

Type of process Strength Weakness

Biology Bioremediation [microorganisms,
sulfate-reducing bacteria (SRB)]

- Low investment costs - Ineffective for highly concentrated ions in solution (Jiang et
al., 2018)

Phytoremediation (plants) - Long adsorption residence time

- Does not purify the effluent and requires space

- Effective for low
concentrations of HMs in
solution

- Accumulation depends on the following parameters: i) metal
ion properties (atomic weight and valence);

- Energy-saving ii) biotic and abiotic parameters (pH, temperature, ionic
strength, contact time, and biomass concentration); iii)

biosorbance type (may determine differences in selectivity and
affinity for metal ions)

- Lack of awareness regarding metal–microbe interactions
remain unexploited and at times is indecipherable

Membrane filtration and
physical–chemical treatment

- Reverse osmosis - Less cumbersome - High capital cost

- High removal rate and purifies
the effluent

- Simple scale-up - Energy consumption

- Treating large amount of
industrial effluent

- Chemical precipitation - Used for low concentrations - Treatments are ineffective

- Electrochemical treatment - Produces large quantity of sludge

- Ion exchange - Higher ion selectivity - Expensive

- Reusability of ion-exchange
material
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removal on TFN-MIL-101 RO was greater than 99% (Xu
et al., 2016).

2 Reverse osmosis membranes

2.1 Thin-film composite membrane

Membrane separation technology is at the cutting edge of water
purification (Friess et al., 2021). Inorganic, organic, and
pharmaceutical compounds and salts dissolved in water are easily
removed by reverse osmosis (Foureaux et al., 2019), making it a key
technology for alleviating the water crisis (Shannon et al., 2008;
Greenlee et al., 2009; Elimelech and Phillip, 2011; Chuang and
Dudeney, 2018). Reverse osmosis is more effective at eliminating
micropollutants and purifying effluent and is easy to scale-up.
Cellulose acetate (CA) and thin-film composite (TFC)
membranes are attracting industry interest, and the TFC
membrane is attractive for its ability to reject solutes. CAs and
aromatic polyamides (APs) are the active polymer derivatives used
for RO membrane coatings (Sagle and Freeman, 2004; Ahmed et al.,
2015; Makisha, 2019; Alanood et al., 2021).

These membranes have some advantages and disadvantages; CA
membrane has high pH sensitivity, lower tolerance to high
temperature, and it is more resistant to chlorine than TFC
membrane. However, TFC membranes are much more efficient
and effective than CA membranes. Interfacial polymerization,
composite coating, and multilayer composite molding are the
procedures commonly used for membrane preparation (Jackson
and Hillmyer, 2010; Lalia et al., 2013; Ahmed et al., 2015; Sandu
et al., 2022). TFC is the principal membrane used in the RO process
and is characterized by a very thin active layer of PA that is formed
on a porous substrate (Ismail et al., 2015; Xu et al., 2016). The
thickness of the thin film is <0.2 μm with an interstitial void
size ≤0.5 nm between the polymer chains (Maruf et al., 2012;
Ismail et al., 2015; Gan et al., 2020; Zhang et al., 2022). The
main determinant of the selectivity and water flux of the
polyamide membrane is the selective layer formed by the
interfacial polymerization reaction of aqueous amine and acyl
chloride (Porter, 1989; Chuang and Huang, 2018).

The first research on RO dates back to the 1970s. For example,
Kremen et al. (1977) demonstrated the possibility of purifying
wastewater of various metal ions with an integrated process
containing RO and precipitation units (Algieri et al., 2021). Zn2+

and Cu2+ ions were removed by a low-pressure RO process in the
presence of a chelating agent (EDTA) (Ujang and Anderson, 2000).
They found that permeate flux varied as a function of pressure,
EDTA concentration, and temperature. The evolution of RO
performance was demonstrated for Cu2+ and Cd2+ removal
(Qdais and Moussa, 2004). The experiments were performed
with polyamide membranes characterized by a spirally wound
configuration (Algieri et al., 2021). Harharah et al. (2022) showed
that permeate flux and Cu (II) removal were directly proportional to
operating pressure and feed temperature. Pressure increased from
10 to 40 bars and removal increased from 89.98% to 94.21% on the
Dow Polyamide TFC BW30XFR membrane. Pretreatment of real
industrial wastewater by electrocoagulation, followed by reverse
osmosis, revealed 99.89% removal of Cr3+ ions (Rasha et al.,

2020). Coagulation/flocculation pretreatment of industrial and
mining wastewater was followed by reverse osmosis on
polyamide membrane (DOW™ FILMTEC™ BW30-440i);
turbidity, total dissolved solid (TDS) concentrations, antimony,
arsenic, nickel, zinc, and iron were reduced by 85%, 96%, 95%,
66%, 82%, 48%, and 10%, respectively, in the permeate (Samaei et al.,
2020). Agboolo et al. (2021) have shown that TFC membranes can
maintain selectivity only at low water permeance between
1–20 Lm−2 h−1 bar−1.

2.2 Thin-film nanocomposite membrane

Membranes mixed/coated with various emerging nanomaterials
such as carbon nanotubes (Farahbakhsh et al., 2019), graphene
oxides (Chu et al., 2017; Chu et al., 2017), MXenes (Ding et al., 2017;
Han et al., 2017), and metal–organic frameworks (MOFs) (Denny
et al., 2016; Basu and Balakrishnan, 2017) have been synthesized.
These have attracted interest from the water industry due to their
outstanding characteristics, including selectivity, high tunable
porosities and large accessible surface areas (Lu et al., 2014),
enhanced hydrophilicity and resistance to fouling, high ability to
easily combine particular species/features without changing the
topology of the structure (Evans et al., 2014), and diverse
potential applications (Furukawa et al., 2013).

Zeolite imidazolate frameworks (ZIF-8) were specifically
selected because they are porous crystalline materials consisting
of well-ordered pores (Pan et al., 2011). They have a high specific
surface area, and their high thermal, chemical, and hydrothermal
stability (Bhattacharjee et al., 2014; Şahin et al., 2017) and durable
synthesis at room temperature have attracted the attention of
scientists (Abbasi et al., 2020; Li et al., 2021). The unique
structure of ZIF-8 resists chemical and thermal attack (Zhang
et al., 2012; Wang et al., 2019)

Mixed-matrix membranes (MMMs) combine the advantages of
organic membranes and inorganic materials, increasing
permeability and reducing fouling (Zheng et al., 2017; Bi et al.,
2018; Jeon et al., 2018). Castro-Muňoz et al. (2021) showed that
metal ions are removed by mixed-matrix membranes.

However, chitosan (CS) has a hydrophobic character, is an
important renewable natural biomass, and is one of the cheapest
natural polysaccharides with abundant groups (Agnihotri et al.,
2004; LogithKumar et al., 2016; Yang et al., 2016; Liu et al., 2019). Its
properties of antibacterial activity, biocompatibility, non-toxicity,
and good film-forming have made it advantageous for use as a
selective coating (Kumar and Ioan, 2016; Reza et al., 2019;
Pishnamazi et al., 2020). CS is known to be an excellent metal
ligand, forming stable complexes with many metal ions (Chui et al.,
1996). Due to the presence of hydroxyl and amine groups, CS is
widely used to remove HM ions from aqueous solutions (Bozorgi
et al., 2018; Haripriyan et al., 2022). However, the poor mechanical
properties of CS limit its potential (Upadhyay et al., 2021).

Other materials used for heavy metal rejection, such as
incorporating UiO-66-NH2 into PAN/chitosan nanofibers, have
removed Pb (II), Cd (II), and Cr (VI) ions by 94%, 89%, and
85.5%, respectively (Jamshidifard et al., 2019). UiO-66-NH2

nanoparticle incorporated into the polyvinylidene fluoride
(PVDF)/CS nanofiber membrane showed 95.6% rejection of Cr
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TABLE 3 List of key studies on the removal of HMs from wastewater by reverse osmosis.

Membrane Element Init.
conc.
(ppm)

Removal efficiency (%) Condition Permeate flux Remarks Reference

PAs (ES 20) Cu2+, Ni2+,
and Cr6+

10–500 Synthetic feed: > 99.5, 99.9, and >
99.5. Industrial feed: 99.03, 99.37, and

98.75

1–5 bars, pH: 7–9 24.64 L/m2.h - Synthetic and industrial wastewaters were used Ozaki et al. (2002)

- Membrane effective area was 60 cm2

- Feed solution was stored at 20°C

18.63 L/m2.h - pH value was varied between 3 and 9

- Permeate flux decreased with the increase in feed
concentration

- Increasing the pH of the feed solution raised the
heavy metal ion removal rate

LPRO Co 244–409 >95 3 bars, pH: 4–10 6.52 L/m2.h - To enhance LPRO membrane performance,
polyacrylic acid (PAA) has been added to the

membrane

Dang et al. (2016)

Membrane Sr - Low permeability was observed on the addition of
PAA and had no effect on removal

- Therefore, the addition of PAA only caused fouling

Thin-film membrane (TFM) Ni2+ 44–169 99.3 pH: 6.5–7.5 - Synthetic WW was used Ipek (2005)

- Addition of 240 ppm concentration of EDTA
enhanced zinc and nickel ion removal efficiencies
from 98.9% to 99.6% and from 99.3% to 99.7%,

respectively

- The operating pH was 4 to 8

Zn2+ 64–170 98.9 - Feed pH and conductivity did not greatly influence
removal rates

- Increasing the added EDTA increased the feed
conductivity and removal efficiency of metal ions

TFC Cu2+ 500 99.5 5.03 bar, pH: 7.8 - Synthetic WW was used Mohsen-Nia et al.
(2007)

- Removal rate of copper ion was higher than that of
nickel due to the greater ionic size of copper

Ni2+ - Osmotic and applied pressures affected metal ion
removal

- Addition of Na2EDTA enhances metal ion removal
efficiency

(Continued on following page)
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TABLE 3 (Continued) List of key studies on the removal of HMs from wastewater by reverse osmosis.

Membrane Element Init.
conc.
(ppm)

Removal efficiency (%) Condition Permeate flux Remarks Reference

Polyamide Ca2+ 451 97 6–22 bar 29.3 L/m2. h. - Industrial wastewater was used Lui et al., 2008

Mg2+ 1,102

Na+ 82

TFC PA As3+ <0.50 20–55 4–6 bars, pH: 4, 5, 6, 7 ND - Synthetic wastewater was used Chan and Dudeney
(2008)

- Operating pH ranged from 3 to 9

- The initial As5+ concentration and pH value
ranging from 6 to 9 showed a slight influence on the

retention efficiency of the membrane

As5+ 91–99 - RO removed > 90% of As5+ residual

- Due to the presence of arsenite as a neutral
molecule, the RO membrane did not effectively

remove As3+

Polyamide Cu2+ 10–100 70–95 1–6 bars, pH: 7-8 - Synthetic wastewater was used Zhang et al. (2009)

- Addition of surfactant sodium dodecyl sulfate
(SDS) improved the Cu2+ removal efficiency to

90%–99%

- Cu2+ removal of 59%–75% was achieved by
applying the electro-reduction technology of the 3D

electrode cell

- Electro-reduction process was slightly affected by
the addition of SDS and EDTA

- Low-pressure RO recorded average removal
efficiency of copper ion of 85%

- Initial pH of solution was 6.0

Cu2+ 0.012 100 Removal of suspended solids and reduction of COD
and BOD5 from the wastewater were performed by a

series of biological treatment processes

Saad and Omar
(2010)

Co2+ 0.140 100

Zn2+ 0.162 90.74

Pb2+ 0.165 100

As5+ 0.972 100

Cd2+ 6.360 99.86

Cr6+ 0.149 87.92

(Continued on following page)
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TABLE 3 (Continued) List of key studies on the removal of HMs from wastewater by reverse osmosis.

Membrane Element Init.
conc.
(ppm)

Removal efficiency (%) Condition Permeate flux Remarks Reference

AD-SWRO, AG-BWRO, BW-
30-BWRO, and AK-BWRO

B3+ 10–11 B>91.9 15–0 bars, pH: 8.6 94.7 L/m2. h - Geothermal water was used Öner et al. (2011)

Na+ 10.5–10.9 - Four types of RO membranes were used

Ca2+ 366 Mg2+, Ca2+ 99.5 - All the tested membranes showed > 96.5% silica
and salt removal efficiency

Mg2+ 26 - Increase in operating pressure showed favorable
variations in both quantity and quality of

permeate flux

K+ 3.7 Na+, K+ >99.3 - Operating pressure and type of membrane greatly
influenced both permeate flux and boron rejection

efficiency. Silica rejection was over 96.5%26

TFC PA (TW-30 et XLE,
Filmtec™)

B3+ 70 >99 5–20 bar, pH: 7–11 - Synthetic wastewater was used Dydo et al. (2012)

- RO removed boron in the presence of chelating
polyols containing a 1,2-diol group

- Permeate flux boron removal was affected by feed
pH, initial feed concentration, and operating

pressure

- Increased boron removal was recorded with an
increase in applied pressure

- Boron concentration in the permeate was found to
be below 1 mg/L, even at high recovery

- Rapid membrane degradation or fouling was not
detected

Cr6+ 50 >91 % 15–35 bar, pH: 1–6 -Synthetic wastewater was used Çimen et al. (2014)

100

500 - NaOH and 0.1 M HCl were added to the feed
solution to adjust the pH; permeate recycling was the

operating system1,000

TFC PA Ni2+ 98 0.5 MPa -Addition of EDTA to form complexes with ions Pires da Silva et al.
(2016)

Cu2+ - 99% elimination was achieved for one ion in
solution and in ion mixtures

PA Ni2+ 50 98.5 1–4 bars, 10–40°C,
pH: 2–5.5

10 to 56 L/m2.h -Synthetic wastewater was used Algureiri and
abdulmajeed (2016)

Cu2+ 100 97.5
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TABLE 3 (Continued) List of key studies on the removal of HMs from wastewater by reverse osmosis.

Membrane Element Init.
conc.
(ppm)

Removal efficiency (%) Condition Permeate flux Remarks Reference

Pb2+ 150–200 96

Graphene Cu2+ 0.5–3 M 100.0 (for OH graphene), > 98.0 (for
B- graphene), and 95 (for NH

graphene)

50–300 MPa - Synthetic wastewater was used Li et al. (2017)

- Three types of functionalized hydroxyl (OH),
nitrogen (NH), and boron (B) group nanoporous
graphene membranes were used as RO membranes

- Increasing membrane pore density increased the
removal efficiency, while increasing ion

concentration in the feed decreases the permeate flux

- OH, B, and NH graphene reached 100%, > 98%,
and 95% Cu2+ removal efficiency, respectively

TFC PA Co2+,
Ni2+, Mg2+

39.4 98.6 41 bars, pH: 1.46 Permeate flux was
2.9 L/m2.h.bar

- Industrial wastewater was used Ricci et al. (2017)

214.9 98.1 - Both RO and NF were used to treat POX effluent
generated from the gold ore mining process

2,429 98.6 - The operating range of pH for RO are 4 –11

- Under acidic conditions, the stability of the RO
membrane was satisfactory

PA Zn, 150–500 99.49; 1–4 bars 48.44 L/m2.h - Feed solutions were prepared by ZnCl2 CuCl2
.2H2O, NiCl2.6H2O, and CrCl3.6H2O

Al-Alawy and Salih
(2017)

Ni, 99.49;

Cu, 99.33; - Operating temperature was 26–40 and the feed
pH varied 4–7

Cr 99.93

TFC PA B3+ 5.688 34–48 21–76 bar, pH: 3–11 7.1–32.5 L/m2. h. - Industrial wastewater was used Cingolani et al.
(2018)

- Triple-stage RO system was adopted

- Greater than 91% water recovery was achieved by a
two-stage RO system

- TDS rejection factor was in a range of 91.1%–

97.7%, while that for and COD was over 95%. Also >
94.0% was achieved for selenide removal

- Rejection factor for ammonia was in a range of
57.4%–77.3%

-Water recovery efficiency was > 91% for a two-stage
RO system

(Continued on following page)
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TABLE 3 (Continued) List of key studies on the removal of HMs from wastewater by reverse osmosis.

Membrane Element Init.
conc.
(ppm)

Removal efficiency (%) Condition Permeate flux Remarks Reference

PA TFC IP/SA NaCl 500 94.2 5 bars, 25°C, pH: 3–6,5 42.0 L/m2.h -Parallel installation of three identical 23.6 cm2 Yu et al. (2018)

SW30 Cr 0.2–1.3 97 10–20 bar; pH: 3, 25±5°C 566–830 L/m2h -Wastewater produced by the aluminum industry Atès and Uzal (2018)

Ni 3.2–5.3 99 -RO membrane composed of polyamide with the
non-porous active skin layer

Al 99

Pb2+ 0.034 < 1 ppb 1.76 MPa, pH: 6.12 -Pretreatment of wastewater with biological waste:
cereals, rice pods, coffee waste, tea waste, sugar beet

pulp, and mushrooms.

Thaçi and Gashi
(2019)

Zn2+ 0.153 < 0.002 ppb

Cd2+ 0.025 < 0.1 ppb

Co2+ 0.018 < 0.2 ppb

Mn2+ 1.146 0.006 ppb

Ni2+ 0.004 < 0.5 ppb

Dow PA TFC BW30XFR Cu2+ 25 89.98 to 94.21 % 10, 20, 30, and 50 bar; 25,
35, and 45°C; pH: 2–11

Effect of operating
pressure

-Copper sulfate used to prepare stock solution Harharah et al.
(2022)

44.28 to 124.98 kg/
m2·h;

Effect of feed
temperature

-Temperature correction factor (TCF) was studied

46.12 to 67.0 (kg/
m2·h);

-Permeate flux and metal removal were calculated
after every 10 minutes of sampling

50 Effect of feed
concentration

- Total dissolved solids counter was used to analyze
the samples

100 87.41 to 83.86
(kg/m2·h).

-Permeate flux and metal ion removal increase with
increasing pressure

150 Effect of feed flow rate Permeate flux increases with rising temperature

82.2 to 84.3 (kg/
m 2.h)

BW30XFR Cr6+ 5 99.8 10, 30, and 45 bars; 25, 35,
45 and 55°C.

30 to 158 kg/
m2.h (25°C)

-Higher operating pressures and temperatures (10,
30, and 45 bar and 25, 35, 45, and 55°C)

Singhidi et al. (2022)

30 94.3 -Metal ion removal is a function of feed concentration

100 77.2 70 to 226 kg/
m2.h (55°C)

-Permeate flux increases as temperature rises

-Increasing temperature and pressure affect polymer
membranes with fouling

(Continued on following page)
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(VI) (Pishnamazi et al., 2020). The incorporation of graphitic carbon
nitride nanosheets (g-C3N4) into PSF membranes showed rejections
of 95%, 80%, and 70% for lead, cadmium, and arsenic, respectively
(Akshatha et al., 2021). The mixed-metal nanoparticle Al–Ti2O6 has
been used in the polysulfone membrane to remove heavy metals.
Al–Ti2O6 was prepared by the precipitation method, and the
membranes were prepared by diffusion-induced phase separation
method with different Al–Ti2O6 compositions. The membrane
showed a rejection of approximately 96% for As, 98% for Cd,
and 99% for Pb (Sunil et al., 2018). The Al–Ti2O6 mixed-metal
nanoparticle increased metal ion removal in contrast to the other
nanoparticles cited above. Thin-film nanocomposite membranes
were prepared by the interfacial polymerization (IP) between PIP
and trimesoyl chloride, followed by post-treatment with
polyethyleneimine (PEI) or PEI-polyethylene glycol conjugate
and then the immobilization of Ag NP. The IP was conducted
on a polyethersulfone/poly (methyl methacrylate)-co-poly (vinyl
pyrollidone)/silver nanoparticle (Ag NP) blend ultrafiltration
membrane support. The TFNC membranes exhibited >99%
rejection of Pb2+, 91%–97% rejection of Cd2+, 90%–96% rejection
of Co2+, and 95%–99% rejection of Cu2+ with permeate flux
~40 Lm−2 h−1 at applied pressure 0.5 MPa (Bera et al., 2018).

Table 3 briefly explains the types of membranes and operating
techniques applied in RO to remove heavy metals from wastewater.

It should be noted that the membrane operating techniques were
conducted under differing laboratory conditions. However, Table 3
describes the variation in solute removal and permeability of the
different membranes, depending mainly on the membrane synthesis
and pore size, structure, and intensity. These results indicate that
almost all PA TFC membranes succeeded in giving high rejection
values of between 98%–100%, respectively. It should be noted that
some PA TFC membranes such as BW30XFR, TW-30, and AD-
SWRO showed rejection of B3+, Cu2+, and Cr6+ ions < 95% and were
dependent on the feed concentration.

2.2.1 Types of RO membrane materials
ROmembrane performance is mainly determined by the different

types of materials used in its manufacture. Lee et al. (2012) reported
that RO membrane is typically designed on a porous PSF support on
which an ultra-layer, a thin barrier layer, is deposited on the top
surface. They suggest that the emergence of nanomaterials could offer
an interesting alternative to polymeric materials.

The emergence of nanotechnology to improve TFC RO
membranes has been applied by several researchers. Cohen-Tanugi
and Grossman et al. (2015) conducted theoretical research on the
addition of graphene in reverse osmosis membrane. They reported that
the performance of RO membranes was improved by the addition of
graphene, which exhibits pore size uniformity of 0.40 ± 0.24 nm
diameter and high permeability up to 3 L/m2.h.bar. Chen et al.
(2023) proposed improving the performance of TFC RO
membranes by using a hydrophilic polycarboxylic acid–ZIF-8
hydrophobic nanoparticle bilayer interlayer on the PSF substrate
prepared by the catechol autopolymerization reaction. The
membrane exhibited 98.8% NaCl removal performance and the
permeability was 4.2 L/m2h.bar. Guan et al. (2023) prepared a
polyketone membrane as a porous substrate using a standard NIPS
procedure and another membrane on the PSF porous support, and
proposed using MPD—the monomer for IP formation of the PA layer.T
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The membranes showed NaCl rejection from 96.6% to 98.6% in a
2000 ppm feed solution, with permeability varying, respectively, from
0.23 ± 0.13 L m−2 h−1 bar−1 to 0.18 ± 0.06 L m−2 h−1 bar−1. The
polyethersulfone material was modified by three hydrophilic
molecules—thioglycolic acid, DL-cysteine hydrochloride, and 2-
(dimethylamino) ethanethiol hydrochloride—to form a series of new
hydrophilic polyethersulfone copolymers (HPES-TGA, HPES-CYSAH,
and HPES-DMAET) that offer the best performance in terms of water
permeability and water/salt selectivity (Zhang et al., 2023).

The addition of nanomaterials and modification of the RO
membrane synthesis provide high performance, but a number of
challenges remain in terms of the economics of industrial-scale
application. The incorporation of nanoparticles or nanomaterials
improved membrane performance, and this comparison was made
between mixed-matrix membranes and TFC PA.

3 Performance of RO membranes

Numerous investigations have beenmade into the performance of
the RO membranes in terms of pressure, flow rate (Dimitriou et al.,
2017), concentration, and temperature (Ruiz-Gracía et al., 2020).

Luis (2018) has shown that permeate flux is one of the most
important factors in determining membrane performance, reflecting
permeate quantity and species selectivity. The data from the other
studies focused on permeate flux and solute release. The study by
Armstrong et al. (2022) on the SWC4 seawater membrane and an
ESPA3 brackish water membrane showed that membrane
performance is evaluated on water-solute selectivity depending
on the pressure applied during permeation tests. Qi et al. (2016)
also found that water permeability and solute rejection are sensitive
to temperature and applied pressure.

However, the introduction of graphitic carbon nitride (g-C3N4)
nanosheets into PSF membranes improved the permeability and
separation performance of PSF membranes at low transmembrane
pressures ranging from 1 to 5 bar (Nadig et al., 2021).

The performance of the polysulfone composite membrane was
improved by the addition of Al–Ti2O6 nanoparticles to remove
heavy metal ions at low pressures of 200 kPa (Sunil et al., 2018).

It has been observed that the addition of nanomaterials to
membranes enhances performance in terms of selectivity and
water permeability at low operating pressures.

Many studies have demonstrated that the highwater flux is
linked to better roughness (Al-Jeshi and Neville, 2006; Kong
et al., 2010; Ma et al., 2018; Song et al., 2019a; Song et al., 2019b;
Ma et al., 2019; Yan et al., 2019; Wu et al., 2020).

The selectivity of TFC membranes is excellent, but there is a
trade-off with permeability. However, MMMs offer advantages such
as lowmanufacturing costs, exceptional selectivity, and high packing
density of polymeric materials with the long-term stability, high
mechanical strength, and regenerative capacity of ceramic materials
(Karan et al., 2015; Ayaz et al., 2019; Rezakazemi et al., 2019; Rozaini
et al., 2019; Yang et al., 2019; Zhu et al., 2019). Table 3 also includes
the performance of several RO membranes studied in the literature
for metals removal.

4Main shortcomings of ROmembranes

4.1 Clogging

Pore clogging or solute adsorption on the membrane surface
adversely affects membrane fouling (Van der Bruggen et al., 2003;
Lee et al., 2011; Malaeb and Ayoub, 2011). Pretreatment is
recommended to prolong the lifetime of the membrane.
Ultrafiltration or microfiltration (MF), scaling control such as
softening, and acidification for pH regulation constitute the
pretreatments currently considered (Abba et al., 2023). Either
microbial growth (Speth et al., 2000; Abba et al., 2023), scaling to
organics, or particle matter can form cakes (Gabelich et al., 2005),
and the membrane becomes vulnerable to fouling. Membrane
fouling can be reduced to the best possible roughness and high
hydrophilicity (Vrijenhoek et al., 2001; Van der Bruggen et al., 2003;
Mondal and wickramasinghe, 2008).

4.2 Concentration polarization

The underpressure filtration process is constrained by the
phenomenon of concentration polarization, which affects its

FIGURE 1
Concentration representation with concentration polarization:
(A) mass transfer limited by the membrane and (B) mass transfer
limited to the membrane surface (Luis, 2018). Transmembrane flux
decreases as a result of concentration polarization, low retention
of low molecular weight solutes, and can lead to higher retention for
mixtures of macromolecular solutes.
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efficiency (Koseoglu et al., 2018). During operation, the solute
concentration on the membrane surface increases due to selective
transport across the membrane (Luis, 2018). In the case of
pressurized membrane processes, the solute is generally retained
by the membrane, leading to a concentration profile similar to that
shown in Figure 1A. During filtration, the membrane retains the
solute, leading to a concentration profile similar to Figure 1B as the
component permeates more rapidly through the membrane, being
in the boundary layer where the transport is limited by diffusion
(Luis, 2018). This phenomenon is similar to capacitive deionization
in that it removes ions from the feed concentration. However, when
pressure is applied across an ion permselective membrane, the ICP
electrokinetic phenomenon occurs. This method is based on ion
depletion and enrichment, which are dynamic changes in ion
concentration near the membrane to maintain electroneutrality
(Rabiee et al., 2019).

5 Fouling of reverse
osmosis membranes

The pressurized membrane separation process is limited by the
problem of fouling, which is unavoidable and reduces the
performance of the process. The presence of inorganic and
organic compounds in the water affects membrane fouling.
Approximately 90% of suspended solids were eliminated in UF
by Petrinic et al. (2015). To achieve this, Huang et al. suggested the
need for a more advanced pretreatment process to avoid membrane
fouling. RO membrane operation at low pressure with constant feed
rate spares the membrane from vulnerability to fouling (Park and
Kwon, 2018). Research by Lumami et al. (2022) has shown that
changes in permeate flux depend on changes in pressure and affect
membrane fouling.

Singhidi et al. (2021) reported that increased temperature and
high pressure applied to the membrane alters the pore size, which
leads to fouling. Li and Chen, (2010) cited membrane properties,
feedwater quality, and ionic condition as the three factors
influencing membrane fouling. Other parameters cited in the
literature review include pressure, temperature, flow rate, and
concentration—all of which influence membrane fouling.

6 Chemical cleaning of membranes

Fouling slows down wastewater treatment using membrane
processes (Ang et al., 2011), leading to a drop in productivity.
Membrane cleaning is extremely important for removing
undesirable matter from the membrane surface and renewing its
functionalization (Wilson et al., 2022). In the literature, very little
research seems devoted to membrane cleaning (Porcelli and
Judd, 2010).

Qi et al. (2016) showed that a solution of
ethylenediaminetetraacetic acid (EDTA), sodium hydroxide
(NaOH), and citric acid was better at cleaning the RO membrane
and had good chemical stability. The chemical stability of the
membrane was further confirmed by cleaning with a solution of
citric acid, NaOH, and EDTA (Wilson et al., 2022). Ang et al. (2011)
proposed that the addition of sodium chloride to solution sodium

hydroxide (NaOH), ethylenediaminetetraacetic acid (EDTA), and
sodium dodecyl sulfate (SDS) was ideal for cleaning membranes
resulting from the treatment of alkaline solutions, metal chelating
agents, surfactants, and salt. They concluded that cleaning
performance increased with an increasing pH of the
cleaning solution.

7 Management of heavy metal
retentates

Reverse osmosis retentate can have a number of environmental
impacts. However, rational management and reuse of retentate is
recommended. Heavy metals are not generally recycled, but
recycling by sector is recommended. The best organized channels
are obviously those where the largest masses are treated in order to
recover valuable compounds. This study proposes two retentate
treatment options. The first is recycling for the use of heavy metals,
which requires additional investment in additional treatment by a
metallize electrolysis reactor. Metals can be recovered by a reactor
that uses the principle of electrolysis to cause charged particles, such
as heavy metals, to agglomerate on the cathode. The metal
agglomerate can then be recovered and recycled (Lenntech). The
second option considers the circular economy of the process. For
example, the use of retentate as mixing water to produce calcio-
sulfoaluminate cement bricks for construction is recommended
(Valdés et al., 2021).

8 Management of end-of-life reverse
osmosis membranes

The lifetime of the RO membrane depends on factors such as
the RO membrane model, the type of pretreatment of the plant,
the quality of the feedwater, the operating conditions, the location
of the RO membrane, and the frequency of chemical cleaning
(Kharraz et al., 2021). In view of the above, the average life has
been estimated at between 5 and 10 years for pretreated feedwater
(Kharraz et al., 2021); however, it is shorter at approximately
12 months when the feed solution is too loaded and if there is no
pretreatment (Chang, 2006). At the end of RO membrane life,
reuse in MF and NF is recommended by the literature. Khoo et al.
(2021) converted RO membranes to end-of-life by modifying
their microfiltration properties with KMnO4 treatment and
showed that the end-of-life of RO membranes should
considerably increase in coming years. The membrane
converted to MF had a NaCl rejection of approximately 80%,
and the permeability to pure water was 172.6 L/m.h.bar. In
addition, RO has been cited as the process that generates
environmental impacts following the production of solid waste
(Luisa et al., 2006).

Senán-Salinas et al. (2021) have estimated that, by 2025, two
million membrane modules will be discarded worldwide by the
desalination sector in developed countries. Kharraz et al. (2021)
revealed that membranes consist of plastic parts and that their
recycling will reduce landfill disposal.

In addition, these membranes are made from petroleum-based
polymers and are responsible for greenhouse gas emissions (Senán-
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Salinas et al., 2021). Rattanakul (2012) has shown that RO
membranes contain 80% recycled components. However, plastics
such as polyethylene terephthalate (PET), high-density polyethylene
(HDPE), and polypropylene (PP) are recyclable and represent a step
forward in reducing harmful impacts on the environment.

9 Conclusion

The RO membrane process is effective at removing organic
and inorganic compounds from wastewater and in the simplicity
of its scale-up. Removal of inorganic micropollutants varies
between 95%–100%, depending on the type of polymer,
materials, and operating conditions applied. However, the
temperature rise applied in RO affects the membrane’s
vulnerability to fouling.

The application of CS and ZIF-8 in the process improved
selectivity and water permeability. It was observed that metal
oxides also perform best in terms of selectivity and permeability.
The emergence of nanomaterials in the membrane process has
improved operation at very low pressure, as in the case of
nanofiltration, with low operating and maintenance costs.
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