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Feynman and Hibbs were the first to variationally determine an effective potential
whose associated classical canonical ensemble approximates the exact quantum partition
function. We examine the existence of a map between the local potential and an
effective classical potential which matches the exact quantum equilibrium density and
partition function. The usefulness of such a mapping rests in its ability to readily
improve Born-Oppenheimer potentials for use with classical sampling. We show that
such a map is unique and must exist. To explore the feasibility of using this result to
improve classical molecular mechanics, we numerically produce a map from a library of
randomly generated one-dimensional potential/effective potential pairs then evaluate its
performance on independent test problems. We also apply the map to simulate liquid
para-hydrogen, finding that the resulting radial pair distribution functions agree well with
path integral Monte Carlo simulations. The surprising accessibility and transferability of
the technique suggest a quantitative route to adapting Born-Oppenheimer potentials, with
a motivation similar in spirit to the powerful ideas and approximations of density functional
theory.
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INTRODUCTION
The energy and mass scales of chemical motion lie in a regime
between quantum and classical mechanics but for reasons of com-
putational complexity, molecular modeling (MM) is largely per-
formed according to Newton’s laws. When classical Hamiltonians
are chosen to reproduce properties of real material, classical
MM is an efficient compromise. An increasing amount of MM
uses highly accurate Born-Oppenheimer (BO) potential energy
surfaces, which allow one to study complex bond rearrange-
ments where experiment cannot motivate a potential (Car and
Parrinello, 1985; Wang et al., 2013). The BO surface is incompat-
ible with classical statistical mechanics in the sense that we would
not expect a classical simulation on the BO surface to repro-
duce properties of the real material, except in the limit of infinite
temperature.

Many approaches already exist to bridge this gap and
study quantum equilibrium properties and dynamics: path inte-
gral Monte Carlo (PIMC), ring polymer molecular dynamics
(RPMD), centroid molecular dynamics (CMD), variational path-
integral approximations, discretized path-integral approxima-
tions, semi-classical approximations, thermal Gaussian molecular
dynamics and colored-noise thermostats (Whitlock et al., 1979;
Chandler and Wolynes, 1981; Jang et al., 2001; Nakayama and
Makri, 2003; Poulsen et al., 2003; Liu and Miller, 2006; Paesani et
al., 2006; Fanourgakis et al., 2009; Liu et al., 2009; Ceriotti et al.,
2011; Georgescu et al., 2011; Pérez and Tuckerman, 2011). Most of
the these methods involve computational overhead significantly
beyond classical mechanics and as they approach exactness their
cost rapidly increases.

An alternative philosophy is suggested by density functional
theory (DFT) (Hohenberg and Kohn, 1964; Mermin, 1965; Sham
and Kohn, 1966; Runge and Gross, 1984; Yuen-Zhou et al., 2010;
Tempel and Aspuru-Guzik, 2011). Following this line of reason-
ing, three questions arise. Can an equilibrium quantum density
be obtained from purely classical mechanics and an effective
Hamiltonian? Is the effective Hamiltonian uniquely determined
by the physical potential? Can the particle density and free energy
be given by such a fictitious system? To all these questions, the
answer “yes” is implied by the usual recipe for classical force-fields
that fit experimental data. The idea of using an effective classical
Hamiltonian to incorperate nuclear quantum propagation effects
is not novel. For the first time, we prove the uniqueness and exis-
tence of a map yielding a classical effective potential given the
physical potential. We also make a contribution to this field by
demonstrating that the aforementioned mapping can be reversed
numerically and approximated analytically.

The bargain of our proposed effective classical potential is
similar to that posed by DFT. One sacrifices access to rigorous
momentum based-observables and abandons the route to sys-
tematic improvement. In exchange, the two properties which are
physically guaranteed, the equilibrium particle density and the
partition function, are obtained at a cost equivalent to classical
sampling but with improved accuracy. As a practical tool, the
map is an easy way to transform BO-based force fields into a
form which is well-suited for classical sampling. Perhaps the most
promising aspect of this mapping would be its scalability which
could potentially extend the ability to treat quantum propaga-
tion effects to all systems that can be sampled classically. It is
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even possible that the fictitious trajectories of particles moving on
such a potential would, like Kohn-Sham orbitals, have somewhat
improved physicality over their classical counterparts, although
we will not examine that possibility here.

First, we show the uniqueness of an equilibrium effective
potential that gives the exact equilibrium quantum density via
classical sampling. Next, we demonstrate that the equilibrium
effective potential may be approximated by a linear operator act-
ing on the true potential. Finally, we numerically approximate the
map in a rudimentary way, and obtain surprisingly good results
and transferability for both one dimensional potentials and a
model of liquid para-hydrogen.

1. EQUILIBRIUM EFFECTIVE POTENTIAL
In their seminal work on path integral quantum mechanics,
Feynman and Hibbs introduced the concept of an effective classi-
cal potential that allows for the calculation of quantum partition
functions in a seemingly classical fashion (Feynman and Hibbs,
1965). In Appendix A, we discuss a connection with the large
and fruitful body of research that focuses on the centroid effec-
tive potential and density which should not be confused with the
equilibrium effective potential that we now define (Giachetti and
Tognetti, 1985; Feynman and Kleinert, 1986; Voth, 1991; Cao,
1993, 1994a,b,c; Cuccoli et al., 1995; Cao and Martyna, 1996;
Martyna, 1996; Pavese and Voth, 1996; Roy et al., 1999; Krajewski
and Muser, 2001; Blinov and Roy, 2004; Hone et al., 2005; Roy,
2005; Mielke et al., 2013). We start by considering the equilibrium
density matrix,

ρ0
(
qa, qb

) ≡ 1

Z

〈
qa

∣∣∣e−βH
∣∣∣ qb

〉
. (1)

where H is the system Hamiltonian, β is the inverse temperature,
and Z is the partition function. Feynman showed us that we could
connect this expression to the path integral representation of the
quantum propagator1,

ρ0
(
qa, qb

) = 1

Z

∫ r(βh̄) = qb

r(0) = qa

Dr(τ)e−A[r(τ)]. (2)

where the Wick-rotated (t → −iτ) action functional is,

A[r(τ)] = 1

h̄

∫ βh̄

0
dτ

[
N∑

i = 1

mi

2
ṙi(τ)

2 + V(r(τ))

]
. (3)

By integrating over only closed paths at each coordinate we obtain
the scalar equilibrium density,

η0(q) ≡ 1

Z
〈q|ρ0|q〉 = 1

Z

∮ r(βh̄) = q

r(0) = q
Dr(τ)e−A[r(τ)]. (4)

1Throughout this paper the variable “q” refers to a position in the full coor-
dinate space of the system (q ∈ �3N where N is the number of particles).
To distinguish a position variable from a path variable we will use r(t) to
represent a particular trajectory.

Finally, we define the partition function as a normalization factor
which is obtained by integrating over q,

Z ≡ Tr
[

e−βH
]

=
∫ ∞

−∞
dq

∮ r(βh̄) = q

r(0) = q
Dr(τ)e−A[r(τ)]. (5)

We are now in a position to define an equilibrium effective
potential, which encapsulates knowledge of the physical quantum
density into a form amenable to classical sampling. We choose the
equilibrium effective potential, W(q) such that,

η0(q) ≡ 1

Z
e−βW(q) (6)

W(q) ≡ − 1

β
log

[∮ r(βh̄) = q

r(0) = q
Dr(τ)e−A[r(τ)]

]
. (7)

Note that this definition associates the Boltzmann factor, e−βW(q),
with the unnormalized density. Because η0(q) must integrate
to unity, this allows us to easily recover the partition function
and corresponding quantum Helmholtz free energy, A, with the
classical integral,∫ ∞

−∞
dq e−βW(q) = Z

∫ ∞

−∞
dq η0(q) = Z ≡ e−βA. (8)

Using Equation 7, one can exactly calculate the equilibrium
effective potential whenever one can evaluate the path integral.
Unfortunately that is usually numerically intractable. Thus, it is
useful to wonder if a unique map exists between any potential
V(q) and W(q) under the conditions of a fixed ensemble. If one
could easily evaluate the map one could transferably adapt BO
potentials to give physical results in classical simulations. Since
this mapping is a functor2 which gives an effective force-field we
refer to the map as the “force-field functor” and denote it with
the symbol F . A morphism depicting the structure of our proof
is shown in Figure 1.

FIGURE 1 | Morphism depicting uniqueness and existence of

mappings between the physical potential, V (q), the equilibrium

effective potential, W (q), and the associated quantum and classical

equilibrium densities, ηQ(q) and η0(q), respectively. This establishes the
existence of a mapping, F , which uniquely determines the equilibrium
effective potential.

2A functor differs from a functional in that a functor maps one vector space to
another whereas a functional maps a vector space to a scalar. In this context,
“operator” is a more common term than “functor” but we prefer to call this
“force-field functor theory” to evoke the connection with DFT.
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2. UNIQUENESS AND EXISTENCE
Our first step toward developing a theory of force-field func-
tors is to show that the proposed mapping, F

[
V(q)

] → W(q),
exists and is unique. This proof begins in Part A of the current
section in which we argue that no two V(q) lead to the same
quantum equilibrium density η0(q), which exists by Equations 3
and 4. To show this we take inspiration from Mermin’s extension
of the Hohenberg-Kohn theorem for finite temperatures and use
the quantum Bogoliubov inequality to construct a proof by con-
tradiction (Mermin, 1965). For any potential without hard-shell
interactions, the density is always given by a Boltzmann factor
of the potential as in Equation 6; thus, the equilibrium effective
potential exists for any physically-relevant quantum potential. In
Part B of the current section, we make a similar argument to prove
that there is a one-to-one map between classical equilibrium
density and classical potential (Chayes et al., 1984). Since the
effective potential is chosen to be the classical potential associ-
ated with the quantum density, these results directly imply that
the map between physical potential and effective potential must
be unique.

2.1. UNIQUENESS OF QUANTUM DENSITY
Both steps in this proof take the form of reductio ad absurdum
arguments based on the uniqueness of an ensemble which mini-
mizes the free energy of a canonical system. In the Appendix B we
show that,

A[ρ] > A [ρ0] , ρ 	= ρ0 (9)

where A is the quantum Helmholtz free energy,

A[ρ] = Tr

[
ρ

(
H + 1

β
log [ρ]

)]
, (10)

which is minimum when ρ is equal to the quantum equilib-
rium density matrix ρ0 associated with the Hamiltonian, H =
T + V(q). With this in mind, suppose that there were another
potential Ṽ(q) that led to the same density η0(q). Denote the
Hamiltonian, canonical density matrix and Helmholtz free energy
associated with Ṽ(q) by H̃, ρ̃0, and Ã. Since Ṽ(q) 	= V(q) and
ρ̃0 	= ρ0

3 we can write

Ã = Tr

[
ρ̃0

(
H̃ + 1

β
log [ρ̃0]

)]
(11)

< Tr

[
ρ0

(
H̃ + 1

β
log [ρ0]

)]
= A + Tr

[
ρ0Ṽ(q) − ρ0V(q)

]
.

Using the definition of the quantum equilibrium particle density,4

η0(q) ≡ Tr
[
ρ0|q〉〈q|

]
, (12)

3That the corresponding equilibrium density matrices are not equal is obvious
in Equation 1.
4Recall that q ∈ �3N so, |q〉 = ∏3N

i = 1 |qi〉.

we see that,

Ã < A +
∫

dq
[
Ṽ(q) − V(q)

]
η0(q). (13)

But we see that this relation is still true if we interchange over-
scored variables,

A < Ã +
∫

dq
[
V(q) − Ṽ(q)

]
η0(q). (14)

This leads to the contradiction,

A + Ã < Ã + A. (15)

and therefore only one V(q) can result in a given η0(q). This
proves that V(q) uniquely determines η0(q). Next, we show that
the only potential which can reproduce the quantum density with
classical sampling is the equilibrium effective potential.

2.2. UNIQUENESS OF THE EFFECTIVE POTENTIAL
Equation 7 shows the existence the equilibrium effective poten-
tial, W(q). It remains to be shown that W(q) is the only such
potential which will reproduce the quantum density, which is
to say that F is completely unique. The classical Bogoliubov
inequality states that,

A
[
η̃0(q)

]
> A

[
η0(q)

]
, η̃0(q) 	= η0(q) (16)

where A is the classical Helmholtz free energy,

A
[
η0(q)

] = E
[
η0(q)

] − 1

β
S
[
η0(q)

]
(17)

=
∫

dq η0(q)W(q) + 1

β

∫
dq η0(q) log

[
η0(q)

]
which is minimum when η0(r) is equal to the classical equilib-
rium density in the presence of W(q). For completeness, this
result is also proved in Appendix C. With this in mind, suppose
that there were two effective potentials, W̃(q) and W(q) that led
to the same density. Then,

Ã =
∫

dq η0(q)W̃(q) + 1

β

∫
dq η0(q) log

[
η0(q)

]
(18)

<

∫
dq η0(q)W(q) + 1

β

∫
dq η0(q) log

[
η0(q)

]
= A +

∫
dq η0(q)

[
W̃(q) − W(q)

]
.

So we see that,

Ã < A +
∫

dq η0(q)
[
W̃(q) − W(q)

]
. (19)

If we interchanged all over-scored quantities, we would also find
the following,

A < Ã +
∫

dq η0(q)
[
W(q) − W̃(q)

]
. (20)
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Adding these equations together leads to the result,

Ã + A < A + Ã. (21)

Thus, we see that no two W(q) lead to the same η0(q).
Because the physical potential V(q) uniquely determines the

quantum equilibrium density η0(q), and the quantum equi-
librium density uniquely determines the equilibrium effective
potential W(q), we see that the map, F [V(q)] → W(q) must be
completely unique.

3. APPROXIMATE LINEARITY
The results of the above section establish the possibility of revers-
ingF by modeling pairs of V(q) and W(q) generated via the exact
path-integral. However, the concept of F is not useful unless we
have good reason to suspect that F or a useful approximation
to F will be easy to obtain and evaluate numerically. In this sec-
tion, we analyze the approximation of F as a linear functor which
is straightforwards to construct numerically and because of its
separability, applicable to systems of arbitrary dimensionality.

We begin by rewriting Equations 4 and 6,

e−βW(q) ≡
∮ r(βh̄) = q

r(0) = q
Dr(τ)e−A[r(τ)] (22)

and introduce several definitions which break apart the action
term into a kinetic part and a potential part,

U [r(τ)] ≡ 1

h̄

∮ βh̄

0
dτ

[
V(q) − V(r(τ))

]
(23)

T [r(τ)] ≡ exp

[
− 1

2h̄

∫ βh̄

0
dτ

N∑
i = 1

mi ṙi(t)2

]
(24)

ZT ≡
∫ ∞

−∞
dq

∮ r(βh̄) = q

r(0) = q
Dr(τ)T [r(τ)]. (25)

We now employ a notation due to Feynman and Hibbs, for the
equilibrium average of a path functional weighted by T and nor-
malized by ZT , “〈〉” (Feynman and Hibbs, 1965). This allows us
to write a concise, exact expression for W(q):

e−βW(q) = ZT e−βV(q)〈eU[r(τ)]〉. (26)

Jensen’s inequality tells us that that, 〈ef 〉 ≥ e〈f 〉 with an error on
the order of the variance of f . This simplifies the path integral and
introduces error that is second order at worst in the weighted path
functional average,

〈eU[r(τ)]〉 = e〈U[r(τ)]〉 + O
[〈U [r(τ)]〉2 − 〈U [r(τ)]2〉] (27)

e−βW(q) ≈ ZT e−βV(q)e〈U[r(τ)]〉. (28)

Because any potential is unique only up to a constant, we can use
properties of logarithms to remove ZT , since it does not depend

on q or V(q), to write

W(q) ≈ V(q) − 1

β
〈U [r(τ)]〉 (29)

with corrections on the order of U2. We also see from this that the
equilibrium effective potential is a temperature dependent correc-
tion to the true potential. U [r(τ)] is clearly a linear functional of
V(q) and 〈U [r(τ)]〉 is clearly a linear functor of U [r(τ)],

〈U [r(τ)]〉 = 1

ZT

∮ r(βh̄)= q

r(0) = q
Dr(τ)T [r(τ)]U [r(τ)]. (30)

In the multi-dimensional case, the path integral couples all 3N
modes of q, making the exact F a very complicated object which
embeds all-orders of quantum many body effects between these
modes. However, our analysis suggests a linear approximation
which conserves the locality of the original potential. With this
approximation we can separate the integral in Equation 30 into
each individual interaction order of the potential and see that the
path integral does not multiply these terms; the pairwise interac-
tions remain pairwise, the three-mode interactions are mapped
by F onto three-mode interactions, etc.

Approximate separability of this mapping is one of the key dif-
ferences between our method and approaches such as Feynman-
Kleinert, which introduces higher ordered many-body terms into
the effective potential, or RPMD, which avoids the issue at the
cost of introducing ancilla particles. Our F can be imagined as
a Gaussian smearing of V(q) to first approximation. It is rea-
sonable to suspect that the non-separable many body couplings
would be blurred to a high order such that the many-body expan-
sion of the equilibrium effective potential might terminate faster
than the many-body expansion of the uncorrected physical poten-
tial. This agrees with the empirical observation that tunneling
effects stabilize pairwise interactions more than higher-ordered
interactions.

4. NUMERICAL TESTS
It is far from obvious that a transferable map between V(q) and
W(q) can be practically obtained and usefully accurate. Instead of
calling upon the most sophisticated procedures we can implement
to solve the problem, we take the simplest approach to devel-
oping and testing our approximation to F so that our results
are designed to be a worst-case, upper-bound on the error that
leaves room for optimism. Approaches such as machine learn-
ing could be employed in future work (Snyder et al., 2012). We
approximateF as a linear map (a matrix) acting on our potentials
vectorized into coefficients of Legendre polynomials. The entries
of this matrix are determined by simple least-squares on a ran-
domly generated training set of 1000 one-dimensional potentials
and their corresponding effective potentials chosen by randomly
choosing Legendre coefficients with the only constraint being that
the classical densities vanish at their boundaries.

Effective potentials were calculated using Equation 7 with den-
sities obtained from the efficient real-space discrete variable rep-
resentation (DVR) of the path integral (Thirumalai et al., 1983).
We examine how this F performs on instances of other random
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potentials not included within its training set and then apply it
to the Silvera-Goldman pair potential for liquid para-hydrogen
(Silvera and Goldman, 1978; Nakayama and Makri, 2003; Hone
and Voth, 2004; Poulsen et al., 2004; Miller and Manolopoulos,
2005). Using the resulting effective potential, a classical Monte
Carlo simulation was performed to give us radial pair distribu-
tion functions in agreement with results from PIMC at a fraction
of the computational cost.

4.1. OBTAINING THE LINEAR FUNCTOR
In order to obtain the simplest possible F we model the linear
transformation as a matrix. This requires that we treat the phys-
ical potential and effective potential as vectors in some basis of
real-valued functions. Because force-fields are often chosen for
the speed with which they can be evaluated, it seems natural
to use a polynomial basis. Legendre polynomials evaluated on a
fixed domain of [−1, 1] were chosen for their orthogonality and
historical usefulness in fitting potentials.

Consider the short time Trotterization of the path-integral,
which we use to generate exact quantum densities for our test sets
(Thirumalai et al., 1983). The short-time propagator effectively
acts as a Gaussian which blurs out the density with a variance
that depends exactly on the inverse of the square root of the
the mass times the temperature. This factor which determines
the “quantumness” of the system is proportional to the thermal
de Broglie wavelength, � = h̄

√
2πβ/m (Yonetani and Kinugawa,

2003; Georgescu et al., 2013). Because we wish to calculate the
deformation of a potential vector evaluated on a fixed domain,
the parameter which characterizes our map must depend on the
ratio between the thermal de Broglie wavelength and the potential
length-scale, Q = �/L where L is the potential length-scale.

In order to obtain a linear functor capable of transform-
ing a one-dimensional potential at fixed Q into another one-
dimensional potential at fixed Q we randomly generated pairs of
potential vectors and their corresponding effective potential vec-
tors. These vectors were in a Legendre polynomial basis of order
B and the vector elements of the classical potential (i.e., basis
coefficients) were drawn from a flat distribution between −10/β

and 10/β. The corresponding effective potential vectors were cal-
culated by evaluating the classical potential vectors as Legendre
polynomials on the fixed domain, passing the scalar potential
and Q to the aforementioned DVR routine which yields a scalar
quantum density, and finally fitting the negative logarithm of that
density divided by β to a vector of Legendre polynomials in accor-
dance with Equation 7. Having done this, the goal is to find a
matrix F ∈ B × B such that, F V ≈ W . We chose to perform a
Levenberg-Marquart L2 optimization to determine the elements
of this matrix (Levenberg, 1944). Our residual was defined as
the concatenation of the difference vectors, F Vi − Wi for all
N physical potential / effective potential pairs in the randomly
generated set.

4.2. PERFORMANCE ANALYSIS
The linear approximation to F appears to work quite well for
even fairly large values of Q. As we can see in Figure 2, the errors
on an independent test set from the linear F generated W(q)
are minimal and significantly better than the classical predictions,

FIGURE 2 | Top: plot of the percent error in potential energy of a classical
simulation with the classical potential (blue) and F generated distribution
(red) against Q. Bottom: plot of mean integrated squared error (MISE) from
the exact quantum density for classical density (blue) and F generated
density (red) against Q. Each point is the mean of these errors on 1000
random potentials with 50 basis functions.

especially in strongly quantum regimes. Even the deviation from
the exact answer is improved relative to simulations which employ
the uncorrected physical potential. For both simulations the error
goes to zero as Q goes to zero—a consequence of classical cor-
respondence. As one might expect as Q is increased, predictions
given by both classical and F generated distributions deviate
more significantly from the exact answer. In the W(q) simulations
these errors are entirely due to the linearity of F . Another view
of the the performance of the linear functor is given in Figure 3.
When temperature and length are fixed, mass is a reasonable pre-
dictor of the performance of both W(q) and V(q) simulations.
For low masses, the classical treatment often misses the quan-
tum free energy by as much as a kcal/mol (chemical accuracy).
Having characterized the error of assuming linearity we turn to
separability.

Figure 4 shows the effective potentials obtained from apply-
ing our linear F , trained at 14K and 25L with sets of 1000
potentials, to the Silvera-Goldman potential, which is perhaps
the most common potential used to simulate liquid hydrogen
with path integrals (Silvera and Goldman, 1978; Nakayama and
Makri, 2003; Hone and Voth, 2004; Poulsen et al., 2004; Miller
and Manolopoulos, 2005). We then performed a classical Monte
Carlo simulation on the potential mapped at 25K and the poten-
tial mapped at 14K, using 150 molecules in a cubic cell with
periodic boundary conditions and one million steps. Cell size
was fixed by densities from the literature (Nakayama and Makri,
2003).
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FIGURE 3 | Left: correlation of classical (blue-green) and F generated
(red-yellow) free energy with exact free energy. Dotted lines enclose
the chemically accurate region of within one kcal/mol. In more than
97% of instances, our map is more accurate than the classical
treatment. Right: correlation of classical and F generated potential

energy with exact potential energy. Color brightness indicates the
mass used in setting the Q value at 25K. As mass increases,
classical simulations better approximate the energy. Data consists of
1000 cross-validating potentials at each of the six masses shown on
the colorbar.

FIGURE 4 | The dashed black line above shows the classical

Silvera-Goldman potential in the region of interest for our problem.

The red line is the effective potential obtained with our linear F at 25K and
the blue line is at 14K.

The resulting radial distribution functions, g(r) are shown
in Figure 5. The differences between the W(q) generated g(r)
and the PIMC results are presumably due to the assumption
of separability. Slight over-structuring of g(r) at the first shell
results from neglect of the 3-body components of the exact W(q).
Remarkably, this over-structuring appears to decrease with tem-
perature, lending credence to the idea that many-body effects
in W(q) are largely blurred-out by the smearing which the low
orders of F perform on the potential. At both temperatures the
errors of these approximations are quite reasonable and although
the classical system undergoes a non-physical transition to a solid
between 25 and 14K, the model of the present work remains
correct.

5. CONCLUSION
We have shown that for each physical potential, there is a unique
effective potential which reproduces the quantum density and
free energy when sampled with classical statistics. Other prop-
erties of a classical simulation of the effective Hamiltonian are

FIGURE 5 | The top box shows radial pair distribution functions at

25K and the bottom box shows radial pair distribution functions at

14K. The blue (dotted-dashed) curve is for the classical liquid without
correction for quantum effects. The green curve (solid) shows the result
of classical Monte Carlo sampling on the effective potential obtained
with our linear F . The red curve (dashed) shows PIMC results
(Nakayama and Makri, 2003). Even this simple F is a major
improvement over the classical potential.

not designed to approximate reality by the mapping, but the
effective potential may be advantageous to the status quo: classical
simulation on a Born-Oppenheimer surface. In this paper we
have shown that the implied mapping between the physical and
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effective potential, F , can be made concrete to a useful degree
of accuracy. A simple linear model for F improves on the
physical potential systematically over a broad range conditions.
Even under the assumption of separability and without any
exponential functions in our training set, our model for F
adequately describes the density of a popular para-hydrogen
model at exactly the cost of the corresponding classical simu-
lation. Non-linear models for F and expressions which do not
assume complete separability are likely to improve on these results
and produce even more accurate transferable recipes for digest-
ing Born-Oppenheimer potentials. In particular, we imagine the
development of simple functors which could be applied to Born-
Oppenheimer surfaces so that classical sampling will immediately
give improved results. Ultimately, we believe that force-field func-
tors can provide a scalable methodology for including quantum
propagation effects in systems that are intractable for exact meth-
ods, such as protein force-fields.
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A1. APPENDIX
A1.1. QUANTUM DENSITIES FROM CLASSICAL SAMPLING
In practice, path integral expressions are analytically intractable
except in a few cases. Feynman proposed to simplify Equation 5
by changing from an integral over all closed paths that start and
end at point q to an integral over all closed paths that have an
average value equal to the path centroid r̄,

r̄ = 1

βh̄

∫ βh̄

0
dτ r(τ). (A1)

So that we only integrate over each closed path once, we must
change our expression for the partition function to only calculate
paths that match the centroid,

Z =
∫ ∞

−∞
dq

∮
Dr(τ)δ[q − r̄]e−A[r(τ)] (A2)

=
∮

Dr(τ)e−A[r(τ)].

While the partition functions given by Equation 5 and
Equation A2 are exactly equal, the two expressions are associated
with subtly different scalar density functions. Equation 5 is asso-
ciated with the true equilibrium density in Equation 4 and A2 is
associated with the path centroid density,

ηc(q) = 1

Z

∮
Dr(τ)δ[q − r̄]e−A[r(τ)]. (A3)

The Dirac delta function in this equation enforces the require-
ment that integrating the Boltzmann factor associated with this
density over the path centroid, r̄, will result in exactly the path
integral expression for the quantum partition function (Jang and
Voth, 1999). The centroid density plays a prominent role in CMD
and Feynman-Kleinert methods but does not apply to force-field
functor theory.

A1.2. PROOF OF QUANTUM BOGOLIUBOV INEQUALITY
The quantum Bogoliubov inequality is proved for the grand
canonical ensemble in the Appendix of (Mermin, 1965). We adapt
this proof for the canonical ensemble, in the interest of com-
pleteness, to show that for all positive definite ρ with unit trace,

A[ρ] > A [ρ0] , ρ 	= ρ0 (A4)

if A is the quantum Helmholtz free energy of the canonical
ensemble,

A[ρ] = Tr

[
ρ

(
H + 1

β
log [ρ]

)]
, (A5)

which is minimum only when ρ is equal to the quantum equi-
librium density matrix ρ0 associated with the Hamiltonian, H =
T + V(q). To start we define,

ρλ = e−β(H−λ�)/Tr
[

e−β(H+λ�)
]

(A6)

where,

� = − 1

β
log [ρ] − H. (A7)

We see that ρλ = ρ0 if λ = 0 and ρλ = ρ if λ = 1. Accordingly,

A[ρ] − A [ρ0] =
∫ 1

0

∂

∂λ
A [ρλ] dλ (A8)

by the fundamental theorem of calculus. To evaluate the deriva-
tive we use,

A [ρλ] = (A9)

Tr

[
ρλ

(
H + λ� + 1

β
log [ρλ]

)]
− λTr [�ρλ] .

The first trace is stationary for variations of ρλ about the corre-
sponding density matrix. Thus, we only need to differentiate the
second trace,

∂

∂λ
A [ρλ] = −λTr

[
�

∂

∂λ
ρλ

]
. (A10)

We evaluate ∂
∂λ

ρλ using the operator identity,

∂

∂λ
e−β(H+λ�) = e−β(H+λ�)

∫ β

0
dβ′�λ

(
β′) , (A11)

�λ

(
β′) = eβ′(H+λ�)�e−β′(H+λ�) (A12)

∂

∂λ
ρλ = −

∫ β

0
dβ′ρλ

[
�λ

(
β′) − 〈�〉λ

]
, (A13)

where
〈X〉λ = Tr[ρλX] . (A14)

Therefore,

∂

∂λ
A [ρλ] = λ

∫ β

0
dβ′ (〈��λ

(
β′)〉λ − 〈�〉2

λ

)
. (A15)

By cyclically permuting operators within the trace, one can verify
that

〈�λ

(
β′)〉λ = 〈�〉λ ∀β′, (A16)

〈
��λ

(
β′)〉

λ
=

〈
�λ

(
1

2
β′

)†

�λ

(
1

2
β′

)〉
. (A17)

With these identities, we can rewrite Equation A15,

∂

∂λ
A [ρλ] = (A18)

λ

∫ β

0
dβ′

〈(
�λ

(
1

2
β′

)
− 〈�〉λ

)†(
�λ

(
1

2
β′

)
− 〈�〉λ

)〉
λ

.

This integral is non-negative and can be zero only if � is a mul-
tiple of the unit operator, i.e., if ρ0 = ρ. This proves that the
minimum of the free energy must occur when ρλ = ρ0.
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A1.3. PROOF OF CLASSICAL BOGOLIUBOV INEQUALITY
If η0(q) is the equilibrium density for a classical canonical ensem-
ble and η̃0(q) is a different density, Gibbs’ classical Bogoliubov
inequality states that,

A
[
η̃0(q)

]
> A

[
η0(q)

]
, η̃0(q) 	= η0(q) (A19)

where A is the classical Helmholtz free energy,

A
[
η0(q)

] = E
[
η0(q)

] − 1

β
S
[
η0(q)

]
(A20)

=
∫

dq η0(q)W(q) + 1

β

∫
dq η0(q) log

[
η0(q)

]
.

To see that this is the case we start by writing,

1

β

∫
dq η̃0(q) log

[
η̃0(q)

] ≥ 1

β

∫
dq η̃0(q) log

[
η0(q)

]
. (A21)

The difference between the right and left sides of this equation is,

1

β

∫
dq

(
η̃0(q) log

[
η̃0(q)

] − η̃0(q) log
[
η0(q)

])
(A22)

= 1

β

∫
dq η̃0(q) log

[
η̃0(q)

η0(q)

]
.

Because log [x] ≥ 1 − 1
x and we know that the densities are

normalized,

1

β

∫
dq η̃0(q) log

[
η̃0(q)

η0(q)

]
≥ 1

β

∫
dq

[
η̃0(q) − η0(q)

] = 0.

(A23)
We can simplify this further to,〈

1

β
log

[
η0(q)

]〉 ≥
〈

1

β
log

[
η̃0(q)

]〉
. (A24)

We know that,

η0(q) = e−βE(q)

Z
(A25)

η̃0(q) = e−β̃E(q)

Z̃
(A26)

where Ẽ(q) and Z̃ correspond to the energy and partition function
associated with η̃0(q). Thus,〈

1

β
log

[
e−β̃E(q)

Z̃

]〉
≥

〈
1

β
log

[
e−βE(q)

Z

]〉
(A27)

〈
−Ẽ(q) − 1

β
log

[
Z̃
]〉 ≥

〈
−E(q) − 1

β
log [Z]

〉
. (A28)

We may safely assume that 〈̃E(q)〉 = 〈
E(q)

〉
so using the definition

of the Helmholtz free energy, A ≡ − 1
β

log[Z],

A
[
η̃0(q)

]
> A

[
η0(q)

]
, η̃0(q) 	= η0(q). (A29)

A1.4. APPLYING LINEAR FUNCTOR TO SILVERA-GOLDMAN
The matrix which was ultimately used to transform the Silvera-
Goldman potential was obtained by fitting 1000 random poten-
tials with B = 50 basis functions in the appropriate Q regime. The
Silvera-Goldman potential has the form,

V(r) = exp
[
α − δr − γr2] (A30)

−
(

C6

r6
+ C8

r8
+ C10

r10

)
fc(r) + C9

r9
fc(r)

where

fc(r) =
{

e−(rc/r−1)2
, if r ≤ rc

1, otherwise.
(A31)

Parameters for the Silvera-Goldman potential are provided in
Table A1 (Silvera and Goldman, 1978).

Exponential functions cannot be easily represented in a poly-
nomial basis and the Silvera-Goldman potential diverges expo-
nential as r approaches zero. Accordingly, we fit the potential only
in the physically relevant region of r > 4 Bohr. We matched the
slope of the potential at r = 4 Bohr and extend the potential as
a straight line in the region 0 < r < 4 Bohr. We choose to fit
the potential out to r = 24 Bohr but imposed a standard cut-
off after the fact at r = 20 Bohr as the potential is clearly flat
by this point. We simulated para-hydrogen at 14K and 25K. At
25K, the thermal de Broglie wavelength is 4.6 Bohr; thus, a cut-
off distance of 20 Bohr gives Q = 0.23. At 14K, the thermal de
Broglie wavelength is 6.2 Bohr and Q = 0.31. Based on statis-
tics collected from 10,000 random potentials generated with these
Q values, in both of these regimes, the classical free energy is
more accurate than the F predicted free energy less than 1% of
the time.

Table A1 | Parameters of the Silvera-Goldman potential (Silvera and

Goldman, 1978).

Parameter Value (atomic units)

α 1.713

δ 1.5671

γ 0.00993

C6 12.14

C8 215.2

C9 143.1

C10 4813.9

rc 8.321
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