frontiers in
CHEMISTRY

HYPOTHESIS AND THEORY ARTICLE
published: 13 May 2014
doi: 10.3389/fchem.2014.00026

=

Alternative methods of processing bio-feedstocks in
formulated consumer product design

Nicolai Peremezhney, Philipp-Maximilian Jacob and Alexei Lapkin *

Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK

Edited by:

Gil Bernard Garnier, Bioprocessing
Research Institute of Australia,
Australia

Reviewed by:

Jean-Michel Lavoie, Université de
Sherbrooke, Canada

Xiaolei Fan, The University of
Manchester, UK

*Correspondence:

Alexei Lapkin, Department of
Chemical Engineering and
Biotechnology, University of

In this work new methods of processing bio-feedstocks in the formulated consumer
products industry are discussed. Our current approach to formulated products design is
based on heuristic knowledge of formulators that allows selecting individual compounds
from a library of available materials with known properties. We speculate that most of
the compounds (or functions) that make up the product to be designed can potentially be
obtained from a few bio-sources. In this case, it may be possible to design a sequence
of transformations required to convert feedstocks into products with desired properties,
analogous to a metabolic pathway of a complex organism. We conceptualize some
novel approaches to processing bio-feedstocks with the aim of bypassing the step of
a fixed library of ingredients. Two approaches are brought forward: one making use of
knowledge-based expert systems and the other making use of applications of metabolic
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INTRODUCTION

Global uncertainty over prices of petrochemical feedstocks and
the desire to significantly reduce the levels of anthropogenic
generation of CO, are the two main drivers behind current
rapid development of a replacement supply chain for platform
molecules of the chemistry using industries (Perlack et al., 2005;
Graham, 2007). What platform molecules produced by new bio-
refining technologies would form the basis of the new supply
chain is still an issue of a significant debate (Fernando et al., 2006;
Smith, 2007; FitzPatrick et al., 2010). This, however, significantly
affects downstream technologies, which depend on the catalog of
available molecules to develop task-specific products, for example
in formulations.

At present the use of bio-feedstocks in product design is
relatively limited, due to the small number of molecules avail-
able on the market, primarily natural oils, flavor and fragrance
substances, nutraceuticals and bio-pharmaceuticals. Very few
bio-derived solvents, surfactants or monomers are available at
present. However, this range is expected to be rapidly expanded,
offering new opportunities for product design. The emerging
question is whether our existing methods of product design in
formulations and other chemistry-using industries are appropri-
ate for the new developing supply chain based on sustainable
renewable feedstocks.

Our current approach to formulations design is based on
heuristic knowledge of formulators that allow to select individ-
ual compounds from a library of available materials with known
properties, i.e., rheology modifiers, structure-forming agents,
color and fragrance substances, bio-actives etc. (Marshall and
Alaimo, 2010). The new bio-feedstocks based supply chain will
replace some of the usually applied ingredients or offer new
ingredients with different functionalities. This is represented by
the lower path in Figurel, from bio-feedstocks to the final
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products. A significant anticipated difference with the current
petrochemicals-derived supply chain of ingredients is in the
broader specification of properties of the ingredients due to vari-
ability in bio-feedstocks, which may also translate in broader
variability in performance of the final products. How acceptable
this would be will require further examination.

We speculate that most of the compounds (or functions) that
make-up the final product can potentially be obtained from a
single, or very few, bio-sources. In this case, there could be
an alternative path from feedstocks to products, analogous to a
metabolic pathway of a complex organism. This is represented by
the top path in Figure 1.

After Corey formalized the concept of retrosynthesis in his
seminal work in 1967 (Corey, 1967; Huang et al., 2011) interest
very quickly arose in transferring this process away from expert
chemists to computer programs written by expert chemists—so
called expert systems. Again, Corey was first to develop a program
to this end called OCSS (Corey and Wipke, 1969; Moity et al.,
2014). Most of these systems were limited by the fact that the rules
they were based upon had to be programmed by hand meaning
it was virtually impossible to keep up with the rapid development
of chemistry (Law et al., 2009). With the advent of databases and
advanced computing power this has, however, changed. Millions
of chemical reactions performed, and compounds synthesized to
date have been systematically recorded and incorporated into a
variety of product and reaction databases (Bartosz et al., 2009).
The availability of such databases has prompted the development
of algorithms and software tools (Jorgensen et al., 1990; Satoh and
Funatsu, 1995; Todd, 2005; Socorro and Goodman, 2006; Chen
and Baldi, 2009; Law et al., 2009; Nowak and Fic, 2010) to help
intelligently explore the gathered information, thus allowing for
automatic extraction of new rules for expert systems. Some expert
systems are designed to predict major products of a reaction given
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FIGURE 1 | Schematic representation of both current and proposed
approaches to processing bio-feedstocks in product design.

a combination of starting materials and reagents (Jorgensen et al.,
1990; Satoh and Funatsu, 1995; Socorro and Goodman, 2006;
Chen and Baldi, 2009), while others are designed to predict, using
retrosynthetic analysis, possible starting materials given a target
product (Law et al., 2009; Nowak and Fic, 2010).

Alternatively, other approaches to product synthesis are being
developed, that do not rely on the information stored in prod-
uct and reaction databases. These approaches build on advances
made in the fields of metabolic engineering (Rozenman et al,,
2007; Lee et al., 2011) and dynamic combinatorial chemistry
(Hunt and Otto, 2011; Moulin et al., 2012).

The main element of expert systems based approaches is exist-
ing chemical knowledge of a large number of compounds and
reactions. Recorded in the form of on-line databases, this knowl-
edge is in a format that allows interrogation and rule generation
to be performed using expert systems. We speculate that existing
chemical knowledge will now include the necessary information
for expert systems to, using retrosynthetic analysis, generate (or
go some way toward) synthetic routes connecting bio-feedstocks
(as starting material) with a number of existing products. Also,
as more bio-derived molecules with a variety of different func-
tionalities, are added to the existing supply chain of ingredients,
and the corresponding information (the molecules and the start-
ing materials that were used in creating them) is transferred into
the existing chemical knowledge, it becomes increasingly pos-
sible that synthetic routes connecting bio-feedstocks with new
products having desired properties, will be found using expert
systems.

Also, new approaches to processing bio-feedstocks in design-
ing products with specific properties through advances made
in metabolic engineering and dynamic combinatorial chemistry
are envisioned. Within metabolic engineering metabolic path-
ways are assembled and optimized (by tuning the activity of the
intermediate reaction steps) for the production of molecules with
desired properties (Yadav and Stephanopoulos, 2010). In dynamic
combinatorial chemistry materials are designed as artificial chem-
ical systems that display modulation of functional properties in
response to the application of external stimuli (Moulin et al.,

2012). These approaches may be viewed as evolution based, as
the final product could be arrived at through evolution of the
systems involved. For instance, directed evolution is employed in
optimizing enzymes and biosynthetic pathways (Leemhuis et al.,
2009) involved in synthesis of commercial products (Johannes
and Zhao, 2006). Typically, a directed evolution cycle of an
enzyme involves: diversification of the parent gene via a chosen
method of random mutagenesis and/or in vitro gene recombi-
nation, mutant enzymes production using the library of mutant
genes and identification of improved enzymes whose genes will
be used as parents in the next cycle, through a high-throughput
screening or a selection method (Zhao et al., 2002). In dynamic
combinatorial chemistry, equilibrated libraries of building blocks
are generated under reversible conditions and evolve based on
an imposed selection process (Corbett et al., 2006). The com-
ponents of a dynamic combinatorial chemistry experiment are
loosely related to components of a system undergoing Darwinian
evolution in that a population of individuals (the library), repro-
duction (based on reversible reactions) and selection (based on
binding interactions) are present (Miller, 2009). However, intro-
duction of new diversity into the library of building blocks and
iteration of the process are still an issue (Gartner, 2006).

The aim of this paper is to conceptualize approaches to con-
sumer product design that are not reliant on the formulator’s
experiential knowledge of combining known ingredients into
recipes, but, rather, either employ expert systems to interrogate
the existing chemical knowledge and, thus, extract favorable reac-
tion routes, or, by taking advantage of advances made in the fields
of metabolic engineering and dynamic combinatorial chemistry,
evolve the product generating process until the output product
displays the desired properties. Thus, essentially, the novelty of
the approaches presented herein lies in the idea of bypassing the
step of a fixed ingredient library generation and, hence, avoiding
the need for recipe-driven product design.

In Section Methods the proposed ideas are presented. The
merits and drawbacks of the proposed ideas are discussed in
Section Merits and drawbacks of the proposed approaches and
conclusions are drawn in Section Conclusions.

METHODS

EXPERT SYSTEMS BASED APPROACH

Two variants of one methodology making use of existing chem-
ical knowledge and expert systems are suggested, one aiming for
products with known composition and a second targeting known
functional properties but with an unknown composition.

Methodology A

Given the target product composition is known, use expert systems
and existing chemical knowledge to find an optimal sequence of
transformations to perform on bio-feedstocks to arrive at the desired
product.

As shown in Figure 2 (route 1), bio-feedstocks, the informa-
tion on composition of the target product/mixture, and existing
chemical knowledge are all INPUTs. Generation of transforma-
tion sequences is the PROCESS. At this stage, expert systems
are used to perform retrosynthetic analysis. INTERMEDIATE
OUTPUT is all sequences “deemed” possible (but not necessarily
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feasible) by the expert system. At the EVALUATION stage, the
sequences that are returned as possible are assessed by expert sys-
tems for feasibility. As the transformations are to be performed on
a mixture of bio-feedstocks, it is important to ensure that, for any
reaction in a sequence, the properties of the components that do
not take part in the reaction remain unaffected (Paula and Atkins,
2002) (referred to as “mixture constraint” in the diagram). Thus,
each feasible sequence is also required to satisfy the “mixture con-
straint.” It is possible that, after all of the generated sequences have
been evaluated, there would be more than one acceptable trans-
formation sequence in STORAGE, in which case, there would be
opportunities for OPTIMIZATION.

The idea behind retrosynthesis is to identify an optimal synthe-
sis route connecting a desired product with a commercially avail-
able starting material by simplifying the target product through
a number of disconnections (the hypothetical reverse of a syn-
thetic step). Each precursor is then in turn examined in the same
way until a suitable starting material is identified (Corey, 1991).
This can lead to combinatorial explosion with respect to the num-
ber of possible reactions to be investigated. For a more detailed
discussion the reader is referred to Todd (2005).

One approach to retrosynthetic analysis is the use of
generalized reaction rules. These are procedures for evaluating
reaction types and are obtained by learning from individual
reactions to obtain a generalized scheme for a type of reaction
(Gasteiger et al., 2000) through extracting the extended reac-
tion cores of a reaction and then grouping similar reactions
together. These groups are in turn generalized to yield a reac-
tion rule (Law et al., 2009). Applying these generalized rules to a
molecule allows for the prediction of reactions, or disconnections

in this case. As a result new reactions can be discovered
(Pham and El-Halwagi, 2012).

A number of systems have recently made use of advanced
heuristics and databases to improve the route prediction. In the
past retrosynthetic analysis was limited by the requirement for
an expert chemist to manually program reaction rules. Law et al.
(2009) addressed this problem by using the Beilstein Crossfire
database to automatically incorporate all known reactions into
the reaction rule generation, while (Christ et al., 2012) reports
of efforts at Boehringer Ingelheim to mine electronic laboratory
notebooks for reaction rules, extending their reach past the pub-
lished chemistry. Huang et al. (2011) has sought to address the
issue that though a reaction might be feasible on paper it can
be very difficult or inefficient to conduct in practice by intro-
ducing an accessibility factor allowing for a better differentiation
of routes. An alternative approach is the DEF-factor assigned
to each transformation by Moity et al. (2014) measuring the
sustainability, easiness and scale at which the transformation is
used industrially. An interesting future development would be the
development of “biocatalytic retrosynthesis” incorporating enzy-
matic reaction rules (Turner and O’Reilly, 2013). In our opinion
many of these recent developments could prove very useful in
the planning of synthesis routes for the purpose of formulated
product design.

To date, to the best of our knowledge, expert systems based
on retrosynthetic analysis are yet to be employed in develop-
ment of consumer products. However, the capabilities of such
expert systems have been validated in specific cases. For instance,
in Law et al. (2009), Route Designer expert system was able to
find a synthetic transformation sequence for Zatosetron, a potent,
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selective and long acting 5HT receptor antagonist used in the
treatment of nausea and emesis associated with oncolytic drugs.
First, rule extraction, using MOS reaction database from Accelrys
and the Beilstein Crossfire reaction database from Elsevier, was
performed. The program was then presented with the target and
a database of 120 k of starting materials. The search for possible
synthetic sequences followed. The assessment of feasibility of sug-
gested sequences is inbuilt in the algorithm and was performed at
a transformation level as the sequences were assembled. A num-
ber of ranked possible, feasible sequences were then presented as
the output.

An alternative approach to the same end would be the use
of the Network of Organic Chemistry (NOC). In 1990 (Lawson
and Kallies, 1990) observed that the Beilstein database forms an
implicit network resulting in “a map of practically all known syn-
thetic pathways from almost any starting material to almost any
product.” In 2005 this idea was further developed by Fialkowski
et al. (2005) who first converted the Beilstein database into a
network, called the NOC, and further investigated various prop-
erties of the NOC in a series of publications (Fialkowski et al.,
2005; Bishop et al., 2006; Grzybowski et al., 2009; Gothard et al.,
2012; Kowalik et al., 2012; Soh et al., 2012). The important fea-
ture of this network is that a computer with an effective network
search algorithm is able to optimize a synthesis route very quickly.
Providing that the required reactions have been published this
can be done without having to take recourse to modeling or
lengthy literature research. This would be a vast improvement
in efficiency for the design of synthesis routes compared to the
status quo.

Though this methodology is interesting in its own right it
would be desirable to extend it to the prediction of unknown
reactions not contained in the network. To this end a number of
approaches could be used. In statistical terminology the problem
of discovering reaction not presently contained in the network
equates to an edge prediction problem. One purely statistical,
though potentially very powerful, approach would be the use of
hierarchical networks, for a good discussion of which the reader
is referred to Barabasi and Oltvai (2004). The potential of this
approach, as well as a suitable algorithm, has been demonstrated
in (e.g., Clauset et al., 2008). This assumes that the NOC exhibits
hierarchical behavior which would need to be investigated (for
details of which reference is made to Ravasz et al. (2002) though
other statistical techniques for the purpose of edge-prediction
could be used should this not be the case (Lii and Zhou, 2011).
A different approach that would make more use of chemical intu-
ition would be to run a search in the NOC in a generalized format
such as the extended reaction core methodology used by Law
et al. (2009) or other reaction rule generation methodologies.
This would return a list of all similar reactions from which it
might be possible to extrapolate as to how the unknown reaction
currently under investigation could be carried out.

A question equally as important as the discovery of new reac-
tions is that of making reactions already existing within the NOC
more efficient by using better catalysts. For this purpose the pre-
viously described extended reaction core approach could be used.
It would however also be desirable to conduct computational
screening of catalysts. To this end reference is made to Norskov

et al. (2011). This paper demonstrates the possibility of reducing
a DFT simulation to two descriptors and several scaling relation-
ships for the other variables, which allows for a descriptor-based
search for new catalysts potentially making the process far more
efficient.

Methodology B

Given only the desired properties of the product are known, use
expert systems and existing chemical knowledge to perform a series
of transformations on bio-feedstocks to arrive at a product with the
desired set of properties.

As shown in Figure 2 (route 2), a mixture of bio-feedstocks
and the information on the product’s properties are INPUTS.
Generation of possible transformation sequences is, again, the
PROCESS and involves the use of expert systems to perform for-
ward synthesis. INTERMEDIATE OUTPUT is all sequences and
the corresponding predicted resulting products “deemed” pos-
sible (but not necessarily feasible) by the expert system. At the
EVALUATION stage, the sequences that are returned as possible
are assessed by expert systems for feasibility. The properties of
predicted resulting products of feasible sequences are estimated.
The sequence is accepted if the estimates of properties are within
the tolerance required and the “mixture constraint” is not vio-
lated. Again, it is possible that there would be more than one
acceptable transformation sequence, in which case, there would
be an opportunity for optimization.

At present, within the context of the above-mentioned
approach, expert systems are able to assist with generation and
evaluation (in terms of feasibility only) of the candidate prod-
ucts. In Chen and Baldi (2009), for instance, examples are given
of an expert system, with reaction predicting capabilities, being
used to generate products in two ways: generating products sys-
tematically, given a number of predetermined starting materials,
and generating products that are similar to a given target product
using the precursors of the target product as starting materials.
Also, the design of the expert system ensures that it only predicts
synthetically feasible products. In Moity et al. (2014), a computer-
assisted tool named GRASS is presented that, given a chosen
bio-based building block (molecule/s obtained through chemical
or biochemical transformation of a biomass feedstock) and co-
reactants, generates a library of possible products that are then
assessed for synthesis feasibility and application-specific prop-
erties. The authors demonstrate the capabilities of the GRASS
program by virtually designing agro-based solvents known in the
literature. The scheme in full, as in Figure 2 (route 2), has not
been attempted, to the best of our knowledge.

EVOLUTION-BASED APPROACH

An alternative to expert systems approach involves the use
of ideas developed in the fields of metabolic engineering and
dynamic combinatorial chemistry. Given only the desired prop-
erties of the product are known, a pseudo evolutionary engine
is used, as illustrated in Figure 3, to arrive at a product with
the desired properties. INPUT includes bio-feedstocks and infor-
mation on desired properties of a product. At the PROCESS
stage an INTERMEDIATE OUTPUT-candidate product is gen-
erated via the application of metabolic engineering or dynamic
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combinatorial chemistry. At the EVALUATION stage an assess-
ment of the candidate product, in terms of whether the estimates
of desired properties are within required tolerance or not, is per-
formed. If the candidate product does not meet the requirements,
it is discarded. Using FEEDBACK, adjustments to the genera-
tion step are made and a new candidate product is generated.
The process is repeated until the desired properties are within the
tolerance required.

The majority of components of the above-mentioned
approach are in existence. Within metabolic engineering, a num-
ber of strains are often designed (PROCESS, INTERMEDIATE
OUTPUT) and evaluated in terms of percentage yield of
the desired product (EVALUATION). Following the evaluation,
adjustments are made and often involve deletion of unnecessary
or optimization of necessary genes or a combination thereof.
Within dynamic combinatorial chemistry, dynamic combinato-
rial libraries (DCLs) are constructed (PROCESS) and evaluated
in terms of functional modularity in response to an external stim-
uli (INTERMEDIATE OUTPUT, EVALUATION). Following the
evaluation, adjustments to the construction of DCLs are made
and often involve: replacement of some of the constituents within
DCLs, alteration of the reversible chemistry used, a change in
the external stimuli applied. For instance, in Hanai et al. (2007)
authors report the use of metabolic engineering in designing a
synthetic pathway in E. coli for the production of isopropanol
(Papa, 2005), a secondary alcohol that is used, among other ways,
in pharmaceutical applications. The successful strain was devel-
oped through expression of a variety of combinations of genes
from a selected list of known strains. In Jung et al. (2010) authors
give account of the use of metabolic engineering and enzyme

engineering in development of E. coli strains for the production
of biomass-derived plastics, polylactic acid, and its copolymers.
The techniques applied in optimizing metabolic pathways of the
organism were deletion of unnecessary genes and optimization of
the expression of necessary genes based on in silico genome-scale
flux analysis combined with rational approach.

In Nasr et al. (2009a,b), Gareiss et al. (2008), Bugaut et al.
(2008) the authors make use of dynamic combinatorial chem-
istry in identification of enzyme-inhibitors. Commonly, the steps
involved include generation of DCLs under thermodynamic con-
trol using a predetermined type of reversible chemistry and
assessment of interactions between constituents of the libraries
and the target through “measuring” of the change in the compo-
sition of a DCL upon introduction of a target.

MERITS AND DRAWBACKS OF THE PROPOSED
APPROACHES
Method A of the expert systems based approach is, perhaps,
the easiest to implement. As the target product is known from
the start, this methodology does not involve property estima-
tion, which can be difficult to do analytically and is costly.
Retrosynthetic analysis, employed as part of this methodology,
can also result in the discovery of new reactions. Its main draw-
back is the fact that a transformation sequence, connecting given
starting materials with a target product, might simply not exist, as
some or all of the required chemistry may not have been carried
out yet.

Method B of the expert systems based approach, however,
although also dependent on a large variety of chemistry to have
been done, is not constrained by the necessity of finding a
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transformation sequence to a given target product, but rather
by a set of properties that the target product should exhibit,
which somewhat liberates the search. In fact, the final output
of this approach may, intriguingly, be a product that has not
been considered before. The main foreseen difficulty with this
methodology is the costs associated with the necessity for prop-
erty estimation, either analytically or through an experiment, for
each candidate product.

The main attraction of the evolution-based approach is
the potential for discovery of novel products with desired
properties and the potential to discover new knowledge. The
biomimetic approach of evolution-based process development
requires implementation of generic principles of evolutionary
development, which will necessarily sample a very large space of
potential process variants. This methodology depends on the abil-
ity to sample the outcomes of each evolutionary step and to make
adequate decisions, both, about the new, yet unknown phenom-
ena that took place and which could potentially be exploited, as
well as about the following steps in the process evolution. As in
natural evolution, the approach is not blind, but follows some
generic rules. The envisioned evolutionary approach would, at the
very basic level, involve an “adjustment” (mutation) step, applied
iteratively, to evolve a product generating process. However, it is
not unreasonable to think of the possibility of evolving a popula-
tion of product generating processes, in which case selection and
crossover steps would come into play. To allow the approach to
converge on the optimal (near optimal) process (or population of
processes) within the allocated amount of resources and/or time,
adequate selection, crossover and mutation operators would need
to be designed.

The evolution-based approach has the potential to not
only discover novel products with desired properties, but,
intriguingly, products with additional, perhaps unexpected,
functions/properties. These (additional functions/properties), of
course, can be undesirable and the candidate product discarded,
in the context of the product sought. However, the new knowl-
edge, thus acquired, may benefit the design of new products
and, hence, should be retained. In addition to the potential to
facilitate development of other products with different function-
ality, the data collected using the evolution-based approach could
be utilized to build physical/empirical models of the underly-
ing physical processes involved in product generation (or help
improve the existing methodology).

CONCLUSIONS

In this short investigation new methods of processing bio-
feedstocks in consumer product design were discussed. An
attempt was made to conceptualize some novel approaches to
processing bio-feedstocks with the aim of bypassing the step
of a fixed library of ingredients. Two approaches were brought
forward and discussed: one making use of expert systems and
the other, evolution-based approach, making use of advances
made in the fields of metabolic engineering and dynamic
combinatorial chemistry. The two main components of both
approaches are: generation of a number of candidate transfor-
mation sequences/process variants and properties estimation of
the candidate products (second variant of the expert systems

based approach and the evolution based approach). Both [com-
ponents] present challenges. In silico generation of candidate
products/transformation sequences using expert systems, given
sufficient information is contained within existing chemical
knowledge, is very time and material efficient, however, prop-
erty estimation of the candidate products (second variant of the
expert systems based approach) is likely to be material-intensive
and time-consuming. By contrast, generation of candidate prod-
ucts using the evolution- based approach involves the design and
set up of experiments, which may require a substantial invest-
ment of time and resources. However, this initial investment
would pay off at the property estimation stage. It is possible that
the problem of identifying the transformations needed in pro-
cessing bio-feedstocks could be solved through the use of both
approaches, as some transformations may only be done via an
expert systems based or evolution-based approach.
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