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This review outlines the recent works of two-dimensional correlation spectroscopy
(2DCQOS) in polymer study. 2DCOS is a powerful technique applicable to the in-depth
analysis of various spectral data of polymers obtained under some type of perturbation.
The powerful utility of 2DCOS combined with various analytical techniques in polymer
studies and noteworthy developments of 2DCOS used in this field are also highlighted.
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Introduction

Noda developed two-dimensional correlation spectroscopy (2DCOS) for analyzing the small-
amplitude dynamic strain-dependent time-resolved IR linear dichroism spectra of a polymer film
(Noda, 1986). Since the concept of 2DCOS was expanded to the various spectroscopic applications
in 1993 (Noda, 1993), the generalized 2DCOS has become a very powerful analytical technique in
many fields of spectroscopic studies, especially in polymer study.

The generalized 2DCOS can elucidate information in spectral variations, e.g., IR (Kim et al.,
2006b; Cerda-Costa et al., 2009; Huang et al., 2009; Unger et al., 2009, 2011; Del Rio et al., 2010;
Huang and Kuo, 2010; Jeléi¢ et al., 2010; Jia et al., 2010; Lee et al., 2010, 2012; Peng et al., 2010;
Popescu and Vasile, 2010, 2011; Zheng et al., 2010; Cheng et al., 2011; Jin et al., 2011; Kuo and
Liu, 2011; Musto et al., 2011; Quaroni et al.,, 2011; Wang and Wu, 2011; Zhang et al., 2011;
Ando et al, 2012; Qu et al.,, 2012; Su et al,, 2012; Wu et al, 2012; Chai et al,, 2013; Lai and
Wu, 2013; Park et al., 2013; Shinzawa et al., 2013; Wang et al., 2013, 2014; Galizia et al., 2014;
Hou et al., 2014; Noda, 2014c; Seo et al,, 2014), Raman (Radice et al., 2010; Tang et al., 2010; Ma
et al., 2011; Ji et al., 2012; Pazderka and Kopecky Jr, 2012; Brewster et al., 2013; Grzeszczuk et al.,
2013; Noda, 2014d), terahertz (THz) (Hoshina et al., 2012, 2014), X-ray (Guo et al,, 2011), UV-
Vis (Hong et al., 2005; Jiang and Wu, 2008; Sikirzhytski et al., 2012; Zhong et al., 2012), NMR
(Oh et al, 2009; Li et al, 2013), fluorescence (Hur et al., 2011; Zhang et al., 2013), and even
chromatography (Izawa et al., 2001), under various external perturbations, such as thermal, elec-
trical, optical, magnetic, and chemical perturbations (Noda, 1986, 1993; Hong et al., 2005; Kim
et al., 2006b; Jiang and Wu, 2008; Cerda-Costa et al., 2009; Huang et al., 2009; Oh et al., 2009;
Unger et al,, 2009; Del Rio et al., 2010; Huang and Kuo, 2010; Jelei¢ et al., 2010; Jia et al., 2010;
Lee et al., 2010, 2012; Peng et al., 2010; Popescu and Vasile, 2010, 2011; Radice et al., 2010; Tang
et al., 2010; Zheng et al., 2010; Zhang et al., 2011; Cheng et al., 2011; Guo et al., 2011; Jin et al,,
2011; Kuo and Liu, 2011; Ma et al, 2011; Quaroni et al., 2011; Unger et al, 2011; Wang and
Wu, 2011; Ando et al,, 2012; Hoshina et al., 2012, 2014; Ji et al., 2012; Pazderka and Kopecky
Jr, 2012; Qu et al., 2012; Sikirzhytski et al., 2012; Su et al., 2012; Wu et al., 2012; Zhong et al.,
2012; Brewster et al., 2013; Chai et al., 2013; Grzeszczuk et al., 2013; Lai and Wu, 2013; Li et al.,
2013; Park et al.,, 2013; Shinzawa et al.,, 2013; Wang et al., 2013, 2014; Hou et al,, 2014; Noda,
2014c,d; Seo et al., 2014). IR spectroscopy is the most common analytical probes used in 2DCOS
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(Kim et al., 2006b; Cerda-Costa et al., 2009; Huang et al., 2009;
Unger et al., 2009, 2011; Del Rio et al., 2010; Huang and Kuo,
2010; Jelei¢ et al., 2010; Jia et al., 2010; Lee et al., 2010, 2012; Peng
et al., 2010; Popescu and Vasile, 2010, 2011; Zheng et al., 2010;
Cheng et al,, 2011; Jin et al,, 2011; Kuo and Liu, 2011; Musto
et al., 2011; Quaroni et al., 2011; Wang and Wu, 2011; Zhang
et al.,, 2011; Ando et al., 2012; Qu et al,, 2012; Su et al., 2012;
Wu et al., 2012; Chai et al., 2013; Lai and Wu, 2013; Park et al.,
2013; Shinzawa et al., 2013; Wang et al., 2013, 2014; Galizia et al.,
2014; Hou et al., 2014; Noda, 2014c; Seo et al., 2014). The most
popularly applied external perturbation in 2DCOS is temperature
(Kim et al., 2006b; Unger et al., 2009, 2011; Jia et al., 2010; Peng
et al,, 2010; Popescu and Vasile, 2010; Tang et al., 2010; Zheng
et al,, 2010; Cheng et al., 2011; Wang and Wu, 2011; Pazderka
and Kopecky Jr, 2012; Chai et al., 2013; Li et al., 2013; Wang et al.,
2013, 2014; Hoshina et al., 2014; Hou et al., 2014; Seo et al., 2014).
Applications of 2DCOS in investigations of intriguing proper-
ties of polymer system measured by different types of analytical
probes has been substantially increased (Izawa et al., 2001; Hong
et al,, 2005; Kim et al., 2006b; Jiang and Wu, 2008; Huang et al.,
2009; Oh et al., 2009; Unger et al., 2009, 2011; Del Rio et al., 2010;
Huang and Kuo, 2010; Jeléi¢ et al., 2010; Jia et al., 2010; Lee et al.,
2010, 2012; Peng et al., 2010; Popescu and Vasile, 2010, 2011;
Radice et al.,, 2010; Tang et al., 2010; Zheng et al., 2010; Cheng
etal, 2011; Guo etal.,2011; Jin etal., 2011; Kuo and Liu, 2011; Ma
et al,, 2011; Wang and Wu, 2011; Zhang et al., 2011; Ando et al,,
2012; Hoshina et al., 2012, 2014; Qu et al., 2012; Su et al., 2012;
Wu et al,, 2012; Zhong et al., 2012; Chai et al., 2013; Grzeszczuk
et al., 2013; Lai and Wu, 2013; Park et al., 2013; Shinzawa et al.,
2013; Wang et al., 2013, 2014; Hou et al., 2014; Noda, 2014c,d;
Seo et al., 2014). Generalized 2D correlation spectra has notable
advantages: examination of inter- or intra-molecular interactions
and determination of the sequential order of events, which is
hardly depicted in conventional spectroscopy.

In this review, the background of the generalized 2DCOS is
briefly discussed, and the powerful applications of 2DCOS in
the studies of polymers are presented. Illustrative examples of
2DOCS in polymer research describing the improved informa-
tion gained with noteworthy developments of 2DCOS are also
provided.

Background

Generalized 2D Correlation Spectroscopy

The detailed background of the generalized 2DCOS is well intro-
duced in books and book chapters (Noda, 2002, 2009; Ozaki,
2002; Noda and Ozaki, 2004; Ozaki and Sagic, 2005; Ozaki and
Noda, 2006; Noda and Lindsey, 2010; Czarnik-Matusewicz and
Jung, 2014; Jung and Noda, 2014) and review articles (Noda et al.,
1993, 2000; Noda, 2000, 2004, 2006, 2007, 2008, 2014a,b; Jung
and Noda, 2014). Here, we briefly describe the basic concept of
2DCOS.

In 2DCOS, a set of spectra A(vj, t;) is obtained as a function
of the spectral variable vj with j = 1,2,...n and some per-
turbation variable #; with i = 1,2, ...m during a well-defined
observation interval between #; and t,,. A series of perturbation-
induced dynamic spectra collected in a systematic manner are

transformed into a set of 2D correlation spectra by a simple cross
correlation analysis as shown in Figure 1.

The dynamic spectrum A (vj, t;) of a system induced by the
application of an external perturbation is defined formally within
the observation interval between #; and t,, as

A (Uj, t,‘) = A (\)j, t,') —A (V]) (1)
where A (v)) is the reference spectrum of the system. The reference
spectrum is mostly selected as the stationary or averaged spectrum
given by

1 m
*Z A V]»tz (2)
m i=1

Synchronous ®(v;, v;) and asynchronous W(v;, v;) correlation
spectra are given by

| A -
Q1 v2) = ——— 3 A, £) A, 1) (3)

i=1

Wby, 1) = —Z A, ) ZN,ksz,tk) (4)

i=1 k=

where, Ny is the elements of so-called Hilbert-Noda transforma-
tion matrix given by

0 ifi=k

1 .
b ) otherwise

N = | )
2D Correlation Spectra

The simultaneous or coincidental changes of spectral intensi-
ties at v} and v; are represented in the synchronous 2D corre-
lation spectrum. Positive correlation peaks on the diagonal in
synchronous 2D correlation spectrum correspond to the auto-
correlation functions of spectral intensity variations, which are
called autopeaks. Cross peaks, which are located at off-diagonal
in synchronous 2D correlation spectrum, represent the coinci-
dental or simultaneous changes of spectral intensities observed at
two different spectral variables. The positive cross peaks depict
that the intensities at corresponding spectral variables increase
or decrease together. On the other hand, the negative cross peaks
depict that one of the spectral intensities is increasing while the
other is decreasing.

In contrast, the sequential, or unsynchronized, changes
of spectral intensities at v; and v, are represented in the
asynchronous 2D correlation spectrum. Asynchronous 2D corre-
lation spectrum consists of only cross peaks, which shows an anti-
symmetric cross peaks with respect to the main diagonal. From
the sign of cross peaks in 2D correlation spectra, the sequential
changes in spectral intensities observed under the external per-
turbation can be determined. The same signs of synchronous and
asynchronous cross peaks represent that the intensity change at
vy occurs before v;. While the different signs of synchronous and
asynchronous cross peaks represent that the intensity change at
vy occurs before vy. This rule to determine sequential order of
intensity variations is named Noda’s rule.
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FIGURE 1 | The general scheme for constructing generalized 2D correlation spectra.
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Application of 2DCOS in Polymer Studies

2DCOS, which can provide the easier access to the pertinent
information in characterizing polymers, has been broadly applied
to polymer studies to obtain new insights at the molecular level
into the understanding behavior of polymers under an influence
of an external perturbation. Various polymer systems, such as
block copolymers (Kim et al., 2006b; Jia et al., 2010; Jin et al,,
2011), biodegradable polymers (Guo et al.,, 2011; Unger et al,
2011; Ando et al,, 2012; Hoshina et al., 2012, 2014; Wang et al.,
2014), conducting polymer (Hong et al., 2005; Grzeszczuk et al.,
2013), liquid crystals (Tang et al., 2010; Cheng et al., 2011), poly-
mer blends (Oh et al., 2009; Unger et al., 2009, 2011; Jelei¢ et al.,
2010; Popescu and Vasile, 2010, 2011; Kuo and Liu, 2011), and
polymer nanocomposites (Huang et al., 2009; Huang and Kuo,
2010; Peng et al., 2010; Ando et al., 2012; Qu et al., 2012), etc.,
are analyzed by 2DCOS. Detailed information of polymers for
polymerization (Izawa et al., 2001; Hong et al., 2005; Huang and
Kuo, 2010; Qu et al., 2012; Noda, 2014d; Seo et al., 2014), melting
behavior (Unger et al., 2009; Peng et al., 2010; Popescu and Vasile,
2010), crystallization (Huang et al., 2009; Zheng et al., 2010; Guo
et al., 2011; Unger et al., 2011; Ando et al., 2012; Hoshina et al.,
2012, 2014; Chai et al., 2013; Wang et al., 2013, 2014),gelation
(Wang and Wu, 2011; Suetal., 2012; Park et al., 2013), photoreac-
tion (Lee et al., 2010, 2012), hydration (Lai and Wu, 2013), sorp-
tion/desorption processes (Musto et al., 2011; Lai and Wu, 2013;
Galizia et al., 2014), and phase transition/separation (Kim et al.,
2006b; Cheng et al., 2011; Kuo and Liu, 2011; Hou et al., 2014),
etc., which are undergoing under the influence of applied exter-
nal perturbation, are obtained by 2DCOS. 2DCOS probes with
various analytical techniques, such as IR, near-IR (NIR), Raman,
X-ray, UV-Vis, THz, NMR spectroscopies, and even chromatog-
raphy, have been successfully applied in polymer studies. 2DCOS
has been extensively used in the IR study of polymers (Kim et al.,
2006b; Huang et al., 2009; Unger et al., 2009, 2011; Del Rio et al.,
2010; Huang and Kuo, 2010; Jelei¢ et al., 2010; Jia et al., 2010;
Lee et al., 2010, 2012; Peng et al., 2010; Popescu and Vasile, 2010,

2011; Zheng et al., 2010; Cheng et al., 2011; Jin et al., 2011; Kuo
and Liu, 2011; Musto et al,, 2011; Wang and Wu, 2011; Zhang
et al., 2011; Ando et al,, 2012; Qu et al.,, 2012; Su et al., 2012;
Wu et al,, 2012; Chai et al., 2013; Lai and Wu, 2013; Park et al,,
2013; Shinzawa et al., 2013; Wang et al., 2013, 2014; Galizia et al.,
2014; Hou et al., 2014; Noda, 2014c; Seo et al., 2014). Among
the applications of 2DCOS in polymer study, temperature is the
most used as an applied external perturbation (Kim et al., 2006b;
Unger et al., 2009, 2011; Jia et al., 2010; Peng et al., 2010; Popescu
and Vasile, 2010; Tang et al., 2010; Zheng et al., 2010; Cheng
et al,, 2011; Wang and Wu, 2011; Su et al.,, 2012; Wang et al.,
2013, 2014; Hoshina et al, 2014; Hou et al.,, 2014; Seo et al,,
2014).

Here, several illustrative examples are presented to demon-
strate the utility of 2DCOS in polymer studies. Special tech-
niques in 2DCOS, such as hetero-spectral correlation, positive
null-space projection, and 2DOCS combined with chemometric
methods are discussed.

2D IR Correlation Spectroscopy

In the field of polymer study through 2DCOS, IR spectroscopy
is the most commonly used analytical probes. The advantages of
2DCOS, such as the enhanced spectral resolution and determi-
nation of sequential changes of spectral band intensities, can pro-
vide the useful information in characterizing structural changes
of polymer obtained as a function of a perturbation, which is not
readily observed in the conventional spectroscopy (Kim et al.,
2006b; Huang et al., 2009; Unger et al., 2009, 2011; Del Rio et al.,
2010; Huang and Kuo, 2010; Jeleic¢ et al., 2010; Jia et al., 2010;
Lee et al., 2010, 2012; Peng et al., 2010; Popescu and Vasile, 2010,
2011; Zheng et al., 2010; Cheng et al., 2011; Jin et al., 2011; Kuo
and Liu, 2011; Wang and Wu, 2011; Zhang et al., 2011; Ando
et al,, 2012; Qu et al,, 2012; Su et al., 2012; Wu et al., 2012; Chai
et al., 2013; Lai and Wu, 2013; Park et al., 2013; Shinzawa et al.,
2013; Wang et al., 2013, 2014; Hou et al., 2014; Noda, 2014c; Seo
etal., 2014).
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Popular perturbations in polymer studies are temperature
(Kim et al., 2006b; Unger et al., 2009, 2011; Jia et al., 2010; Peng
et al., 2010; Popescu and Vasile, 2010; Tang et al., 2010; Zheng
et al., 2010; Cheng et al., 2011; Wang and Wu, 2011; Su et al,,
2012; Wang et al.,, 2013, 2014; Hoshina et al,, 2014; Hou et al,,
2014; Seo et al., 2014), concentration (Huang et al., 2009; Jelei¢
et al., 2010; Kuo and Liu, 2011; Popescu and Vasile, 2011; Wu
et al., 2012; Grzeszczuk et al., 2013), time (Huang and Kuo, 2010;
Jin et al., 2011; Ando et al., 2012; Lee et al., 2012; Qu et al.,
2012; Su et al., 2012; Lai and Wu, 2013; Park et al., 2013; Noda,
2014c), and pressure (Zhang et al., 2011; Shinzawa et al., 2013),
etc. Especially, temperature is the most commonly used because
ordinary changes in density, which give rise to nonspecific spec-
tral changes, usually are accompanied by structural changes in
polymer upon heating or cooling.

Choi et al. demonstrated the details of thermal behavior
of spin-coated films of biodegradable poly(3-hydroxybutyrate-
co-3-hydroxyhexanoate) or P(HB-co-HHx) (HHx = 12.0,
10.0, 3.8mol%) copolymers by using 2DCOS (Choi et al,
2010). The temperature-dependent infrared-reflection absorp-
tion (IRRAS) spectra of a spin-coated film of P(HB-co-HHXx)
(HHx = 12.0 mol%) copolymer, which were measured during
the heating process, are shown in Figure 2. Two distinct C=0
stretching bands, a crystalline band and an amorphous band are
observed respectively at 1726 cm~! and near 1751 cm~!. The 2D
correlation spectra for the C=O stretching bands are shown in
Figure 3. Two main bands are observed at 1726 and 1751 cm ™!
assigned to the crystalline band and the amorphous band, respec-
tively, in the synchronous 2D correlation spectrum. Interestingly
the crystalline band at 1726 cm™! observed in synchronous 2D
correlation spectrum is clearly resolved into two bands at 1721
and 1730cm™! in the asynchronous 2D correlation spectrum,
which is hardly detectable in the original IRRAS spectra shown
in Figure2. A band observed at a lower wavenumber corre-
sponds to the well-ordered primary crystals and the other at a
higher wavenumber corresponds to less ordered secondary crys-
tals. From the analysis of the sign of cross peaks in 2D correlation
spectra, they determined the sequential order of spectral changes
with increasing temperature that the intensity of an amorphous
band changes first and then that for less ordered secondary
crystals changes before that for well-ordered secondary crystals.

The application of 2DCOS in the analysis of transport phe-
nomena in polymers (Musto et al, 2011; Lai and Wu, 2013;
Galizia et al., 2014) can provide useful insights about the dis-
tribution of penetrant in polymer matrix, which is of great
practical relevance in several applications, such as membrane
science, drug delivery, and polymer durability. Musto et al.
applied 2D IR correlation spectroscopy for the investigation
of the diffusion process and the sorption equilibrium of water
vapor in polyimide films (Musto et al., 2011). The molecu-
lar level characterization of the mass-transport process and the
sorption thermodynamics were detected. They also investigated
the diffusion mechanism in biocompatible thermoplastic poly-
mer, poly-e-caprolactone (PCL), by using 2D IR correlation
spectroscopy, and the sorption-desorption cycle for a molecu-
lar level characterization of the H,O/PCL system and molecu-
lar interaction formed (H-bonding) were detected (Galizia et al.,
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FIGURE 2 | IRRAS spectra of a spin-coated film of P(HB-co-HHx) (HHx
= 12.0 mol%) during heating from 30 to 150°C at an interval of 5°C.
(Reproduced with permission J. Phys. Chem. B 2010, 14, 10979-10985,
Copyright 2010, American Chemical Society).

2014). Lai and Wu reported the water sorption and desorption
processes with a pharmaceutical amphiphilic copolymer poly(3-
(2-methoxyethyl)-N-vinyl-2-pyrrolidone) investigated by using
2D IR correlation spectroscopy (Lai and Wu, 2013). Different
states of hydrogen-bonded water molecules were also detected in
2D IR correlation spectra.

Park et al. reported the mechanism of chemical gelation pro-
cess of poly(N-isopropylacrylamide) (PNiPAAm) hydrogel by
using in situ observations with time-resolved FTIR and 2DCOS at
two characteristic preparation temperatures below and above the
lower critical solution temperature (LCST) of PNiPAAm aque-
ous solution (Park et al., 2013). Figures 4A,B show the FTIR
spectra in the 1800-1050 cm™! region for the NiPAAm gelation
process measured at T, = 22 and 38°C, respectively. The spec-
tral changes during the NiPAAm gelation process at the two
different temperatures were qualitatively similar except for the
differences associated with the time required for completing the
gelation reaction (~30 and ~15min at T, = 22 and 38°C,
respectively). The bands at 1628 (Figure 4A) and 1630 cm™!
(Figure 4B) started to appear at ~20 and ~8 min after the onset
of the reaction, respectively. Those bands became increasingly
remarkable with time and most prominent at the end of the
gelation process, independent of Tjs. It identifies the specific
time-spans for two stage reaction process: the first-stage giving
rise to linear and branched random copolymers of NiPAAm and
cross-linker monomers and the second-stage giving rise to cross-
linking into macroscopic network structure. 2DCOS was thus
applied both the first-stage and second-stage reaction processes
to better elucidate the gelation process. The each stage of 2D
correlation spectra for the NiPAAm gelation process at 22 and
38°C, respectively, shown in Figures 5, 6 are completely differ-
ent, although IR spectra obtained below and above LCST are
apparently similar. From the analysis of 2D correlation spec-
tra, they firstly identified the specific time span for each stage of
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spectra obtained from the temperature-dependent IRRAS spectra of
a spin-coated film of P(HB-co-HHx) (HHx = 12.0 mol%). The solid and
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FIGURE 4 | ATR-FTIR spectra of the NiPAAm gelation process
measured at 22 (A) and 38°C (B). Spectra are collected at every 1 min. The
solid and dashed lines represent, respectively, the spectrum measured at 1
and 35min (A) and 1 and 15 min (B) after initiation of the gelation reaction.
The dotted lines represent the time evolution of the spectra in between the
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first and last spectra, and the arrows indicate the trend for the band intensity
change with the upward arrow and the downward arrow showing the
intensity increase and decrease with time, respectively. (Reproduced with
permission Macromolecules 2013, 46, 35687-3602, Copyright 2013,
American Chemical Society).

the two-stage reaction process at two temperatures. Two differ-
ent gelation process below and above LCST are summarized in
Tables 1, 2.

2D Hetero-Spectral Correlation Analysis

The hetero-correlation analysis provides a very powerful
advantage to 2DCOS. Three possible possibilities in 2D
hetero-correlation analysis are hetero-spectral correlation (Kim
et al, 2006a; Choi et al., 2010; Katayama et al., 2010;
Smirnova et al., 2011; Park et al., 2012; Ryu et al., 2012;
Shinzawa et al., 2012), hetero-perturbation (or hybrid) corre-
lation (Wu et al., 2002, 2006), and hetero-sample correlation

(Czarnik-Matusewicz et al., 2009; Pi et al., 2010). Among them,
2D hetero-spectral correlation is the most active field in appli-
cations of 2D hetero-correlation analysis. It can compare two
completely different types of spectral data obtained for a system
under a similar external perturbation. In the 2D hetero-spectral
correlation analysis, the correlation between different spectral
signals under the same perturbation can be detected. It is possible
to apply 2D hetero-spectral analysis to the correlation not only
between closely related spectroscopic measurement, such as IR
and Raman spectra, but also between completely different types
of spectroscopic or physical techniques, such as IR and X-ray
spectroscopy.
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at 22°C. The solid and dashed lines represent positive and negative
cross peaks, respectively. (Reproduced with permission
Macromolecules 2013, 46, 3587-3602, Copyright 2013, American
Chemical Society).

Choi et al. used 2D hetero-spectral correlation between com-
pletely different types of spectroscopy, such as IR and X-
ray photoelectron spectroscopy (XPS), for the investigation of
thermal behavior of biodegradable copolymers under increasing
temperature (Choi et al.,, 2010).The 2D hetero-spectral IR/XPS
correlation spectra of spin-coated film of P(HB-co-HHx) copoly-
mer during heating process are shown in Figure7. In syn-
chronous 2D hetero-spectral IR/XPS correlation spectrum, two
XPS band at 289.3 eV and near 288.3 eV, which are assigned to
amorphous and crystalline components, respectively, are clearly
observed. Very interestingly, asynchronous 2D hetero-spectral
IR/XPS correlation spectrum reveals the sequential order of the
intensity changes that spectral intensity changes detected by
the IR probe always occurred earlier than those by XPS. This
result provides that the thermal phase transition of P(HB-co-
HHx) copolymer actually involves different level of microscopic
scales. That is because IR probe detects long range molecular
interactions while XPS detects more localized structure changes
during the gradual melting process. This probe-dependent asyn-
chronicity, which is spectral changes of IR probe appear first
before those of XPS, clearly reflects the subtle difference in the
selectivity and specificity of these probes toward molecular scale

changes under the same external perturbation. The 2D hetero-
spectral IR/XPS correlation analysis sheds light on the correlation
between IR and XPS spectral changes, which is difficult to detect
from a simple analysis of IR or XPS spectra alone.

Projection 2D Correlation Analysis

Noda has proposed a new generation technique of 2DCOS
(Noda, 2010). Projection 2D correlation analysis can dramatically
simplify highly congested 2D correlation spectra often encoun-
tered. This technique is based on the use of mathematical matrix
projection to selectively filter out the unwanted portion of the
information of spectral data. The combination of the projec-
tion and null-space projection operations might be a very useful
technique to augment or attenuate select features within con-
gested 2D correlation spectra for easier interpretation. Details of
background of projection 2D analysis was previously described
(Noda, 2010).

Here we will briefly provide the basic concept of projection
2D correlation spectra which is based on terms of a series of
matrix manipulations (Noda, 2010). In generalized 2DCOS, spec-
tral data matrix A (m x m) consisting of m rows of spectra with
n columns of spectral variables, like wavenumber, represents the
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process at 38°C. The solid and dashed lines represent positive
and negative cross peaks, respectively. (Reproduced with permission
Macromolecules 2013, 46, 3587-3602, Copyright 2013, American
Chemical Society).

system response. For convenience, each column of the matrix A
corresponds to dynamic spectrum A(vj, t;) used in Equations (3)
and (4) scaled by square root of 1/(m - 1). Generalized 2D corre-
lation spectra can be obtained by a simple matrix multiplication
applied toward the spectral data matrix. The synchronous and
asynchronous correlation spectra, ® and W, are then obtained as

&= ATA
v = ATNA

(6)
@)

As already indicated in Equation (5), N is the so-called Hilbert-
Noda transformation matrix.

In projection analysis, an arbitrary m x m matrix Y, which is
different from the spectral data matrix A, define the projection
matrix Ry of Y as

Ry = Y (YTY)_l ' ®)

The superscripts T and ~!, respectively, stand for the transpose
and inverse operation of the matrix.

The spectral data matrix A can be transformed to a new form
of data matrix by the projection operation. The projected data
matrix Ap is obtained by the simple multiplication of Ry with A,

Ap = RyA 9)
The newly obtained projected data matrix Ap represents the
matrix projection of A onto an abstract mathematical space
spanned by the columns of Y. In other words, Ap is the closest
possible reconstruction of A by using only the linear combina-
tions of all the columns of Y. To make this operation possible,
matrices A and Y must have the same number of rows m. It is
actually common to select Y from several select columns of A.
The corresponding null-space projection is carried out as
A= (I—-Ry)A = A—Ap (10)
The null-space projected data matrix Ayx represents the projec-
tion of A onto the space spanned by vectors which are orthog-
onal to the columns of Y. In other words, Ay is the residual
after the removal of Ap from A. Thus, the projection opera-
tions separate the original data into two orthogonal parts, A =

Frontiers in Chemistry | www.frontiersin.org

March 2015 | Volume 3 | Article 14


http://www.frontiersin.org/Chemistry
http://www.frontiersin.org
http://www.frontiersin.org/Chemistry/archive

Park et al.

2DCOS in polymer study

TABLE 1 | Molecular significance of sequence changes of the spectroscopic events with time for two-stage chemical gelation processes below LCST

(Tp = 22°C) as observed by the 2D IR correlation spectroscopy.

Time Evolution of the Events at Molecular Levels

Spectroscopic Events

1¢t Stage-Reaction Period

2nd Stage-Reaction Period

oL t & ts ts t,
: . . . ; : Time 5
15t stage-reaction process: : (1) Changes of local environments of monomers. Selective consumption of
(1) 1657 cm': dominated by free C=0 ! monomers with free C=0 group (Table 2) for copolymerization reaction
stretching of NiPAAm & BIS L— . . >
) 1 (2) Copolymerization of NiPAAm and BIS into initially dehydrated chains due to
(2) 1630 cm™: C=0 stretching of the copolymer 1 the reaction-induced local heat generation
chains with >C=0--HN< (dehydration) : T >
. ! (8) Change of local environments of copolymer chains from dehydration to
(3) 1621 cm**: C=0 stretching of copolymer o ) ! opolym ;
chains with >C=0--HOH (hydration) E hydration (svlvollen chains) due to d|55|;?auOn of the local heat (Figure 9) R

(4) 1556 cm™': NH bending of monomers
(>NH--O=C<) dehydration

(5) 1589 and 1572 cm': NH bending of
monomers (>NH--OH,) hydration

(4) Change of local environments of monomers in the vicinity of

copolymer chains formed: from dehydrated NH group (Figure 10a)

(5) to hydrated NH group (Figure 10b)

Y

i
i
i 1
(3)-(5) Formation of swollen copolymer chains
(Exchange from >NH--O=C< to >NH--OH, in copolymer chains)

\4

- - e ———— R -

2"d stage-reaction process:
The processes (4) — (5) — (1) in 15! stage
reaction continue to occur in this stage, too
(6) 1626 cm™': C=0 stretching of
cross-linking chains (>C=0--HN<)

(7) 1608 cm™: C=0 stretching
(>C=0--HOH)

(4) — (5) — (1) changes of local environments of
monomers and selective consumption of monomers
(Table 2) for cross-linking reaction

]
| (6) Formation of dehydrated cross-linked
! chains and

.
7

i
1 (7) its transformation into
1 hydrated cross-linked chain

A
7>

(6),(7) Formation of swollen cross-linked network chains

Reproduced with permission Macromolecules 2013, 46, 3587-3602, Copyright 2013, American Chemical Society.

Ap + AN, by using the information contained within the chosen
matrix Y.

Data matrices created by various projection-based transfor-
mation operations discussed above can be readily converted to
2D correlation spectra. For example, by using Equation (9), it
is possible to obtain the 2D correlation spectra for the projected
data matrix Ap

@, = ApTAp = ATRyA (11)

W, = Ap"NAp = ATRyNRyA (12)

The term Ry appears in Equation (11) only once because this
matrix is idempotent. 2D correlation spectra ®;, and ¥, for the
projected data provide the correlation information among select
signals of A, which are in turn correlated with the projector

matrix Y. In other words, all other signals not correlated Y will
be filtered out prior to the 2D correlation analysis.

Correlation analysis of the null-space projected data,
AN = A - Ap, results in the following set of 2D spectra.

Oy = AN AN =AT I —Ry)A (13)

Wy = AN'NANy = AT (I— RyNRy — NRy — RyN) A (14)

Kim et al. (2012) reported the dominant crystalline con-
tribution in biodegradable polymer blend with tempera-
ture increase was successfully filtered out by using the
null-space projection, which can extract other finer details.
Figure 8 shows the conventional synchronous 2D correla-
tion spectra of spin-coated film of poly(3-hydroxybutyrate-co-
3-hydroxyhexanoate)/polyethylene glycol (P(HB-co-HHx)/PEG)
blend. In conventional 2D correlation spectra, all spectral
changes are contributed from not PEG but P(HB-co-HHx) in
P(HB-co-HHx)/PEG blend during heating process. They per-
formed null-space projection 2D correlation analysis to selec-
tively filter out the contribution of P(HB-co-HHx). As shown in
Figure 9, the synchronous null-space projection 2D correlation
spectra, which are constructed from the null-space projected data
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TABLE 2 | Molecular significance of sequence changes of the spectroscopic events with time for two-stage chemical gelation processes above LCST

(Tp = 38°C) as observed by the 2D IR correlation spectroscopy.

Time Evolution

Spectroscopic Events

18t Stage Reaction Period

2nd Stage Reaction Period

ty ts fg t; tg Time

15t stage-reaction process:
(1) 1632 cm™': C=0 stretching of
copolymer chain with >C=0--HN<

A 4

(1) Copolymerlzatlon into dehydrated chains to form globular chains:
No selective consumptlon of monomers for copolymerization (Table 2)

(2) 1591 cm™: hydration (>NH---OH,)

l
1
1
of monomers :

(2) Change in local environment of monomers in the vicinity of copolymers
from hydrated NH groups (Flgure 11a)

(3) 1554 cm': dehydration

. N
T 7
(3) to dehydrated NH groups (Flgure 11b)

A

(>NH--0=C<) of monomers

(4) 1657 cm': dominated by free
C=0 stretching of monomers

2" stage-reaction process:
(5) 1626 cm': C=0 stretching of
cross-linked chains (>C=0-+HN<)

(6) 1589 cmr': hydrated NH groups
of monomers (>NH---OH,)

(7) 1546 cm™': dehydrated NH groups
of monomers (>NH:-0=C<)

(8) 1650 cm': dominated by free
C=0 stretching of monomers

”
(4) Afurther change in local environments of monomers
in the vicinity of copolymer chains induced by the local
phase separation of globular chains G into droplets
(Scheme 1c) and selective sonsumption of monomers
for copolymerization within the domains D 5.

E (5) Cross-linking within phase-separated
' droplets to form microgels (Scheme 1e)

(6) Change of local environments of
monomers in the vicinity of polymers
from hydrated monomers

: (7) to dehydrated monomers

1 accompanied by the macro-
1 phase separation as illusrated
i from Scheme 1(e) to 1(f) _

7

(8)

(8) Selective consumption of monomers with free C=0 group for cross-linking within the dehydrated sponge-like domain

into macrogel (Scheme 1f)

Reproduced with permission Macromolecules 2013, 46, 3587-3602, Copyright 2013, American Chemical Society.

with the crystalline signals of P(HB-co-HHx) removed, are com-
pletely different with conventional 2D correlation spectra. The
observed new bands at 1313, 1105, and 1065 cm ™! in Figure 9A,
which are hardly detected in conventional 2D correlation spec-
trum, can be assigned to PEG. In Figure 9B, two bands at 2972
and 2875cm™!, which are not observed in conventional 2D
correlation spectrum, can also be assigned to PEG. The subtle
contribution of PEG in spin-coated film of P(HB-co-HHx)/PEG
blend during heating process is clearly detected in null-space 2D
projection correlation spectra.

Combination of 2DCOS and Chemometric
Techniques

The fruitful combination of 2DCOS and chemometric tech-
niques often provides more useful information to interpret
subtle spectral changes of system, which is barely detected in
conventional 2DCOS (Jung, 2004; Jung et al., 2002, 2003a,b,c,d,
2006). Jung et al. introduced the possible combination of 2DCOS

and principal component analysis (PCA). In this technique
named PCA 2DCOS, PCA is an essential and integral part of
the subsequent 2DCOS (Jung, 2004; Jung et al., 2002). Jung
et al. also reported a new concept of engenvalue manipulating
transformation (EMT) for PCA 2DCOS (Jung et al., 2003b,c,d,
2006).

A brief background of PCA 2DCOS and EMT are provided
here. The original set of perturbation-dependent spectral data
matrix A is an n X m matrix with n spectra and m wavenum-
ber points. In PCA, the significant part of the data matrix A* can
be expressed as the product of score and loading matricies

A=WVI tE=A*+E (15)

where W and V are the loading matrix (m x r) and score
matrix (n x r), respectively, and E is the residual matrix often
related with pure noise. The matrix product A* is the noise-free
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reconstructed data matrix of the original data A. technique for eliminating noise contribution from the spectra to
extract useful information.
3 *
A* — W VT (16) The PCA re§0nstructed data matrlx'é can be also expressed
in the form of singular value decomposition (SVD),
In PCA 2DCOS, this reconstructed data matrix A* is used instead A* = UsvT 17)
of the original data matrix. PCA 2DCOS reconstructed from a
few selected significant scores and loading vectors of PCA can 5,9
accentuate only the most important features of synchronicity and
asynchronicity without noise contribution. It is a very powerful s=1L112 (18)
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represent positive and negative cross peaks, respectively. (Reproduced
with permission Vib. Spectrosc. 2012, 60, 163-167, Copyright 2012,
Elsevier).
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FIGURE 10 | Temperature-dependent IR spectra of
polystyrene-block-poly(n-pentyl methacrylate) (PS-PnPMA) measured
during heating from 100 to 260°C at an interval of 5°C. (Reproduced with
permission J. Mol. Struct. 2006, 799, 96-101, Copyright 2006, with
permission from Elsevier).

where U and S are the orthonormal score matrix and diagonal
matrix containing the singular value, respectively.

Here L = W' W is a diagonal matrix where each diagonal ele-
ment corresponds to the eigenvalue of principal component. The

score matrix W is expressed in the form W = U S and can be
obtained directly from W=AV.

By manipulating and replacing eigenvalues of A*, the new
transformed data matrix A** can be obtained

A* =Us* VT (19)
where $** is given by varying the corresponding eigenvalues in S
by raising them to the power of m.
§* =gm (20)
The new EMT-reconstructed data matrix A** is used instead of
A* to enhance 2D correlation spectra. The smaller eigenvalues
becomes more prominent, by uniformly lowering the power of a
set of eigenvalues associated with the original data. In this tech-
nique, the contributions of minor components but potentially
important factors is amplified.

Jung et al. demonstrated that PCA 2DCOS through EMT
technique was performed to more clearly understand the
phase behavior of polystyrene-block-poly(n-pentyl methacry-
late) (PS-PnPMA) (Jung et al, 2006). PS-PnPMA is a
very interesting closed-loop block copolymer, which has a
lower disorder-to-order transition (LDOT) temperature and an
upper order-to-disorder transition (UODT) temperature. The
temperature-dependent IR spectra of PS-PnPMA measured dur-
ing heating from 100-260°C are shown in Figure 10. In the
conventional 2D IR correlation spectra shown in Figure 11,
the ordered state is completely different with two disordered
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Macromolecules 2006, 39, 408-412, Copyright 2006, American
Chemical Society).

FIGURE 12 | Synchronous PCA 2D correlation spectra obtained from
the EMT reconstructed data with m = 1/2 for disordered state in lower
temperature (A), ordered state (B), and disordered state in higher
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temperature (C), respectively. Solid and dashed lines represent positive
and negative cross peaks, respectively. (Reproduced with permission J. Mol.
Struct. 2006, 799, 96-101, Copyright 2006, with permission from Elsevier).

states and these two disordered states at lower and higher
temperatures are also different (Kim et al., 2006b). To high-
light subtle differences of the two disordered states of PS-
PnPMA, they applied PCA 2DCOS through EMT method to the
temperature-dependent IR spectra. In PCA analysis, the origi-
nal spectral data set shown in Figure 10 was decomposed into
the scores and loading vectors. Synchronous PCA 2D correlation

spectra generated from the reconstructed data matrix A* with
the three principal components are like the conventional 2D cor-
relation spectra but without noise contribution. Figures 12A-C
shows synchronous PCA 2D correlation spectra generated from
the EMT-reconstructed spectral data matrix A** obtained by
replacing the original eigenvalues with m = 1/2 for disordered
state at lower temperature, ordered state, and disordered state at
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higher temperature, respectively. By lowering the power of a set
of eigenvalues associated with the original data, hidden property
of phase transition from the contribution of minor but potentially
interesting is much more greatly accentuated than conventional
2D correlation spectra. As shown in Figure 12, synchronous
spectrum generated from the EMT-reconstructed spectral data
matrix of the ordered state is completely different from those
in the two disordered states and the clear difference between
two disordered states is also observed. In the power spectrum,
extracted along the diagonal line of the synchronous 2D correla-
tion spectrum, in the top of Figures 12A,C, intensities of bands
from C-C-O stretching, C-H deformation, and C=O stretching
of PnPMA change greatly at lower temperature while those from
phenyl group in PS change greatly at higher temperature. The
distinct difference in two disordered states in the cross correla-
tions of the bands from phenyl group in PS with that from C-C-O
group in PnPMA reveals that the conformation of PS-PnPMA
and the weak interaction between phenyl group of PS and the
side chain of PnPMA in the two disordered states are different.
The EMT technique clearly distinguish the very subtle differences
of spectra which are not observed in conventional 2D correlation
spectra.

Jung et al. also demonstrated the use of 2DCOS in con-
junction with alternating least squares (ALS) based self-
modeling curve resolution (SMCR) analysis of spectral data
sets (Jung et al, 2003a). In this iterative regression tech-
nique, asynchronous 2D correlation peaks for the identifica-
tion of pure variables were used as the initial estimates in
the ALS process. Choosing the most distinct bands via the
positions of asynchronous 2D peaks is a viable starting point
for ALS iteration (Jung et al., 2003a; Hong et al, 2005).
Once the pure variables are selected, ALS regression can be
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conducted concurrently with potentiodynamic scans (Hong
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of pure component spectra as well as their relative concentration
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Summary

2DCOS has become a very popular tool in the field of poly-
mer study. It can be utilized with a number of spectroscopic
and other analytical probes for a very broad range of polymer
systems by employing different types of external perturbations
to induce spectral variations. This review covers the basic con-
cept of generalized 2DCOS and noteworthy progress in 2DCOS
and their applications in polymer study. New developments in
2DCOS provide a powerful analytical technique applicable to
the in-depth analysis of various spectral data. Active and steady
progress in 2DCOS would open a way for studying polymers in
many applications.
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