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Poly(epsilon-caprolactone) (PCL) nanocapsules have been used as a carrier system for

the herbicide atrazine, which is commonly applied to maize. We demonstrated previously

that these atrazine containing polymeric nanocapsules were 10-fold more effective in

the control of mustard plants (a target species), as compared to a commercial atrazine

formulation. Since atrazine can have adverse effects on non-target crops, here we

analyzed the effect of encapsulated atrazine on growth, physiological and oxidative stress

parameters of soil-grown maize plants (Zea mays L.). One day after the post-emergence

treatment with PCL nanocapsules containing atrazine (1mg mL−1), maize plants

presented 15 and 21% decreases in maximum quantum yield of photosystem II (PSII)

and in net CO2 assimilation rate, respectively, as compared to water-sprayed plants. The

same treatment led to a 1.8-fold increase in leaf lipid peroxidation in comparison with

control plants. However, all of these parameters were unaffected 4 and 8 days after the

application of encapsulated atrazine. These results suggested that the negative effects

of atrazine were transient, probably due to the ability of maize plants to detoxify the

herbicide. When encapsulated atrazine was applied at a 10-fold lower concentration

(0.1mg mL−1), a dosage that is still effective for weed control, no effects were detected

even shortly after application. Regardless of the herbicide concentration, neither pre- nor

post-emergence treatment with the PCL nanocapsules carrying atrazine resulted in the

development of any macroscopic symptoms in maize leaves, and there were no impacts

on shoot growth. Additionally, no effects were observed when plants were sprayed with

PCL nanocapsules without atrazine. Overall, these results suggested that the use of PCL

nanocapsules containing atrazine did not lead to persistent side effects in maize plants,

and that the technique could offer a safe tool for weed control without affecting crop

growth.
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INTRODUCTION

Atrazine (6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-
diamine) is a triazine herbicide that is applied for the pre-
and post-emergence control of broadleaf and grassy weeds in
cultivations of crops such as maize and sugarcane (Rodrigues and
Almeida, 2011). The action of this compound blocks the electron
flow in photosystem II (PSII), leading to the inhibition of CO2

assimilation and the generation of large amounts of reactive
oxygen species (Hess, 2000). Thus, atrazine application results in
an overall growth inhibition of sensitive plant species, followed
by leaf chlorosis and necrosis, which may lead to plant death
(Rodrigues and Almeida, 2011). Plant species that are tolerant
to atrazine are able to detoxify the herbicide through a range
of mechanisms, such as glutathione, glutathione S-transferases,
cytochrome P450 monooxygenases, and ABC transporters (Pang
et al., 2012). The induction of an efficient antioxidant response is
also regarded as an important feature for atrazine tolerance (Alla
and Hassan, 2006).

Despite its widespread use for weed control inmany countries,
atrazine presents high persistence in the environment, leading to
the contamination of food, soils, and water resources (Graymore
et al., 2001; Bortoluzzi et al., 2006). For this reason, atrazine has
been banned in European Union (Bethsass and Colangelo, 2006).
Many studies have indicated the deleterious effects of atrazine
on animal and plant species in aquatic ecosystems (Dalton and
Boutin, 2010; Brain et al., 2012; Santos andMartinez, 2012; Flores
et al., 2013), as well as on soil microbiota (Chen et al., 2015)
and human health (Sathiakumar et al., 2011). Even in non-target
tolerant plant species, atrazine accumulation has been shown to
cause toxic responses, inducing oxidative stress and negatively
affecting crop growth and productivity (Alla and Hassan, 2006;
Li et al., 2012). In this scenario, research into technologies that
minimize the deleterious impacts of atrazine without hindering
its biological activity toward target weeds is of great relevance.

Nanotechnology has emerged as a field with promising
applications in agriculture, including the development of
nanodevices for the delivery of genes, fertilizers, phytohormones,
and plant protection products (Chen and Yada, 2011; Ghormade
et al., 2011; Khot et al., 2012; Campos et al., 2014; de Oliveira
et al., 2014). A variety of formulations based on nanoparticles
have been produced as carrier systems for pesticides, enabling
slow release of the active ingredient and extension of its duration
of action (reviewed by Kah et al., 2013; Kah and Hofmann, 2014).
Other advantages associated with the use of nanoparticles include
greater protection against premature degradation and enhanced
uptake of the active ingredient by target species, as compared to
conventional formulations (Kah et al., 2013; Kah and Hofmann,
2014). These features allow reductions in both pesticides dosage
and application frequency, while at the same time decreasing
environmental contamination and the risk of harming non-target
organisms (Kah et al., 2013; Kah and Hofmann, 2014).

With the aim of minimizing the contamination of natural
resources by atrazine, our research group has developed carrier
systems for this herbicide based on diverse types of nanoparticles,
including polymeric nanocapsules (Grillo et al., 2012, 2014;
Pereira et al., 2014) and nanospheres (Pereira et al., 2014; Grillo

et al., 2015a), and solid lipid nanoparticles (de Oliveira et al.,
2015). In particular, nanocapsules prepared with poly(epsilon-
caprolactone) (PCL), a biodegradable aliphatic polyester, have
emerged as a carrier system for atrazine with potential for
application in agriculture (Grillo et al., 2012; Pereira et al., 2014).
In vitro assays demonstrated high efficiency of encapsulation
of atrazine in the PCL nanocapsules, as well as high colloidal
stability of the nanoformulations and a modified release profile
of the herbicide (Grillo et al., 2012; Pereira et al., 2014).
Genotoxicity (using Allium cepa and human cells), cytogenetic
(with human cells), and ecotoxicological tests (using the alga
Pseudokirchneriella subcapitata) indicated a reduced toxicity
of PCL nanocapsules containing atrazine toward non-target
organisms, as compared to the free herbicide (Grillo et al.,
2012; Clemente et al., 2014; Pereira et al., 2014). However,
the biological activity of atrazine against target plants was
maintained or even increased (Pereira et al., 2014; Oliveira et al.,
2015). In a recent study, we analyzed the effects of atrazine-
carrying PCL nanocapsules on the biochemical, physiological,
and growth parameters of mustard plants (Oliveira et al., 2015).
We demonstrated that encapsulation not only maintained the
mechanism of action of atrazine, but also potentiated its post-
emergence herbicidal activity against this target species, as
compared to the effects of a commercially available atrazine
product. As a result, a 10-fold reduction of the atrazine dosage
was achieved, without compromising the biological activity of
the herbicide. A greater pre-emergence herbicidal activity of
atrazine-containing PCL nanocapsules against mustard seedlings
has also been shown (Pereira et al., 2014). Therefore, we decided
to investigate whether these nanoformulations might have any
deleterious effects on non-target crops. This is an essential
test before such systems can be recommended for safe use in
agriculture.

In the present study, we evaluated the effects of pre- and
post-emergence treatments with PCL nanocapsules containing
atrazine on growth, physiological and oxidative stress parameters
of maize (Zea mays L.) plants, as compared to those induced
by a commercial atrazine formulation. The effects of PCL
nanocapsules without the herbicides were also determined.
Overall, we observed that PCL nanocapsules containing or not
atrazine did not lead to persistent deleterious effects in maize
plants, indicating that the technique could offer a safe tool for
weed control without affecting crop growth.

MATERIAL AND METHODS

Preparation of PCL Nanocapsules
Atrazine-loaded poly(ε-caprolactone) nanocapsules were
prepared by a nanoprecipitation method, according to the
protocol described by Grillo et al. (2012). This technique, based
on interfacial polymer deposition, consists of mixing an organic
phase into an aqueous phase. The organic phase was composed
of 100mg of polymer (PCL), 30mL of organic solvent (acetone),
200mg of oil (triglycerides of capric and caprylic acids, in
the form of Myritol R© 318), 40mg of sorbitan monostearate
surfactant (Span 60), and 10mg of atrazine. The aqueous phase
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was composed of 30mL of a solution containing 60mg of
polysorbate 80 surfactant (Tween 80). The organic phase was
slowly inserted into the aqueous phase, under magnetic stirring
at room temperature, and maintained under agitation for 10min.
Finally, the nanoparticle suspension was evaporated to a volume
of 10mL using a rotary evaporator, resulting in an atrazine
concentration of 1mg mL−1, and stored in amber flasks at room
temperature (25◦C). Herbicide-free nanoparticles were prepared
according to the same procedure, but omitting the atrazine.
Atrazine, poly(ε-caprolactone), Tween 80, and Span 60 were
purchased from Sigma-Aldrich. All other reagents (analytical
grade) used to prepare the PCL nanocapsules were purchased
from local suppliers.

Plant Material and Growth Conditions
Zea mays L. (Itapuã 700 hybrid) was used as the non-target
crop model. The seeds, purchased from Isla Sementes (Porto
Alegre, Brazil), were sown in plastic pots (10.5 cm high, 9.5 cm
lower diameter, 14 cm upper diameter) filled with 1 kg of a
mixture of clay soil and vermiculite (3:1). The soil was the same
Rhodic Ferralsol as used in our previous study (Oliveira et al.,
2015). The substrate was supplemented with 50mL of complete
Hoagland and Arnon’s (1950) nutrient solution, on a weekly
basis. Throughout the cultivation (14 days until treatments), the
plants were kept in a greenhouse under natural conditions of
light and temperature. The experiments were carried out from
October to March (spring-summer). The average daily values
of temperature, relative humidity, and accumulated global solar
radiation were 23.7 ± 2.6◦C, 74.4 ± 14.9%, and 18.9 ± 5.6 MJ
m−2, respectively (data kindly provided by the Laboratory of
Agrometeorology, Embrapa Soja, Londrina).

Post-emergence Assays
For post-emergence assays, four individuals were retained
per pot after germination. Fourteen-days-old maize plants
were treated with the following formulations: distilled water
(control), nanocapsules without atrazine (NC), Gesaprim R©

500CG (Syngenta) containing atrazine at 1mg mL−1 (ATZ),
and nanocapsules containing atrazine at 1mg mL−1 (NC+ATZ).
Each pot was sprayed with 3.1mL of the test sample, resulting
in application of the atrazine dosage recommended by the
manufacturer (2000 g atrazine per hectare). Treatments with
commercial atrazine and nanoformulations diluted 10-fold in
water were also performed (equivalent to 200 g atrazine per
hectare), since NC+ATZ was previously shown to maintain the
herbicidal activity against mustard plants at this lower dosage
(Oliveira et al., 2015). The treatments were applied between
08:00 and 09:00 am. Macroscopic symptoms in the leaves were
recorded using a Samsung ST200F camera. The physiological and
oxidative stress parameters were determined 1, 2, 4, and 8 days
after treatment. The dry weight analysis was measured at harvest.

Pre-emergence Assays
For pre-emergence assays, six seeds were sown per pot. The pots
were then sprayed with the same formulations described for the
post-emergence assays. The physiological, oxidative stress, and

dry weight analyses were carried out 3 weeks after emergence of
the plants.

Physiological, Oxidative Stress, and Dry
Weight Characterization
Chlorophyll a fluorescence parameters were measured before
dawn using an OS1p fluorometer (Opti-Sciences, Hudson, NH,
USA). The maximum quantum yield of the PSII photochemistry
was expressed as Fv/Fm= (Fm – F0)/Fm (Oliveira et al.,
2015). Leaf gas exchange parameters (net photosynthesis,
stomatal conductance, intercellular CO2 concentration, and
transpiration) were measured between 08:00 and 10:00 am
using a Portable Photosynthesis System (LI-6400XT, LI-COR
Biosciences, Lincoln, NE, USA). The infrared gas analyzer
(IRGA) was connected to the 6400-02B measuring chamber,
where the leaves were exposed to a saturating PAR (1500µmol
m−2 s−1). Lipid peroxidation was analyzed as a marker
of oxidative stress. Freshly collected leaves (100 mg) were
homogenized with cold TCA (0.2%) diluted in methanol, and
then centrifuged at 10,000 × g for 5min. The supernatant was
used for determination of the MDA content by the thiobarbituric
acid reactive substances (TBARS) method (Camejo et al., 1998).
For weight analysis, shoots were harvested and kept for 72 h at
60◦C, prior to dry weight measurement.

Statistical Analysis
Sixteen biological replicates were used for weight analysis,
nine for gas exchange experiments, and five for chlorophyll
fluorescence and oxidative stress analyses. For each time point,
the data were analyzed using One-Way ANOVA followed by the
Tukey post-test (P < 0.05).

RESULTS

Post-emergence Assays
Both commercial atrazine (ATZ) and PCL nanocapsules
containing atrazine (NC+ATZ) decreased the maximum
quantum yield of PSII 1 day after the treatment of maize
plants, as compared to control plants (Figure 1). These results
are coherent with the inhibitory action of atrazine in PSII.
Greater inhibition was caused by NC+ATZ (Fv/Fm = 0.67),
as compared to ATZ (Fv/Fm = 0.74). However, the effects
of the two formulations were transient, because the Fv/Fm
ratios for plants treated with ATZ or NC+ATZ recovered
to the same values obtained for control plants 2 or 4 days
after treatment, respectively. When 10-fold diluted atrazine-
containing formulations (ATZ 1/10 and NC+ATZ 1/10) were
applied, no effects on PSII photochemistry were observed, even
after shorter times. Regardless of the dilution, the treatments
with nanocapsules without atrazine (NC and NC 1/10) also had
no effect on the Fv/Fm ratio of the maize plants.

The only treatment that negatively affected the net
photosynthetic CO2 assimilation rate of the plants was
NC+ATZ (Figure 2). This effect was only observed on the
day after the plants were sprayed with NC+ATZ, since from 2
days after NC+ATZ treatment onwards no differences in net

Frontiers in Chemistry | www.frontiersin.org 3 October 2015 | Volume 3 | Article 61

http://www.frontiersin.org/Chemistry
http://www.frontiersin.org
http://www.frontiersin.org/Chemistry/archive


Oliveira et al. Effects of PCL nanocapsules on maize plants

FIGURE 1 | Maximum photosystem II quantum yields of maize plants submitted to post-emergence treatment with the formulations. Chlorophyll

fluorescence parameters were evaluated 1, 2, 4, and 8 days after the plants were sprayed with 3.1mL of water, empty PCL nanocapsules (NC), commercial atrazine

(ATZ), or PCL nanocapsules containing atrazine (NC+ATZ). The formulations containing atrazine at 1mg mL−1 were used undiluted or after 10-fold dilution in water

(1/10), resulting in atrazine application dosages of 2000 or 200 g ha−1, respectively. Different letters for each time point indicate significantly different values,

according to One-Way ANOVA followed by Tukey’s test (P < 0.05). Data are shown as means ± SE (n = 5).

FIGURE 2 | Net photosynthesis of maize plants submitted to post-emergence treatment with the formulations. Net photosynthesis was evaluated 1, 2, 4,

and 8 days after the plants were sprayed with 3.1mL of water, empty PCL nanocapsules (NC), commercial atrazine (ATZ), or PCL nanocapsules containing atrazine

(NC+ATZ). The formulations containing atrazine at 1mg mL−1 were used undiluted or after 10-fold dilution in water (1/10), resulting in atrazine application dosages of

2000 or 200 g ha−1, respectively. Different letters for each time point indicate significantly different values, according to One-Way ANOVA followed by Tukey’s test

(P < 0.05). Data are shown as means ± SE (n = 9).

photosynthesis were detected, as compared to control plants.
Stomatal conductance, intercellular CO2 concentration, and
transpiration were not affected by any of the formulations tested
(data not shown).

The application of NC+ATZ initially enhanced lipid
peroxidation in maize leaves, as compared to the controls
(Figure 3). After 1 and 2 days following treatment with
NC+ATZ, leaf MDA content was 33.8± 1.1 and 30.9± 3.1 nmol
g−1, respectively, while in water-sprayed leaves it was 18.5 ± 2.9
and 17.3 ± 0.7 nmol g−1. From 4 days after treatment onwards,
the MDA content of leaves sprayed with NC+ATZ returned to
control levels. No significant effects on leaf lipid peroxidation

were induced by the other formulations tested (NC, NC 1/10,
ATZ, ATZ 1/10, and NC+ATZ 1/10).

No macroscopic symptoms were observed in leaves sprayed
with any of the formulations (Figure 4). Accordingly, none of the
tested formulations affected the shoot dry weight of the maize
plants (Figure 5).

Pre-emergence Assays
Pre-emergence treatment with NC, ATZ, or NC+ATZ did
not lead to any effects on shoot dry weight (Figure 6A),
maximum quantum yield of PSII (Figure 6B), net photosynthesis
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FIGURE 3 | Leaf lipid peroxidation of maize plants submitted to post-emergence treatment with the formulations. Lipid peroxidation was evaluated 1, 2, 4,

and 8 days after the plants were sprayed with 3.1mL of water, empty PCL nanocapsules (NC), commercial atrazine (ATZ), or PCL nanocapsules containing atrazine

(NC+ATZ). The formulations containing atrazine at 1 mg/mL were used undiluted or after 10-fold dilution in water (1/10), resulting in atrazine application dosages of

2000 or 200 g ha−1, respectively. Different letters for each time point indicate significantly different values, according to One-Way ANOVA followed by Tukey’s test

(P < 0.05). Data are shown as means ± SE (n = 5).

(Figure 6C), or leaf lipid peroxidation (Figure 6D) of the maize
plants, as compared to the controls.

DISCUSSION

PCL nanocapsules have emerged as an efficient carrier system
for atrazine (Grillo et al., 2012, 2014; Pereira et al., 2014). In
addition to reducing the cytogenotoxic effects of atrazine (Grillo
et al., 2012; Clemente et al., 2014; Pereira et al., 2014), we have
shown that the nanoencapsulation of this herbicide effectively
increases its pre- and post-emergence herbicidal activity against
mustard plants, a target species (Pereira et al., 2014; Oliveira
et al., 2015). In the present study, we evaluated whether the pre-
or post-emergence application of PCL nanocapsules containing
atrazine would negatively affect maize plants, a non-target crop
in whose cultivations atrazine is widely applied. Although some
acute and transient effects on photosynthetic and oxidative stress
parameters were detected in maize leaves after post-emergence
treatment with atrazine-loaded PCL nanocapsules, these effects
were not persistent and did not affect shoot growth. In the case of
pre-emergence treatment, none of the analyzed parameters was
affected by the nanoformulation. The results therefore provide
further insight into the use of PCL nanocapsules containing
atrazine as a safe tool for weed control without affecting crop
growth.

Previous studies have shown that atrazine induces toxic
responses even in tolerant non-target crops (Alla and Hassan,
2006; Li et al., 2012; Zhang et al., 2012, 2014). In the case of
maize plants, post-emergence application of atrazine may induce
oxidative stress, alter gene expression, and even inhibit plant
growth, depending on the cultivar and the dosage applied (Alla
and Hassan, 2006; Li et al., 2012; Pang et al., 2012). Here, in post-
emergence tests, PCL nanocapsules containing atrazine, when
applied at the standard field dosage (2000 g ha−1), initially led
to an increase in leaf lipid peroxidation (Figure 3) and decreases

in net CO2 assimilation (Figure 2) and maximum quantum
yield of PSII (Figure 1). However, all of these parameters were
unaffected 4 and 8 days after the application of encapsulated
atrazine (Figures 1–3). These results suggest that the negative
effects of atrazine were transient, probably due to the ability of
maize plants to detoxify the herbicide (Pang et al., 2012) and to
induce an effective antioxidant response (Alla and Hassan, 2006;
Li et al., 2012).

When a commercial atrazine formulation was applied at
the same dosage, an inhibitory effect was only observed on
PSII efficiency (Figure 1), indicating the induction of a weaker
response than that elicited by encapsulated atrazine. This
finding is consistent with the results of previous phytotoxicity
assays, which showed that atrazine-containing PCL nanocapsules
exerted a greater effect on mustard plants, as compared to
commercially available atrazine (Oliveira et al., 2015). However,
it is noteworthy that treatment with atrazine-loaded PCL
nanocapsules or with commercial atrazine at the recommended
dosage did not result in the development of any macroscopic
symptoms in the maize leaves (Figure 4), or in any effects on
shoot growth (Figure 5). Hence, the initial and transient response
induced by the post-emergence application of the herbicide did
not compromise growth of the maize cultivar analyzed here. In
the case of the pre-emergence assays, neither the physiological
nor the growth parameters were affected by atrazine, whether free
or encapsulated (Figure 6).

Due to its higher efficacy than the commercial formulation,
the application of an atrazine-containing PCL nanocapsules
formulation at a 10-fold lower concentration does not
compromise its post-emergence herbicidal activity against
target plants (Oliveira et al., 2015). Here, when 10-fold diluted
nanoencapsulated atrazine was applied to the maize plants,
no effects were detected even after shorter periods of time,
the same observed for plants treated with 10-fold diluted
commercial atrazine (Figures 1–5). Taken together, these results
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FIGURE 4 | Symptom evolution in maize leaves submitted to

post-emergence treatment with the formulations. Symptoms were

recorded 8 days after the plants were sprayed with 3.1mL of water, empty

PCL nanocapsules (NC), commercial atrazine (ATZ), or PCL nanocapsules

containing atrazine (NC+ATZ). The formulations containing atrazine at 1mg

mL−1 were used undiluted or after 10-fold dilution in water (1/10), resulting in

atrazine application dosages of 2000 or 200 g ha−1, respectively.

suggest that post-emergence treatment with atrazine-containing
PCL nanocapsules at 200 g ha−1 (10-fold lower than the
recommended dosage) would still be effective for weed control,
without eliciting any toxic response in a non-target crop.
Additionally, it would imply that reduced inputs of atrazine
could be used in agricultural systems, potentially decreasing
contamination of the environment with the herbicide (Oliveira
et al., 2015).

Another important aspect that has emerged with the
development of nanopesticides is the need to evaluate the effects
of nanomaterials per se on plants (Rico et al., 2011). Studies
have shown that carbon nanoparticles can exert effects on

various plant species (Chen et al., 2010; Cifuentes et al., 2010;
Djikanović et al., 2012). As an example, Khodakovskaya et al.
(2009) showed that carbon nanotubes affect seed germination
and the development of tobacco and tomato plants. In the
present study, none of the analyzed parameters of the maize
plants were affected by the pre- or post-emergence treatment
with nanocapsules without atrazine (Figures 1–6), excluding the
possibility of phytotoxic effects of PCL nanocapsules per se. These
findings are in agreement with the results of post-emergence
assays using mustard plants (Oliveira et al., 2015). Differently, in
pre-emergence treatments, PCL nanocapsules without atrazine
were shown to decrease the germination index of mustard
plants, an effect that might have arisen from interaction of the
nanocapsules with the seed tegument (Pereira et al., 2014).

Given that PCL is a biodegradable polymer, it should not
be harmful to the environment (Woodruff and Hutmacher,
2010). Nevertheless, the environmental fate of polymeric
nanocapsules and other nanomaterials is still under debate,
and the environmental risks associated with the application
of nanopesticides need further clarification (Kah et al., 2013;
Kookana et al., 2014). Factors that can influence nanopesticide
bioavailability and toxicity include particle size distribution,
particle number concentration, surface charge, release rate, and
the ratio between the free and nanoparticle-loaded pesticide
fractions (Kookana et al., 2014). In addition, environmental
variables such as pH, ionic strength, light, temperature,
microorganisms, and natural organic matter can also change
the degree of dispersion or agglomeration of nanomaterials over
time, modifying their fate and behavior in the environment
(Mohd et al., 2014; Wagner et al., 2014; Grillo et al.,
2015a,b). The literature reports several studies concerning the
bioavailability, toxicity, and fate of atrazine in the environment
[Environmental Protection Agency (EPA), 2012]; however,
investigations involving nanopesticides remain scarce (Kah and
Hofmann, 2014). In a previous study, Clemente et al. (2014)
showed that atrazine-loaded PCL nanocapsules presented lower
toxicity to the green alga P. subcapitata, as compared to free
atrazine, suggesting that use of the nanoformulation might have
environmental benefits.

Knowledge of the processes of sorption and degradation of
nanopesticides is important in order to be able to predict the fate
of pesticides in soils (Kah et al., 2014). Pereira et al. (2014) showed
that the encapsulation of atrazine in PCL nanoparticles reduced
the mobility of the herbicide in soil. In another study, Kah et al.
(2014) discussed the issues of regulatory protocols and the fate
and properties of atrazine-loaded PCL nanocapsules in soils, and
it was noted that the use of a nanopesticide formulation affected
the fate of atrazine. Further investigations of the bioavailability
and persistence of nanopesticides are therefore required in order
to understand the interactions involved.

This study provides information concerning the interactions
between nanopesticides and plants. The findings indicated that
the use of atrazine-loaded PCL nanocapsules did not lead to
persistent side effects in a non-target crop species, and could
therefore provide a safe tool for weed control without affecting
crop growth. This conclusion may be further substantiated by
future studies focusing on the effects of the nanoformulations on
maize plants growing under different stress conditions, as well as
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FIGURE 5 | Shoot dry weight of maize plants submitted to post-emergence treatment with the formulations. Shoots were sampled 8 days after the plants

were sprayed with 3.1mL of water, empty PCL nanocapsules (NC), commercial atrazine (ATZ), or PCL nanocapsules containing atrazine (NC+ATZ). The formulations

containing atrazine at 1mg mL−1 were used undiluted or after 10-fold dilution in water (1/10), resulting in atrazine application dosages of 2000 or 200 g ha−1,

respectively. Equal “a” letters indicated that no significant differences among the treatments were detected in One-Way ANOVA test (P = 0.21). Data are shown as

means ± SE (n = 16).

FIGURE 6 | Effect on maize plants of pre-emergence treatment with the formulations. Maize seeds were germinated in a soil:vermiculite mixture sprayed with

3.1mL of water, empty PCL nanocapsules (NC), commercial atrazine (ATZ), or PCL nanocapsules containing atrazine (NC+ATZ). The formulations contained atrazine

at 1mg mL−1, resulting in a dosage of 2000 g ha−1. Shoot dry weight (A), maximum quantum yield of photosystem II (B), net photosynthesis (C), and leaf lipid

peroxidation (D) were evaluated 3 weeks after emergence of the plants. Equal “a” letters indicated that no significant differences among the treatments were detected

in One-Way ANOVA test (A: P = 0.42; B: P = 0.11; C: P = 0.19; D: P = 0.73). Data are shown as means ± SE (A: n = 16; B: n = 5; C: n = 9; D: n = 5).
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analyzing additional parameters of plants (e.g., pigment content,
oxygen evolution, cell death). Moreover, a comprehensive study
designed to investigate the underlying mechanism of action of
nanopesticides in plants is currently in preparation.
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