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Dielectric spectroscopy can be used to determine the dipole moment of colloidal particles

from which important interfacial electrokinetic properties, for instance their zeta potential,

can be deduced. Unfortunately, dielectric spectroscopy measurements are hampered by

electrode polarization (EP). In this article, we review several procedures to compensate

for this effect. First EP in electrolyte solutions is described: the complex conductivity

is derived as function of frequency, for two cell geometries (planar and cylindrical) with

blocking electrodes. The corresponding equivalent circuit for the electrolyte solution is

given for each geometry. This equivalent circuit model is extended to suspensions. The

complex conductivity of a suspension, in the presence of EP, is then calculated from the

impedance. Different methods for compensating for EP are critically assessed, with the

help of the theoretical findings. Their limit of validity is given in terms of characteristic

frequencies. We can identify with one of these frequencies the frequency range within

which data uncorrected for EP may be used to assess the dipole moment of colloidal

particles. In order to extract this dipole moment from the measured data, two methods

are reviewed: one is based on the use of existing models for the complex conductivity

of suspensions, the other is the logarithmic derivative method. An extension to multiple

relaxations of the logarithmic derivative method is proposed.

Keywords: colloidal suspension, complex conductivity and permittivity, electrode polarization

1. INTRODUCTION

Dielectric spectroscopy is a powerful tool to determine the electrokinetic properties of suspensions
of nano- or microparticles as it can probe the suspension’s response as function of the applied
electric field frequency. Interfacial properties such as zeta potential and Stern layer conductance can
then be derived by analyzing the dielectric spectra of the suspensions (Grosse et al., 1998; Delgado,
2002; Hollingsworth and Saville, 2003; Ohshima, 2006; Chassagne et al., 2009). It was shown
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recently that fitting simultaneously the dielectric spectrum of
a suspension and the electrophoretic velocity of the particles
composing this suspension can provide a unique set of
parameters when a Stern layer conductance is necessary to fit
the data in addition to the zeta potential (Chassagne et al., 2009).
Most experiments on colloidal suspensions are performed in the
“low frequency” regime, i.e., below 1 MHz, where the typical
dispersions emerge that are associated with the colloidal particle
and its double layer. Studies at higher frequencies (well above
1 MHz, see for instance Kaatze and Feldman, 2006) will not be
addressed.

The determination of dielectric spectra is based on
measurements of the complex conductivity of the suspension K̃s

(or equivalently the complex dielectric response ε̃s) as a function
of frequency. This is done by measuring the complex impedance
Z̃s of a suspension contained in a cell with (generally two)
electrodes. Although it is in principle a simple measurement, the
proper determination of Z̃s is difficult due to several unwanted
effects. Two types of effects are distinguished. One type of effect
originates from the non-ideality of the experimental set-ups.
Because of the presence of electrical circuits, wires, external
components, so-called “stray impedances” will arise and have to
be accounted for when the impedance of the cell, in which the
suspension is inbedded, is measured. This type of effect will not
be discussed here. Another type of unwanted effect stems from
the distribution of the charged species in the measurement cell
when an electric field is applied. It is the so-called “electrode
polarization” (EP) that typically occurs at low frequencies,
mostly below 10–100 kHz (Barsoukov and Macdonald, 2005).
EP originates from the fact that at low frequencies ions are able
to build up close to the electrodes, contributing with a large
additional capacitance to the impedance Z̃c,s of the suspension,
see Figure 1. The impedance Z̃c,s of the suspension measured
in the cell (cleaned from all stray impedances that might have
to be accounted for) can be seen as the sum of two impedances,
the sought one from the bulk of the suspension Z̃s (“true”
impedance) and an unwanted one due to EP, Z̃EP:

Z̃c,s = Z̃s + Z̃EP

As Hollingsworth (2013) recently pointed out, EP has been
studied extensively. The impedance caused by the electrodes was
first discussed by Kohlrausch around 1874 as a disturbance in
conductivity measurements of electrolyte solutions. Theoretical
work was performed by Warburg, Mandel, and Buck to name
a few, see for instance Barsoukov and Macdonald (2005), Buck
(1969), and van der Touw and Mandel (1971). Analytical
expressions for the impedance by EP can be obtained by solving
the set of relevant equations (Nernst-Planck, conservation of
ions and Poisson). In most works (including the present article),
the electrodes are assumed to be ideally polarizable, implying
that faradaic reactions are negligible and hence that there is
no charge transfer at the electrodes (blocking electrodes). We
refer in particular to the work done in Hollingsworth and
Saville (2003), Buck (1969), Cirkel et al. (1997), Chassagne
et al. (2002), Chassagne et al. (2003) that will be used in this
article. Theoretical investigation of electrode polarization with

non-zero zeta potential at the electrodes has been performed
numerically by White et al. (DeLacey and White, 1982),
perturbation expansions have been done by Gunning et al.
(1995) and semi-analytical solutions provided by Scott et al.
(2000a,b).

The measurement of the complex dielectric response of
colloids is hampered seriously by EP due to the fact that
the characteristic relaxation frequencies associated with the
properties of the colloids show up in the low-frequency regime
too. It is therefore important to be able to devise a suitable
method to remove or minimize the strong EP contribution to
the measured signal, so as to assess Z̃s. Recent reviews of the
existing methods have been given by Kaatze et al. (Kaatze and
Feldman, 2006; Grosse and Delgado, 2010; Ishai et al., 2013).
The present article is intended to give insight in these different
methods and in particular check their range of validity, from
a theoretical perspective. Characteristic frequencies are derived.
We show in particular that one of these frequencies enables us to
identify those cases where data uncorrected for EP can be used to
assess Z̃s.

From Z̃s, the complex conductivity K̃s of the suspension
can be directly derived. This conductivity is related to the
interfacial properties of the colloidal particles such as zeta
potential and Stern layer conductance via the dipole moments
of the polarized particles and their double layers. This dipole
moment is represented by the dipolar coefficient β̃ that can be
modeled either analytically or numerically, see e.g., Chassagne
and Bedeaux (2008), Mangelsdorf and White (1990), and Minor
et al. (1998). We will show, using the analytical model presented
in Supplementary Material 1 as an example, how such a model
can be used to find the interfacial properties of the particles
by fitting data uncorrected for EP. In a next section, we will
show how an extended logarithmic derivative method allows the
evaluation of β̃ from uncorrected data. In the case the data should
be corrected for EP, one of the different methods to account for it
should be applied first.

FIGURE 1 | Schematic representation of the distribution of particles

(ions, colloidal particles) at a given time, when an AC electric field is

applied to a solution (x = e) or suspension (x = s). Due to the blocking

nature of the electrodes, ions and colloidal particles build-up close to the

electrodes at low frequencies. The equivalent impedance of the cell Z̃c,x is

then made up of two contributions: the wanted “true” impedance Z̃x of the

bulk of the investigated solution or suspension and the contribution due to the

polarization of the electrodes Z̃EP.
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1.1. Outline of the Article
In Section 2, the purpose of dielectric spectroscopy in the context
of colloids will be outlined. The complex conductivity K̃s of
colloidal suspensions will be given as function of the complex
dipolar coefficient β̃ as basic unknown. It is this quantity that
characterizes important particles properties such as zeta potential
and Stern layer conductances. Before discussing methods to find
K̃s (and subsequently β̃) theoretical derivations are recalled: in
Section 3, a description of EP for blocking electrodes will be
given. This theory is an extension of previous ones (Buck, 1969;
Cirkel et al., 1997; Chassagne et al., 2002, 2003), and is valid for
the whole frequency range of interest and arbitrary mobilities
and valences of ions. Two types of electrodes will be considered:
planar and cylindrical, which correspond to the geometries
most frequently used. Important results of the derivations given
in Section 3 will be needed in Section 4. The impedance
of the electrolyte (or suspension) is often represented as an
equivalent circuit consisting of the combination of resistances
and capacitances (Buck, 1969; Barsoukov and Macdonald, 2005).
This formalism will be discussed in Section 4. It will in particular
enable us to model the response of a colloidal suspension in
the presence of EP. In Section 5, several methods to (a) correct
for EP and (b) extract β̃ from the data will be presented and
discussed. The Supplementary Material sections give details
about: themathematical derivations of some of the basic formulas
reviewed, relevant aspects of the equivalent circuit and of the
spatial profile of the alternating electric field within an electrolytic
solution.

1.2. Variable Definitions
Z̃c,x is the impedance of the measurement cell filled with a

suspension (x = s) , an electrolyte solution (x = e) or a
reference electrolyte solution (x = r) (all in the presence of
electrode polarization).

Z̃e is the “true” impedance of the electrolyte solution (without
electrode polarization).

Z̃s is the “true” impedance of the suspension (without electrode
polarization).

Z̃r is the “true” impedance of the reference electrolyte solution
(without electrode polarization).

Z̃EP is the impedance accounting for electrode polarization
(̃ZEP = Z̃c,x − Z̃x).

These subscripts apply accordingly to the related complex
conductivities and complex permittivities (K̃, ε̃).

2. LINK BETWEEN MEASUREMENT AND
PARTICLE’S INTERFACIAL PROPERTIES

When an alternating electric field E (ω) is applied to a colloidal
suspension, the particles and their double layers become

polarized. The charged particles will oscillate in the AC field
as will the ions in the double layers, but with two different
characteristic times. Such a combination of events usually
produces a rich dielectric loss spectrum.

This interesting though complicated relaxation behavior
can best be described by the complex dipolar coefficient
β̃ (ω) which is associated with the (complex) dipole moment
of a single colloidal particle surrounded by its double
layer. This dipole moment is generated by the polarization
of the core material of the colloidal particle, and the
anisotropic charge distributions of particle and ions in space
and time, due to their respective movements. For a spherical
colloidal particle of radius a the dipole coefficient β̃ is
defined by:

P̃ (ω) = 4πε0εea
3β̃ (ω)E (ω) (1)

where P̃ is the particle’s dipole moment, εe the relative
dielectric permittivity of the solvent (generally water) and ε0
the permittivity of vacuum. Since this quantity incorporates all
polarization mechanisms possible, we can gather with dielectric
spectroscopy important information from β̃ about the interfacial
properties of the particles, in particular the zeta potential and
Stern layer conductances of the particle (DeLacey and White,
1981; Delgado, 2002; Ohshima, 2006; Chassagne and Bedeaux,
2008). A general expression of β̃ can be found in Supplementary
Material 1, see also Chassagne and Bedeaux (2008), Mangelsdorf
andWhite (1990), andMinor et al. (1998). A discussion about the
important characteristic frequencies associated with the system
can be found in Grosse and Shilov et al.

The relation between dipolar coefficient and complex
conductivity K̃s (ω) of a suspension with low volume fraction φ

of the dispersed particles is given by Delgado (2002):

K̃s (ω) = K̃e (ω) (1+ 3φβ̃ (ω))

= Ks (ω) + iωεs (ω) ε0 (2)

where εs (ω) is the real part of the permittivity of the suspension
and Ks (ω) the real part of its conductivity. A precise derivation
of this relation can be found in Grosse. The complex conductivity
of the suspending electrolyte is given by

K̃e (ω) = Ke + iωε0εe (3)

where Ke is the Ohmic conductivity of the electrolyte solution,
defined explicitly later in Equation (28).Ke equals in principle the
conductivity obtained in an ideal DC conductivity experiment.
We assume both Ke and εe to be frequency-independent. This
hypothesis is justified for the frequencies used. In Chassagne and
Bedeaux (2008), the notation (K1, ε1)was used instead of (Ke, εe)

to express the conductivity and relative dielectric permittivity of
the electrolyte. Instead of the complex conductivity K̃ (ω) for
the suspension and the electrolyte we can equally well use the
complex permittivity ε̃ (ω) defined by:

ε̃ (ω) ≡
K̃ (ω)

iωε0
(4)
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It then follows that:

ε̃s (ω) = ε̃e (ω) (1+ 3φβ̃ (ω))

= εs (ω) − i
Ks (ω)

ωε0
(5)

Some authors prefer to overlook the interrelation in Equations
(2) and (5) between the components of K̃ and ε̃ and simply write:

K̃ (ω) = K ′ (ω) + iK ′′ (ω)

ε̃ (ω) = ε′ (ω) − iε′′ (ω) (6)

with the real parts denoted by a single prime and the imaginary
parts by a double prime. From which we can deduce that:

K ′
s (ω) = Ks (ω) and ε′s (ω) = εs (ω)

K ′′
s (ω) = ωεs (ω) ε0 and ε′′s (ω) =

Ks (ω)

ωε0
(7)

Dielectric spectroscopy data are usually plotted in terms of
dielectric and conductivity increments, that can be obtained from
Equations (2) and (5) and are defined by:

1εs (ω) =
εs (ω) − εe

φ
= 3

[
εeRe

(
β̃ (ω)

)
+ Ke

Im
(
β̃ (ω)

)

ωε0

]

1Ks (ω) =
Ks (ω) − Ke

φ
= 3

[
KeRe

(
β̃ (ω)

)
− ε0εeωIm

(
β̃ (ω)

)]

(8)

As we are interested in the dipolar coefficient, it is convenient to
write Equations (2) and (5) in terms of the real and imaginary
parts of β̃ :

Re
(
β̃ (ω)

)
=

1

3φ

(Ks (ω) − Ke)/(ε0εeω)+ ε0 (εs (ω) − εe) ω/Ke

(ε0εeω)/Ke + Ke/(ε0εeω)

Im
(
β̃ (ω)

)
=

1

3φ

−(Ks (ω) − Ke)/Ke + (εs (ω) − εe) ω/εe

(ε0εeω)/Ke + Ke/(ε0εeω)
(9)

These two relations enable us to understand an additional source
for the errors that can be made in the evaluation of the dipole
coefficient. Indeed, at low frequencies, where the magnitude

∣∣β̃
∣∣

of the dipolar coefficient is usually the largest, we obtain:

Re
(
β̃ (ω → 0)

)
=

Ks (ω → 0) − Ke

3Keφ

Im
(
β̃ (ω → 0)

)
= 0 (10)

As the conductivity of the (dilute) suspension is in general very
close to the conductivity of the suspending electrolyte, Ks ≃ Ke,

a small inaccuracy in the measurement of Ks and/or Ke will give
rise to a large change in Re (β) and consequently

∣∣β̃
∣∣ .

In practice K̃s (or equivently ε̃s) are not measured. The
measured impedance of the suspension contains interfering
impedances that have to be corrected for. In the introduction
we distinguished between two types of effects: effects that

originate from the actual electrical connections, leading to
stray impedances, and effects coming from the ionic charge
distribution in the cell close to the electrodes, leading to Electrode
Polarization (EP) impedances. In the present article, only EP
impedances will be discussed. This implies that we assume that
we have properly compensated for stray impedances and that we
have access to the complex impedance Z̃c,s. This impedance Z̃c,s is
the impedance of the cell filled with the suspension. Z̃c,s contains
the EP contribution Z̃EP, but no stray impedances contributions,
and the contribution of the bulk of the suspension, i.e., Z̃s that we
are looking for:

Z̃c,s = Z̃s + Z̃EP (11)

The general relation between impedance and conductivity (for
any subscript: x = c, s, x = s, x = c, e or x = e) is given by:

1/Z̃x = Ciωε0̃εx = CK̃x = C (Kx + iωε0εx) (12)

where C is a cell constant that depends on the geometry of
the electrodes. This relation is only valid in the case that the
electrodes are blocking. In case they are not, there would be
a remaining DC conductivity at ω = 0. From Equation
(12), it follows that for blocking electrodes K̃c,x (ω = 0) =
Kc,x (ω = 0) + 0 × iε0εc,x (ω = 0) = 0 and therefore
Kc,x (ω = 0) = 0.

The cell constantC is defined in SupplementaryMaterial 2 and
derived in the corresponding sections for planar and cylindrical
electrodes. We have:

C =
S

d
(planar electrodes)

C = 2πh (cylindrical electrodes) (13)

3. COMPLEX PERMITTIVITY OF AN
ELECTROLYTE IN PRESENCE OF
ELECTRODE POLARIZATION

In this section, the complex permittivity ε̃c,e (ω) of an electrolyte
solution, in the presence of electrode polarization, is analyzed for
the planar electrode case. The important hypotheses used for the
derivations are:

1 - In the absence of an applied voltage the electrodes are
uncharged.

2 - No charge transfer takes place at the electrodes. These
“ideally polarizable electrodes” can therefore be considered as
capacitor plates.

3 - The electrodes are spaced sufficiently apart so that their
respective EP does not influence each other, i.e.,

∣∣λcd
∣∣ ≫ 1

(these variables are defined right below), a valid assumption
for the experimental conditions encountered in impedance
spectroscopy.

The solution is obtained from the set of relevant equations
(Nernst-Planck, conservation of ions, Poisson) and appropriate
boundary conditions. Themathematical details of the derivations
for both planar and cylindrical electrodes can be found in

Frontiers in Chemistry | www.frontiersin.org 4 July 2016 | Volume 4 | Article 30

http://www.frontiersin.org/Chemistry
http://www.frontiersin.org
http://www.frontiersin.org/Chemistry/archive


Chassagne et al. Electrode Polarization in Dielectric Spectroscopy

Supplementary Material 2. The electrolyte response to the
applied electric field frequency is shown to display the same
characteristic features, besides geometrical aspects, in both
cases.

We here recall the expressions of important variables defined
in Supplementary Material 2, which are needed to evaluate the
complex permittivities given below:

D0 =
z+D+ − z−D−

z+ − z−
(14)

Dn =
z+ − z−

z+/D− − z−/D+
(15)

Dc =
z+ − z−

z+/D+ − z−/D−
(16)

λn (ω) =
[

κ2

2
(1− R (ω)) +

iω

2

(
1

D+
+

1

D−

)]1/2
(17)

λc (ω) =
[

κ2

2
(1+ R (ω)) +

iω

2

(
1

D+
+

1

D−

)]1/2
(18)

with

R (ω)

=

√
1−

ω2

κ4

(
1

D+
−

1

D−

)2

+
2iω

κ2

ν+z2+ − ν−z2−
ν+z2+ + ν−z2−

(
1

D+
−

1

D−

)

(19)

where:

νi is the stoichiometric coefficient of ion i with i = +,−
zi is the valence of ion i
Di is the diffusion constant of ion i
ω is the radial frequency of the applied electric field
κ−1 is the Debye length

Furthermore d is the distance between electrodes.
The diffusion coefficients of the ions can be obtained from

their limiting conductivities 3∞
i (which can be found in

Handbooks) from the relation:

3∞
i = |zi|DiNae

2/(kT) (20)

where Na is Avogadro’s number, e the electric elementary charge,
k Boltzmann’s constant and T the temperature. The Debye length
can be obtained from the relation:

κ2 = e2n∞
(
ε0εekT

)−1
∑

νiz
2
i (21)

where the ionic density is defined by

n∞(m−3) = Cs(mM)× Na (22)

where Cs is the salt concentration in 10−3 mol/L (i.e.,
millimolar, mM).

In Supplementary Material 2 it is shown that the measured
complex permittivity of a binary electrolyte solution, in the case
of planar electrodes is given by

ε̃c,e (ω)

= εe/

[
1−

κ4

(
λ2c − λ2n

)
[(

1+
iω

κ2Dc
−

λ2n

κ2

)
1

λ2c

[
1−

2

λcd

]

−
(
1+

iω

κ2Dc
−

λ2c

κ2

)
1

λ2n

[
1−

2

λnd

]]]
(23)

for all frequencies, valences and ionic strengths. One can
verify that for frequencies such that ω ≪ D±κ2, this expression
corresponds to the expression found in Chassagne et al. (2002),
which is also valid for all types of electrolytes but for frequencies
restricted to ω ≪ D±κ2. An illustration is given in Figure 2. The
condition ω≪D±κ2 corresponds to the one encountered mostly
in experiments. For these frequencies, one also finds that

λ2n ≃
iω

Dn
and λ2c ≃ κ2 +

iω

Dc
(24)

The lengthscale λ−1
c is related to the creation of the double layer

close to the electrodes: for low frequencies (ω ≪ D±κ2) one gets
λ−1
c ≃ κ−1 and for high frequencies λ−1

c ≃ 0. The lengthscale
λ−1
n is related to the ionic diffusion.
In the particular case where D− = D+ = D which has

been treated by several authors, see Cirkel et al. (1997), Buck
(1969), and Hollingsworth and Saville (2003) one finds the
simplifications:

ε̃c,e (ω) = εe/

[
1−

(
κ

λc

)2 [
1−

2

λcd

]]
(25)

with λc =
√

κ2 + iω/D

Equation (25) is for example the expression found by Cirkel et al.
[their Equation (8) in Cirkel et al., 1997]. Explicit expressions for
the real and imaginary part of ε̃c,e are given in Supplementary
Material 4. There, we also make a comparison with the work
done by Kang et al. (Kang and Dhont, 2010) on the in and
out phase component of the alternating electric field. Since we
have made the hypothesis that λcd ≫ 1 we can safely assume
that tanh(λcd/2) ≃ 1 and Equation (25) is also in agreement
with Equation (25) of Hollingsworth et al. in (Hollingsworth and
Saville, 2003), who restricted their calculations to 1:1 electrolytes
(for which z+ = −z− = 1).

Two important relaxations frequencies are found from the
analysis of Equation (23):

ωP =
2κD0

d
≃

2κD±
d

ω0 = D0κ
2 ≃ D±κ2 (26)

The frequency ωP corresponds to the frequency below which
charges can fully build-up a double layer close to the blocking
electrodes due to the application of the alternating electric field.
Below ωP and beyond the double layers, the bulk electric field is
consequently zero. For ω ≪ ωP we get:
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FIGURE 2 | (A) Conductivity K(S/m) and (B) relative permittivity (epsilon) of a

solution of divalent salt as function of the applied electric field frequency,

similar to MgCl2, for which D1 = 1.4× 10−9 m2/s and D2 = 2.0× 10−9 m2

/s. The salt concentration is 0.5 mM. The electrodes are planar. The important

characteristic frequencies associated with the system are ω0 = D0κ2 and

ωP = 2κD0/d where d = 10×10−3 m is the distance between the electrodes.

The full solution found in this study, i.e., Equation (23) (red full line) is compared

to the solution (blue dashed line) found in Chassagne et al. (2002), which was

derived for the case ω ≪ ω0. As expected, the two solutions overlap for

ω ≪ ω0. The green dotted line in the conductivity plot represents the

theoretical conductivity, the value of which is given by Equation (29). The green

dotted line in the epsilon plot represents the relative permittivity of water.

εc,e ≃ εe
κd

2

Kc,e ≃ εeε0

(
κd

2

)2
ω2

κ2D0
≃ 0 (27)

The conductivity Kc,e is in good approximation zero for low
frequencies because the electrodes are blocking. No charge
transfer is possible and the ions are all accumulated close to the
electrodes.

TABLE 1 | Values of ωP and ω0 as given by Equation (26), using a diffusion

coefficient of D0 = 2.10−9 m2/s at room temperature, for 3 salt

concentrations.

Cs (mM) 0.1 1 10

ωP (d = 1 mm, rad/s) 130 415 1300

ωP (d = 10 mm, rad/s) 13 41 130

ω0(rad/s) 2.106 2.107 2.108

The Maxwell-Wagner frequency ω0 represents the frequency
below which charges can be dissipated in the system. For ωP ≪
ω ≪ ω0 we get:

εc,e (ω) ≃ εe/

[
κd

2

(
ω

κ2D0

)2
]

Kc,e ≃ εeε0κ
2D0 ≡ Ke (28)

As pointed out in recent discussions (Grosse and Delgado, 2013;
Hollingsworth, 2013), we note that εc,e indeed scales as ω−2 in
this frequency range. The conductivity in this frequency range is
equal to the theoretical conductivityKe of the electrolyte solution.
We didn’t include ionic interactions, which would have modified
the value of Ke presented here. This implies in particular that
we consider electrolytes at low ionic strength, for which the
conductivity varies linearly with the ionic strength (Ke ∝ κ2 ∝ Cs

where Cs is the salt concentration). Above ω0 no double layer can
be established at the electrodes and the electric field in the cell is
everywhere equal to the applied one. For ω ≫ ω0 we get:

εc,e ≃ εe

Kc,e ≃ ε0εeκ
2D0 ≡ Ke (29)

The permittivity of the electrolyte solution has reduced to the
one of water (we do not consider the frequency-dependence of
εe) and the conductivity is equal to the usual conductivity of
the electrolyte solution since we have not considered inertial
effects that might slow down the ions at high frequencies. The
relaxation frequency ω0 is defined by the frequency above which
ε0εeω > Ke i.e., ω0 = Ke/ (ε0εe) = D0κ

2. It can be
verified that for ω ≫ D±κ2 the permittivity

(
εc,e − εe

)
scales

as ω−3/2 (Cirkel et al., 1997; Hollingsworth, 2013). However,
this dependence can not be observed. If one takes an electrolyte
such that D− = D+ = D the expansion of Equation (25)
reads:

εc,e (ω) ≃ εe

[
1+

1
√
2

2

κd

(
κ2D

ω

)3/2
]

(30)

Even under extremely good conditions such that, for instance
ω ≃ κ2D, for an electrode spacing of 1 mm and
a very low ionic strength of 0.1 mM NaCl, one finds
εc,e ≃ εe

[
1+ 10−5

]
and the correcting term is virtually

undetectable.
Indicative values of ωP and ω0 are given in Table 1.
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4. EQUIVALENT CIRCUITS

Traditionally Dielectric Spectroscopy measurements have been
described by equivalent electrical circuits (Barsoukov and
Macdonald, 2005). A comparison between the results found
from equivalent circuits and those found from solving the
electrokinetic set of equations has been performed in specific
cases (Buck, 1969; Barsoukov and Macdonald, 2005). We are
going to show that the description of the system (any electrolyte
solution or colloidal suspension) using equivalent circuits is
strictly equivalent to the results found in the previous section, for
all frequencies and cell geometries (planar and cylindrical). We
will start with the description of electrolyte solutions. The results
for colloids will be given in the following section. The solution
can be described by a resistance Rb in parallel with a capacitor Cb.
The electrode polarization can be seen as an additional capacitor
CEP in series with the equivalent circuit of the solution, see
Figure 3.

The total impedance of the system Z̃c (including electrode
polarization) can be evaluated from the relations:

Z̃c = Z̃s +
1

iωCEP

1

Z̃s
=

1

Rb
+ iωCb (31)

The general expression for Z̃c is given in Supplementary Material
2. From that expression, one can verify that for ω0≫ω≫ωP one
gets

1

Z̃c
≃

1

Rb
+ iω

[
1

ω2R2
b
CEP

+ Cb

]
(32)

Schwan (1992) found this result experimentally in the case
of a concentrated suspension of blood cells. Like many
experimentalists, he expresses his complex measured impedance
in terms of a resistance and capacitance in series i.e.,

1

Z̃c
=

1

R
+ iωC (33)

and defines:

R = Rb

C = Cb +
1

ω2R2
b
CEP

(34)

FIGURE 3 | Equivalent circuit representation for a cell containing a

solution or suspension, with blocking electrodes.

In Figure 5 of Schwan (1992), it is shown that C ≃ 1/
(
ω2R2

b
CEP

)

for low frequencies and that C ≃ Cb at high frequencies. As
EP only contributes as a capacitance, it implies that EP only
affects C and not R. In other words, in the frequency range of
interest (ω0 ≫ ω ≫ ωP) only the permittivity is affected by EP,
not the conductivity, which reduces to the bulk conductivity. This
is consistent with the results of Section 3.

4.1. Electrolyte Solutions
In Supplementary Material 3 we describe how we obtain
the expressions for CEP,Cb, and Rb from the mathematical
equivalence with the analytical results of Section 3. In the case
of planar electrodes, we find:

CEP =
S

d
ε0εe

κd

2

Cb =
S

d
εeε0

Rb =
d

S

1

Ke
(35)

These values were also found by Buck (1969) in the case of a z-
z electrolyte. One can verify that the characteristic frequencies
found in Supplementary Material 3 can be related to the ones
found in the Planar electrodes section by:

ωP =
1

RbCEP
=

2κD0

d

ω0 =
1

RbCb
= D0κ

2

The signification of the frequencies (specified in Supplementary
Material 2) can now be linked to circuit elements: as expected
ωP depends on the capacitance CEP associated to electrode
polarization, whereas ω0 depends on Cb associated to the bulk
permittivity. Note that the “2” that appears in the right hand
side part of the relation for ωP can be seen as resulting from
the fact that there are two electrodes in the system: each
electrode contributes with a capacitance Sε0εeκ and summing
two capacitances in series yields CEP = Sε0εeκ/2 as in
Equation (35). Some authors therefore prefer to use an alternative
equivalent circuit : instead of the one represented in Figure 3,
where one capacitor of capacitance CEP = Sε0εeκ/2 was used,
one can have a circuit with two capacitors, each of capacitance
CEP = Sε0εeκ , placed on each side of the Z̃s element, as was
sketched in Figure 1.
Following the same procedure for the cylindrical electrodes
(not detailed here), one finds the equivalence, using the circuit
represented in Figure 3:

CEP = 2πh
ε0εeκ(

R−1
1 + R−1

2

)

Cb = 2πh
ε0εe

ln (R2/R1)

Rb =
1

2πh

ln (R2/R1)

Ke
(36)
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The analytical expressions of Section 3 and the equivalent
circuit expressions give the same results for all frequencies, ionic
strengths, and type of salts (not shown). Buck (1969) also derived
an equivalent circuit in the case of spherical concentric electrodes
for z-z electrolytes. We refer to him for this geometry which
will not be further discussed, as most experiments nowadays are
performed with either planar or cylindrical electrodes.

4.2. Colloidal Suspensions
For the sake of argument, we will consider planar electrodes.
Instead of a simple electrolyte solution, as studied in the previous
section, we now like to find an equivalent circuit in the case
a complex electrolyte solution such as a colloidal suspension.
We make the hypothesis that the equivalent circuit can be
represented as the one given in Figure 3: we would like that
when the concentration of colloidal particles goes to zero, one
would find again Equation (35). The equivalent circuit elements
are taken to be:

CEP (ω) =
S

d
ε0ε

∗ (ω)
κd

2

Cb (ω) =
S

d
εs (ω) ε0

Rb (ω) =
d

S

1

Ks (ω)
(37)

Note that in the general case the circuit elements now become
frequency-dependent: even though the R and C in Equation
(37) have the dimensions of resistance and capacitance, they
represent no “real” resistor and capacitors, and no “real”
electronic equivalent circuit can be made of them. This was
not the case for electrolyte solutions, where all R and C were
frequency-independent, andwhich could therefore be substituted
by “real” resistor and capacitors. The equivalent circuit would
then reproduce the behavior of the electrolyte between blocking
electrodes. The expressions for εs and Ks are given in Equation
(8). An important check for the validity of the proposed
equivalent circuit is that in the absence of electrode polarization,
the analytical expression for K̃s and the equivalent circuit
expression should give the same results: this is illustrated in
Figure 4. This is not surprising, as one can see by comparing
Equations (12) and (31).

If there are no colloidal particles, we get from Equation (5)
that ε̃s (ω) = ε̃e (ω) and we indeed find again Equation (35),
provided that the unknown ε∗ equals εe. The permittivity ε∗ is
clearly linked to the EP phenomena by construction. One could
argue that EP originates mainly from the contribution of the
ions and not that of the colloidal particles. This implies that the
dielectric permittivity ε∗ in the small slab of liquid adjacent to
the electrodes should be equal to εe whether in the presence or
not of colloidal particles. If the colloidal particles contribute to
ε∗, ε∗ should be close to εs (ω). The relation between εs and εe
is given by Equation (8), and these permittivities do not differ
much, especially not at low volume fractions. However, even a
small difference in permittivities will prevent that the subtraction
method is applicable when ε∗ 6= εe (See section 5). We note that
both Cb and Rb depend on d, whereas CEP does not. This fact will
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FIGURE 4 | (A) Conductivity K(S/m) and (B) relative permittivity (epsilon) as

function of frequency of a suspension of 100 nm colloidal spheres (φ = 1%,

eζ/kT = 4) in a 1 mM electrolyte solution of monovalent salt solution for which

D1 = 2× 10−9 m2/s and D2 = 3× 10−9 m2/s. Red curve: the suspension in

the absence of electrode polarization, corresponding to εs and Ks from

Equation (8). Dashed blue curve: the equivalent circuit model corresponds to

the theoretical prediction provided that one takes Rb = 1/Ks , Cb = ε0εs and

CEP = 0.

allow to account for EP by the variable separation method (See
section 5).

In Figure 4, we have shown the case where CEP = 0 (no
electrode polarization). Two relaxations features can be observed
that are related to the characteristic frequencies associated with
the polarization of the particle and its double layer. The double
layer around a colloidal particle and the double layer at the
electrodes have the same relaxation frequency ω0 and the
frequency associated with the relaxation of the particle is given
by ωa = D0/a

2 where a is the radius of the colloidal particle and
D0 is given in Equation (14). If we take electrode polarization
into account, the dielectric permittivity at low frequency is
106 times larger than that without electrode polarization.
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FIGURE 5 | (A) Conductivity K(S/m) and (B): relative permittivity (epsilon) as

function of frequency. Suspension with same properties as the one given in

Figure 4. The suspending electrolyte solution (blue line) and suspension (red

line) in the presence of electrode polarization. The magenta dashed line

corresponds to the solution found in Figure 4 for no EP. The equivalent circuit

of the suspension in the presence of electrode polarization was constructed by

taking Rb = 1/Ks , Cb = ε0εs and CEP = ε0εsκd/2 with d = 10 mm.

This is illustrated in Figure 5. In this example we have used
ε∗ = εs.
In the frequency range of interest, i.e., for ω0≫ω≫ωP Equation
(32) holds. A new frequency can be defined by

ωb = 1/
(
Rb
√
CbCEP

)
= √

ω0ωP (38)

This frequency is discussed in Supplementary Material 4. One
can verify from Equation (32) that for ω ≫ ωb the influence of
electrode polarization can be neglected and

1

Z̃c (ω)
≃ iωCb +

1

Rb
(39)
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FIGURE 6 | Enlargement of Figure 5. Above ωb one finds that εc,s ≃ εs i.e.,

that the EP plays no role anymore. Note that for any frequency above ωP the

relation Kc,s ≃ Ks holds (see Figure 5). This implies that for frequencies above

ωb one has K̃c,s ≃ K̃s (or equivalently ε̃c,s ≃ ε̃s). Similarly, above ωb one has

K̃c,e ≃ K̃e which implies in particular for the present figure that εc,s ≃ εe.

Equivalently,

ε̃c,s (ω) ≃ ε̃s (ω) = ε̃e (ω) (1+ 3φβ̃ (ω))

K̃c,s (ω) ≃ K̃s (ω) = K̃e (ω) (1+ 3φβ̃ (ω)) (40)

from which β̃ can be directly deduced. This is illustrated in
Figure 6 which is an enlargement of Figure 5.

The characteristic frequency ωb, representing the frequency
above which EP becomes negligible, increases with ionic strength
in the following way:

ωb =
√

ω0ωP = ω0

√
2

κd
∼ κ3/2 (41)

An indication for the values of ωb is given in Table 2.
Interestingly, one can verify that in most cases encountered in

practice, one has ωb . (ωa, ω0) . We will come back to this point
in the following section.

As above ωb one has K̃c,s ≃ K̃s this also implies that the value
of ε∗ only plays a role below ωb. This is illustrated in Figure 7.
In order to better distinguish the features of the curves, we have
chosen a large volume fraction (20%). This is permitted for the
theoretical considerations presented, as using Equation (2) one
can verify that

∣∣φβ̃
∣∣ < 1.

5. ACCOUNTING FOR ELECTRODE
POLARIZATION

In this section, first three methods used to compensate
experimentally for electrode polarization will be analyzed. In the
last section, a general method to extract β̃ directly from the data
will be presented. The frequency range of validity of each method
is discussed.

Frontiers in Chemistry | www.frontiersin.org 9 July 2016 | Volume 4 | Article 30

http://www.frontiersin.org/Chemistry
http://www.frontiersin.org
http://www.frontiersin.org/Chemistry/archive


Chassagne et al. Electrode Polarization in Dielectric Spectroscopy

TABLE 2 | Values of ωb as given by Equation (41), using a typical diffusion

coefficient of D0 = 2.10−9 m2/s at room temperature, for 3 salt

concentrations.

Cs (mM) 0.1 1 10

ωb (d = 1 mm, rad/s) 1.6·104 9.3·104 5.2·105

ωb (d = 10 mm, rad/s) 5.2·103 2.9·104 1.6·105

5.1. Subtraction Method
This method relies on the fact that EP can be modeled by
a capacitance CEP (see Section 3) associated with a relative
permittivity ε∗ = εe. The aim is to find a reference electrolyte
solution (symbolized by the subscript r) that will give as best as
possible the same CEP as the one of the investigated suspension.
From the section about equivalent circuits and from general
definitions [see Equation (12) and Supplementary Material 1], we
can write that (for x = r or x = s):

Z̃c,x (ω) = Z̃x (ω) +
1

iωCEP,x

1

Z̃x (ω)
= CK̃x (ω) (42)

For the sake of argument, we will consider planar electrodes and
use C = S/d. We then have:

CEP,s = Cε0εe
κsd

2

CEP,r = Cε0εe
κrd

2
(43)

The ionic strength is determined by the amount of charge carriers
in the system, which implies that conductivity and ionic strength
are linked, see Equation (28) for electrolyte solutions for example.
For the reference electrolyte, it is therefore found that Kr ∝ κ2

r .
On the other hand, the conductivity for colloidal suspensions is
given by Equation (8) i.e., at low frequencies:

Ks (ω → 0) = Ke(1+ 3φRe
[
β̃ (ω → 0)

]
) (44)

Equation (44) gives the relation for the conductivity of the
suspension after it has been mixed with the suspending
electrolyte. The conductivity Ke = ε0εeκ

2
s D0 therefore represents

the conductivity of the suspending electrolyte including all other
ions (counterions and impurities) originating from the original
(concentrated) suspension used to be mixed with the suspending
electrolyte. In some cases, one can assume that the original
suspension is devoid of impurities, and that the amount of
counterions is negligeable compared to the amount of ions
stemming from the electrolyte suspension. This last condition is
usually true when dilute suspensions of large (> 10 nm) colloidal
particles are studied. One can then safely assume that κs = κe
i.e., the ionic strength of the suspension (symbolized by the
subscript s) is given by the ionic strength of the suspending
electrolyte (symbolized by the subscript e). In the case of
nanocolloids, i.e., when there is a relative large total interface
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FIGURE 7 | (A) Conductivity Kc,s(S/m) and (B) relative permittivity (epsilon)

εc,s of a suspension of 100 nm colloidal spheres (φ = 20%, eζ/kT = 4) in a

0.23 mM electrolyte solution of monovalent salt solution for which

D1 = 2× 10−9 m2/s and D2 = 1.98× 10−9 m2/s. The spacing between

electrodes is 10 mm. Red curve: the case where ε* = εe; Dashed magenta

curve: the case where ε* = εs.

between particles and water and hence a non-negligible amount
of counterions, or in the case that the original suspension of
colloids (before it is added to the suspending electrolyte) contains
impurities, i.e., ions that are not counterions, one can have
κs 6= κe.

In practice, the value of κs can be difficult to obtain, because
measuring the conductivity of a suspension does not give
direct access to κs. A procedure, based on experimental results,
has consequently been developed to get a reference electrolyte
solution for which in close approximation CEP,s ≃ CEP,r without
the need of κs being known. This procedure is now outlined.

In the frequency range of interest, i.e., for ω0 ≫ ω ≫ ωP we
get from Equations (32), (35), and (37) for the suspension and the
reference solution:
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Kc,x ≃ Kx (x = s or r)

εc,r (ω) ≃ (Kr)
2

(ωε0)
2 εeκrd/2

+ εe

εc,s (ω) ≃ (Ks (ω))2

(ωε0)
2 εeκsd/2

+ εs (ω) (45)

As discussed in the previous section, the conductivity in this
frequency range is not affected by EP, only the permittivity is,
in the range [ωP, ωb]. Above ωb one has εc,s (ω) ≃ εs (ω) . The
subtractionmethod is therefore only applied to the permittivities,
and should compensate for EP in the range [ωP, ωb]. The
reference electrolyte solution is made of an electrolyte of the
same type as the electrolyte present in the suspension (ex: if NaCl
is the suspending electrolyte, NaCl will be taken as reference
electrolyte). The concentration of the reference electrolyte is
chosen such that the conductivity of the reference electrolyte Kr

equals:

Kr = Ks (ωP < ω < ωb) (46)

which implies that:

K̃r (ω) = Ks (ωP < ω < ωb) + iωεeε0 (47)

In the range ωP < ω < ωb the conductivity Ks (ωP < ω < ωb) is
constant. For frequencies smaller than ωP the conductivity Kc,s

is going to zero, as the electrodes are blocking, but above ωP

one has Kc,s (ω) = Ks (ω), as was shown in Section 3. One can
verify from Equation (44) that below ωb one has Ks (ω) = Ks

(i.e., Ks does not depend on frequency) provided that Re
(
β̃
)

remains constant. Re
(
β̃
)
is indeed a constant at low frequencies,

and will start to exhibit relaxation phenomena when the lowest
characteristic frequency associated with the colloidal particle is
reached. This frequency is given by

ωa = D0/a
2 (48)

where a is the radius of the colloidal particle and D0 is given in
Equation (14). This relaxation frequency occurs in the frequency
regime [104–106] rad/s for particle sizes between [25–250] nm. In
most cases encountered in experiments one has therefore ωa >

ωb and Re
(
β̃
)
is constant below ωb implying that Ks is constant.

For extreme cases, like very large particles at low ionic strength,
the situation ωa ≃ ωb could occur in which case an option can
be to increase d so as to lower ωP and take Kr = Ks

(
ω & ωP

)
.

As φ is supposed to be small, one has in the range ωP < ω <

ωb, in good approximation, Ks ≃ Ke = ε0εeκ
2
s D0 which implies

that κs ≃ κr . One can now get rid of the EP contribution in the
whole frequency range ω0 ≫ ω ≫ ωP. By substracting εc,r from
εc,s one obtains for εs (ω) :

εs (ω) = εc,s (ω) − εc,r (ω) + εe (49)

As stated at the beginning of this section, the subtraction method
will not work when ε∗ 6= εe as this would imply that CEP,s 6=
CEP,e. If one assumes that ε∗ = εs even though εs and εe differ by
less than 10% this will give huge errors in the subtractionmethod,
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FIGURE 8 | Relative permittivity (epsilon) of a suspension of 100 nm

colloidal spheres (φ = 20%, eζ/kT = 4) in a 0.23 mM electrolyte

solution of monovalent salt solution for which D1 = 2 × 10−9 m2/s and

D2 = 1.98 × 10−9 m2/s. The spacing between electrodes is 10 mm. (A) The

case where ε* = εe. (B) The case where ε* = εs Red curves: εs Blue curves:

εs found by using the subtraction procedure

as Figure 8 illustrates. Note that around ωp the values for the
permittivity are of the order of 107 (as can be seen in Figure 5).
Substracting such huge numbers goes at the cost of accuracy: this
explains the deviations observed the theoretical prediction (red
line) and substraction method result (dashed blue line) at low
frequencies.

As discussed after Equation (45), two main frequency
regions can be distinguished in the spectrum. In the range

[ωP, ωb] electrode polarization is dominant and we obtain from
Equation (45):

εc,x (ω) ≃
(Kx (ω))2

(ωε0)
2 εxκxd/2

(50)
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where εx = ε∗ for suspensions and εx = εe for electrolytes. One
might wonder whether it is possible to compensate for electrode
polarization by dividing the dielectric spectrum of the suspension
with the one of the solvent. This gives in the range [ωP, ωb]:

εc,s

εc,e
≃

εeκe (Ks)
2

ε∗κs (Ke)
2

(51)

This ratio will probably be close to one, considering the
discussion given above about the values of these variables.
Clearly, this way of elimination of the electrode polarization
contribution does not give access to εs in the frequency range
where electrode polarization is prevailing. Above ωb we have
shown that electrode polarization does not play a significant role,
and therefore we obtain from Equation (45):

εc,s

εc,e
≃

εs

εe
(52)

Combining real and imaginary terms we obtain from Equations
(12, 45) for the complex ratio, above ωb:

ε̃c,s

ε̃c,e
=

K̃c,s

K̃c,e
≃

ε̃s

ε̃e
=

K̃s

K̃e
(53)

From Equations (2) and (5) one can see that above ωb the
ratios Re

(
K̃c,s/K̃c,e

)
, or alternatively Re

(
ε̃c,s/̃εc,e

)
, provide

direct information about Re
(
β̃
)
whereas Im

(
K̃c,s/K̃c,e

)
, or

Im
(
ε̃c,s/̃εc,e

)
, provide direct information about Im

(
β̃
)
. By

contrast, the ratios Re
(
ε̃c,s
)
/Re

(
ε̃c,e
)
and Im

(
ε̃c,s
)
/Im

(
ε̃c,e
)
are

less appealing because they each depend on a mix of Re
(
β̃
)
and

Im
(
β̃
)
.

5.2. Variable Electrode Separation Method
This technique is, in principle, extremely well-suited for
compensating for electrode polarization. We start again from the
general definitions:

Z̃c,s (ω) = Z̃s (ω) +
1

iωCEP,s

1

Z̃s (ω)
= CK̃s (ω) (54)

For the sake of argument, we again consider planar electrodes and
hence C = S/d. Moreover:

CEP,s = Cε0ε
∗ κsd

2

Combining these equations leads to:

1

K̃c,s (ω)
=

1

K̃s (ω)
+

2

iωε0ε∗κsd
(55)

From the experimental data one can then estimate K̃−1
s (and

hence K̃s) from a linear regression of K̃−1
c,s as function of 1/d. This

method is applicable for the whole range of frequency, however
it requires the combination of both the real and imaginary part

of K̃c,s in the analysis. In the frequency range of interest, i.e.,
for ω0 ≫ ω ≫ ωP, the variable electrode separation technique
can be applied to the imaginary part of K̃c,s ( which is related to
εc,s) only. Indeed, we have found that in the range of interest [see
Equation (45)]:

Kc,s ≃ Ks

εc,s (ω) ≃ (Ks)
2

(ωε0)
2 ε∗κed/2

+ εs (ω) (56)

It is therefore possible to “clean” the signal from electrode
polarization by a linear regression of εc,s as function of 1/d, from
which εs is then easily obtained. Although 2 electrode separations
suffice in theory, in practice, 3 or 4 electrode separations
are usually used to minimize the experimental error. The
technique was introduced by Fricke and Curtis (1937), and used,
for suspensions, in combination with the subtraction method
(described in the previous section) by the Dutch groups (van
der Touw and Mandel, 1971; van der Touw et al., 1975; Cirkel
et al., 1997; Chassagne et al., 2002, 2003). This technique is also
used by the groups in Princeton andGranada (Hollingsworth and
Saville, 2003; Jimenez et al., 2007). For more recent work on the
topic, and experimental limitations of the techniques, we refer to
Hollingsworth and Saville (2004), Beltramo and Furst (2012), and
Beltramo and Furst (2012).

5.3. Four Electrode Cell Method
The idea of using 4 electrodes stems from Schwan (1992). Four
electrode cells are designed such that the two inner electrodes are
able to measure a voltage difference that is devoid of EP. The
outer electrodes are the current carrying electrodes, where EP
occurs and causes an extra voltage drop close to these electrodes.
Figure 9 sketches the measuring cell with 4 electrodes and
equipped with special electronics. For the voltage sensing often
needle-like electrodes are used so as to minimize their influence
on the ionic flow. The inner electrodes should be designed such
that the electric current generated by the outer electrodes is not
disturbed. This requires that the voltage difference measured at
the inner electrodes Ṽi should be at virtually zero current (̃Ii ≃
0), so that no current leaks away in the probing circuit. This
implies that the impedance Z̃i of the inner electrodes should be
virtually infinite (since Ṽi = Z̃ĩIi). The measurement of Ṽi can
be achieved with the use of operational amplifiers. The current Ĩ
that is flowing in the whole cell can bemeasured with commercial
frequency response analyzers or with impedance analyzers. We
have:

Ṽo (ω) = Z̃c (ω) Ĩ (ω)

Ṽi (ω) = Z̃ci (ω) Ĩ (ω) (57)

where Z̃c is the impedance of the cell (with electrode polarization)
and Z̃ci the impedance of the fluid between the inner electrodes.
Since EP should not play a role at the inner measuring electrodes,
we have Z̃ci = Z̃s i.e., the measured impedance Z̃ci gives directly
the sought conductivity (or permittivity) of the suspension:

K̃s (ω) = C/Z̃ci (ω) = K̃e (ω) (1+ 3φβ̃ (ω)) (58)
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FIGURE 9 | Schematic representation of a 4-electrode cell; the voltage

difference at the outer electrodes, where EP takes place, is

Ṽo = 1Ṽout = Z̃õI whereas the voltage difference at the inner (probing)

electrodes is Ṽi = 1Ṽin; as EP should be minimized at the inner

electrodes, the voltage difference measured at the inner electrodes Ṽi
should be done with virtually zero inner current (̃Ii ≃ 0), implying that

the impedance Z̃i of the inner electrodes should be virtually infinite.

One then obtains, from the measurement of Ṽi and Ĩ : Z̃s = Ṽi /̃I.

Note that the cell constant C can be found separately from the
impedance of an electrolyte with known electrical properties
as the correct geometry of the probing electrodes might be
unknown. We then simply have C = K̃e × Z̃ci, where K̃e =
Ke + iωε0εe is known, and Z̃ci is measured.

Clearly, both the cell design and the electronic are more
sophisticated than those of the common 2 electrode cell. Further
details are given in Hayakawa et al. (1975) and Pelc et al.
(2011). In the early publications gain/phase detectors were not
available, so they were home built. Also, high technical skills in
order to properly compensate for parasitic stray capacitances and
inductions were required (Hayakawa et al., 1975; van der Touw
et al., 1975). A new technique van der Ploeg and Mandel (1991)
was proposed in 1991 to reduce themeasurement time, and hence
the possible drifts in conductivity. This technique is no longer
in use as current set-ups are improved in such a way that the
measurement time is not anymore an issue. Nowadays setting
up 4 electrode experiments has become easier (Pelc et al., 2011).
Four electrode cells are now also commercially available from e.g.,
Novocontrol.

It was already Schwan (1992) who warned that in practice
Z̃ci could still contain some contribution of EP. This arises from
the parasitic capacitance between the 4 electrodes. This extra
parasitic EP can be compensated for by using the subtraction
method explained above. This has been done by authors like
Mandel, Saville, Hayakawa, and Kijlstra (Hayakawa et al., 1975;
van der Touw et al., 1975; Myers and Saville, 1989; Kijlstra
and Wegh, 1994). Critical remarks on this issue have also been
made recently by Grimnes et al., Mazzeo et al., and Lvovich
(Mazzeo, 2009; Lvovich, 2012; Grimnes and Martinsen, 2015).
Another concern is that the 4 electrode system and its additional
electronics is less suitable for high frequencies.

5.4. Logarithmic Derivative Method
This method was introduced by Jimenez et al. (2002, 2007) in
order to compensate for EP, following the work of van Turnhout
et al. (Wübbenhorst and van Turnhout, 2002). The logarithmic
derivative method was originally derived to study the dielectric
relaxation in polymers, but Jimenez et al. showed that it can be
applied to colloidal suspensions as well, see also Kaatze et al.
(Kaatze and Feldman, 2006).

These authors use the following definitions for the complex
permittivity/conductivity of the system, which are different from
Equations (6) :

ε̃ (ω) ≡ ε′ (ω) − iε′′ (ω)

K̃ (ω) = KDC + iωε0̃ε (ω) (59)

implying in particular that:

K̃c (ω) =
(
KDC + ωε0ε

′′
c (ω)

)
+ iωε0ε

′
c (ω) (60)

As discussed earlier in the present article (see Section 2), the
conductivity K̃c is zero atω = 0 in the case of blocking electrodes;
this implies that in our case KDC = 0. We therefore obtain the
equivalence, using Equations (6) ,(12), and (60):

K ′
c (ω) = ωε0ε

′′
c (ω)

K ′′
c (ω) = ωε0ε

′
c (ω) (61)

The logarithmic method is based on the use of a new variable
defined by Wübbenhorst and van Turnhout (2002):

ε′′D =
−π

2

∂ε′

∂ lnω
(62)

where the subscript “D” refers to “derivative.” This new variable
ε′′D (ω) enables to better distinguish the characteristics relaxation
frequencies of the system.
Despite its notation, ε′′D differs from ε′′. For a reference electrolyte
solution of conductivity Kr one has, in the frequency range of
interest:

ε′c,r =
2π

κd
εe

(
κ2D0

ω

)2

=
2π

κd
εe

(
Kr

ε0εeω

)2

=
2π

κd

1

εe

(
ε′′c,r
)2

(63)
This implies that:

ε′′D,c,r =
−π

2
ω

∂ε′c,r
∂ω

=
2π2

κd
εe
(
κ2D0

)2
ω−2

= πε′c,r

=
2π2

κd

1

εe

(
ε′′c,r
)2

(64)

This result is in agreement with the discussion in Wübbenhorst
and van Turnhout (2002) about the expected quadratic
dependence of ε′′D on ε′′ for sharp Debye like loss peaks. This
quadratic dependence implies that ∂ε′/∂ lnω provides a higher
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spectral resolution than ε′′. It makes this quantity better suited
for the decomposition of overlapping relaxations.

Let us say a few words about the origin of the use of ∂ε′/∂ lnω

(Steeman and van Turnhout, 1994). It was ∂ε′/∂ lnω that enabled
the authors of Steeman and van Turnhout (1994) to detect in
its very spectrum for solid polymers just beyond the main-chain
or α-relaxation, the space charge or ρ-relaxation, which arises
from the motion of ions at high temperature and low frequencies.
By contrast, the ρ-relaxation could not be seen at all in the ε′′-
spectra. Its better revealing power is furthermore due to another
special feature of ∂ε′/∂ lnω, namely that it does not contain any
contribution of ohmic conduction. The conduction loss does add
up however in the ε′′ data, in which it often overshadows the
genuine relaxation losses at low frequencies.

If the relaxation of a system stems from a variety of processes,
then we better model the total response with a logarithmic
distribution of relaxation times. Both ∂ε′/∂ lnω and ε′′ can be
linked to this distribution (Steeman and van Turnhout, 1994). In
fact, they provide approximations to it, −∂ε′/∂ lnω gives a first
order and ε′′ a zero order estimate. This explains once more that
∂ε′/∂ lnω has a higher resolving power than ε′′.

Both approximations become the better, the broader the
distribution. For broad dielectric distributions we can therefore
envisage −∂ε′/∂ lnω as being a close approximation to π/2ε′′.
It was for this reason that the symbol ε′′D was used for

(−π/2) ∂ε′/∂ lnω.
In Figure 10 we have considered a colloidal suspension.

One can see that indeed
(
ε′′D,c,s, ε

′′
D,s

)
display clear relaxation

phenomena, whereas these dispersions cannot be seen in the
variables

(
ε′s, ε

′′
s

)
and

(
ε′c,s, ε

′′
c,s

)
.

This high-resolution property of ε′′D therefore enables us to
identify the two important relaxations frequencies occurring in a
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FIGURE 10 | Comparison between ε′′

D,s
,ε′′

D,c,s
,
(
ε′

s, ε′′

s

)
and

(
ε′

c,s, ε′′

c,s

)

as function of frequency; suspension of 100 nm colloidal spheres (φ =

1%, eζ/kT = 4) in a 1 mM electrolyte solution of monovalent salt

solution for which D1 = 2 × 10−9 m2/s and D2 = 1.98 × 10−9 m2/s. The

spacing between the electrodes is 10 mm. Using the logarithmic derivative

method (in blue) enables to better distinguish the relaxation processes

associated with the colloidal particles.

colloidal suspension, namely ωa = D0/a
2 and ω0 [see Equations

(26) and (48)] where a is the radius of the colloidal particle
and D0 is given in Equation (14). The relaxation frequency ωa

shows up in the frequency regime [104–106] rad/s for particle
sizes between [25–250] nm. The second relaxation frequency,
ω0 = D0κ

2, is associated with the colloidal particle double layer.
The characteristic length scale related to this frequency is the
Debye length κ−1. Because the electrolyte that determines the
conductivity of the bulk electrolyte is the same as the one in
which the colloidal particles are suspended, ω0 is a characteristic
frequency both for the electrolyte solution (as in this case ω0 =
Ke/(ε0εe) = D0κ

2) and for the colloidal particles. We have
seen in Table 1 that in general ω0 ≥106 rad/s. Note that for
nanoparticles the two characteristic frequencies might overlap:
ωa ≃ ω0 ≃ 107 rad/s for 10 nm particles in an 1 mM salt.
An important relaxation feature present in the spectrum is due
to EP. EP is linked to ωb as defined in the previous section, see
Equation (38). We have already noted that in many experimental
conditions ωb . (ωa, ω0). We will show that in the cases where
this inequality applies, it is possible to make use of this fact by
performing the fits on the measured data uncorrected for EP.

In the following Sections 5.4.1 and 5.4.2, we show how the
logarithmic derivative method can be applied when the relation
between ε̃s and β̃ is known (section The direct fitting method)
and when it is not known (The general fitting method). This last
section is based on the work of Jimenez et al. (2007).

The “experimental data” needed in these sections to perform
the fits are generated numerically using an equivalent circuit
model, with the elements given in Equation (37). The necessary
parameters are given in the legends of the figures. The
“experimental data” mimic the response

(
ε′c,s, ε

′′
c,s

)
of a colloidal

suspension (including EP). From the ε′c,s thus obtained, one can
derive

ε′′D,c,s =
−π

2

∂ε′c,s
∂ lnω

(65)

5.4.1. The Direct Fitting Method (with a Dipolar

Coefficient Model)
Theories have been developed to express β̃ in terms of the
relevant parameters of the colloidal particles, namely particle
size, zeta potential or surface charge and Stern layer parameters.
These theories have been derived for the case of colloidal
suspensions consisting of spherical, homogeneously charged
particles (DeLacey and White, 1981; Delgado, 2002; Ohshima,
2006; Chassagne and Bedeaux, 2008). Some work has also
been performed on homogeneously charged spheroids, see
Chassagne and Bedeaux (2008) and references within. An
analytical expression for β̃ in the case of spheres can be
found in Supplementary Material 1. Other (numerical) models
can be found in Mangelsdorf and White (1990) and Minor
et al. (1998). We are going to use the analytical expression
given in Supplementary Material 1, but we emphasize that any
other theory can be applied, even numerical ones, even though
the fitting procedure becomes more challenging in this case.
Equation (8) is used to link ε̃s (K̃s) to β̃ . The logarithmic
derivative ε′′D,s can be calculated numerically from ε′s

(
β̃
)
using
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the relation

ε′′D,s =
−π

2

∂ε′s
∂ lnω

(66)

The ε′′D,s thus obtained is a function of β̃ and therefore a function
of the relevant parameters of the colloidal particles, the zeta
potential in particular.

In Figure 11 we show two examples of the fit of
ε′′D,c,s (black curve) using the ε′′D,s defined just above
(red curve). The blue curve indicates the ε′′D,s calculated
using the equivalent circuit defined in Section 4.2 with
CEP = 0 which is equivalent to take an infinite electrode
spacing.

For the two cases, which span a large particle size distribution
at moderate ionic strength (1 mM), we are in the situation
where ωa & ωb (left figure) and ωa ≃ ωb (right figure).
For all curves, the fits were always performed using the data in

the frequency range above ωb. Different situations were tested:
we checked that is is possible to fit the data using (a) the
zeta potential ζ as single adjustable parameter, (b) ζ and the
particle size a as adjustable parameters. Both gave the same
excellent fit as in Figure 11. The fits were also possible adding
small random errors to the data (not shown). We checked
that it is possible to use 3 adjustable parameters: ζ, a and a
Stern layer parameter St, defined in Supplementary Material 1,
if a Stern layer conductance is introduced in β̃ and similarly
introduced in the numerically generated “experimental data” (not
shown).

Interestingly, when ωa ≃ ωb (see Figure 11), the direct
fitting method gives very good results despite the fact that only
a part of the first relaxation peak is fitted. This is because
ε′s
(
β̃
)
contains all possible relaxations processes of the colloid,

and is therefore versatile enough to give a proper fit with few
parameters.
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FIGURE 11 | Top: Logarithmic derivative ε′′
D
for a suspension consisting colloidal spheres (φ = 1%, eζ/kT = 4) in a 1 mM electrolyte solution of monovalent salt for

which D1 = 2× 10−9 m2/s and D2 = 3× 10−9 m2/s. The electrode spacing is 10 mm. (left): 25 nm particles and (right): 250 nm particles. The fit with the dipolar

coefficient was done between [ωb = 2.5×106-1010] rad/s using (ζ, a) as adjustable parameters. Bottom: Recalculated β̃ (blue) and original beta (red).
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FIGURE 12 | Top: Logarithmic derivative ε′′
D
for a suspension consisting of colloidal spheres(φ = 1%, eζ/kT = 4) in a 1 mM electrolyte solution of monovalent salt for

which D1 = 2× 10−9 m2/s and D2 = 3× 10−9 m2/s. (left): 25 nm particles and (right): 250 nm particles. The electrode spacing is 10 mm, and the 2 HN fit was done

between [2.5.106–1010] rad/s. Bottom: recalculated β̃ [blue line, from Equation (74) and original beta (red)]: despite the inaccuracy in the 2 HN fit, the error in β̃ is

small, see explanation in text.

5.4.2. The General Fitting Method
This procedure, introduced by Jimenez et al. (2002, 2007) is
based on two steps. The first one is to remove the electrode
polarization (EP) contribution from the logarithmic derivative
ε′′D,c,s data in order to assess ε′′D,s, and the second step is to fit ε′′D,s
using a using a Havriliak-Negami (HN) relaxation function. This
method is quite general, and can in theory be applied to a variety
of complex fluids, such as polymeric or colloidal suspensions.
The use of the Havriliak-Negami (HN) function originates from
work done to describe empirically the dielectric relaxation of
polymers (Havriliak and Negami, 1967). Jimenez et al. showed
it is applicable to colloidal suspensions, and we refer to their
work for more details and examples of application of the method
(Jimenez et al., 2002, 2005, 2007).

In order to remove the EP contribution to ε′′D,c,s Jimenez et al.

introduce the relation:

ε′′D,c,s (ω) = Aω−m + ε′′D,s (ω) (67)

where m should be close to 2 [see Equation (64)], as Aω−m

represents the EP contribution (A is a parameter to be fitted to

the data). The contribution Aω−m is fitted to the data in the

low-frequency part (assuming that Aω−m ≫ ε′′D,s in this part).

The permittivity ε′′D,s, (named ε′′D,cor by Jimenez et al.) represents

the ε′′D of the suspension in the absence of EP. It is obtained by

subtraction over the whole frequency range (ε′′D,s = ε′′D,c,s −
Aω−m).
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It is clear that the logarithmic derivative method gives ε′s = εs
without its ω-independent part. The same holds for ε′HN,s i.e., the
ε′s found from the logarithmic derivative of corresponding HN
function. The expression for the HN function reads:

ε̃HN (ω) = ε′HN (ω)−iε′′HN (ω) =
εHN (0) − εHN (∞)
[
1+ (iωτ)a

]b + εHN (∞)

(68)
(Note that for b = 1 the function is called the Cole-Cole function
while for a = b = 1 the function is called the Debye function).
We can therefore define:

ε′′D,HN,s (ω) =
−π

2

∂

∂ lnω

[
Re

(
εHN,s (0) − εHN,s (∞)

[
1+ (iωτ)a

]b

)]

(69)
The parameters 1εHN,s = εHN,s (0) − εHN,s (∞) , τ, a and
b are to be fitted to the data (εHN,s (∞) , being a constant,
is not included in the fit). The missing constant is found
from εHN,s (∞) = ε′s (∞) because ε′s reaches a constant at
high frequencies. Indeed, we then have from Equation (2):
ε′s (ω → ∞) = εe

(
1+ 3φRe

(
β̃ (ω → ∞)

))
= ε′∞. From the

parameters found from the fit of ε′′D,s by ε′′D,HN,s one then finds[
ε′HN,s − εHN (∞)

]
=
[
ε′s − ε′ (∞)

]
using Equation (68). From

Equation (68), we also find that ε′′HN,s (ω → 0) = 0. This implies
that we can make the equivalence :

ε′′HN,s (ω) = (Ks (ω) − Kr) / (ωε0) (70)

where Kr = Ks (ω → 0). The electrolyte with a conductivity
having this property has been termed reference electrolyte in the
Section 5.1.

We define the increment 1K̃HN,s which can be found directly
from the parameters of the fit using Equation (68):

1K̃HN,s (ω) =
[
ε′HN,s (ω) − εHN,s (∞) − iε′′HN,s (ω)

]
(iωε0) /φ

= [(Ks (ω) − Kr) + iωε0 (εs (ω) − εs (∞))] /φ

=
[
K̃s (ω) − K̃r (ω) − iωεeε03φβinf

]
/φ (71)

where K̃r (ω) = Kr + iωε0εe and where we have used, for a
colloidal sphere with relative permittivity ε2 [see Supplementary
Material 1 for a general expression of β̃ (ω)]

εs (∞) = εe (1+ 3φβinf)

βinf =
ε2 − εe

ε2 + 2εe
(72)

From Equation (2) we deduce that (we recall that K̃e = K̃1):

β̃ (ω) =
K̃s (ω) − K̃1 (ω)

3φK̃1 (ω)
(73)

Combining Equations (71) and (73), it is possible to find the
required dipole coefficient β̃ by using the relation:

β̃ (ω) =
φ1K̃HN (ω) + K̃r (ω) + iωεeε03φβinf − K̃1 (ω)

3φK̃1 (ω)
(74)

Note that K̃r and K̃1 can be obtained by measuring the
conductivities of the corresponding electrolytes. In order to
estimate βinf only the value of ε2 is required (the value of the
relative permittivity of water, i.e., εe, is known). It is also possible
to determine βinf experimentally from

βinf = Re
(
β̃ (ω → ∞)

)
=

ε′s (ω → ∞) − εe

3φεe
(75)

As discussed at the beginning of this section, there are two
characteristic frequencies associated with the colloidal particle’s
relaxations. It is therefore possible to fit both relaxation
frequencies when they are experimentally accessible, by using a
sum of two HN functions such that:

ε̃HN =
1εHN,1

[
1+ (iωτ1)

a1
]b1 +

1εHN,2
[
1+ (iωτ2)

a2
]b2 + εHN (∞) (76)

which implies the use of 8 fitting parameters:
1εHN,1, τ1, a1, b1,1εHN,2, τ2, a2, b2. Equations (71)–(74)
can subsequently be applied to find β̃ . We have checked that this
procedure gives good results, see Figure 12). In this example,
we have fitted the uncorrected measured data, in the frequency
range above ωb. For the smallest particle used (25 nm) ωa & ωb

the fit is very good. For larger colloidal particles (250 nm
particles), we find that despite the fact that ωa ≃ ωb and that the
double HN is less versatile than the dipolar coefficient used in the
direct fitting method discussed in the section above, the result
of the fit is surprisingly good, especially at low frequencies. This
is due to the fact that the value of β̃ at low frequencies depends
nearly exclusively on the value of Kr = Ks (ω → 0) which is not
affected by EP, and does not depend on 1K̃HN :

Re (β (ω → 0)) =
Ks (ω → 0) − Ke

3Keφ

Im (β (ω → 0)) = 0 (77)

The correct fit of the second peak (associated with the double
layer relaxation and ω0) is, on the other hand, very important to
get the correct relaxation of β̃ in the high frequency range.

6. CONCLUSIONS

In this article, we have discussed the dielectric spectroscopy
response of electrolytes and colloidal suspensions. We
concentrated ourselves on the elimination of the phenomenon
called “electrode polarization” (EP) that can overshadow the
measured signal. This phenomenon is caused by the build-
up of charges close to the electrodes in the suspension (or
electrolyte solution). We have not discussed the other source
of unwanted effects, namely stray impedances that originate
from the non-ideality of the experimental set-up, and that also
affect the measured signal. From the data, important parameters
for the characterization of colloidal particles can be assessed.
These parameters are found from the evaluation of the dipolar
coefficient β̃ which is obtained from the cleaned and/or fitted
data.
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It was found that several characteristic frequencies could be
identified and linked to EP effects. An important frequency is
ωb = √

ω0ωP with ωP = 2κD±/d and ω0 = κ2D± where
κ is the inverse of the Debye length, D± the characteristic
ionic diffusion coefficient and d the distance between electrodes
(planar electrodes) or the smallest of the two radii in the
case of cylindrical electrodes. Above ωb the measured data
are not affected anymore by EP. This enables, for many cases
encountered in practice, to assess the properties of the colloidal
particles by analyzing directly the data uncorrected for EP.
This is shown in the last section. In that section, two fitting
procedures are described: first, we consider “the direct fitting
method” that makes use of existing dipolar coefficient models
for colloidal suspensions, and then we explain the “general
fitting method” which is based on the logarithmic derivative
method and makes use of Havriliak-Negami (HN) relaxation
functions. This last method is especially suited when the fluid
under investigation is complex, i.e., when no good model for
its behavior as function of the frequency exists. The correction
of the experimental data for EP with the logarithmic derivative
thus is quite successful. It has the advantage that it can be
achieved simply by invoking ∂ε′/∂ lnω in the data analysis. No
special adaptations have to be made to the measurement or the
equipment.

Also some experimental techniques enable us to compensate
for EP. In this article, we tested them from a theoretical
perspective. As outlined in the corresponding sections, even
though a model could be ideal to compensate for EP in a
given range of frequency, there are often technical limitations
that could limit their validity. However, from the theoretical
modeling, we have found that:

1 - The “subtraction method” can compensate for electrode
polarization above the critical frequency ωP provided that the
dielectric permittivity ε∗ in the small slab of liquid adjacent to
the electrodes is given by εe. If this permittivity differs from εe,

the subtraction method is not suited for eliminating EP. The fact
that ε∗ may or may not be affected by the presence of colloidal
particles in the slab of liquid adjacent to the electrodes is still an
open question.

2 - The “variable electrode separation method” is well-suited
for compensating for electrode polarization over the whole
frequency range.

3 - The “4-electrode cell method” gives directly access to the
wanted signal, devoid of EP over the whole frequency range.
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