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Lignin, a complex aromatic polymer in terrestrial plants, contributes significantly

to biomass recalcitrance to microbial and/or enzymatic deconstruction. To reduce

biomass recalcitrance, substantial endeavors have been exerted on pretreatment

and lignin engineering in the past few decades. Lignin removal and/or alteration of

lignin structure have been shown to result in reduced biomass recalcitrance with

improved cell wall digestibility. While high lignin content is usually a barrier to a

cost-efficient application of bioresources to biofuels, the direct correlation of lignin

structure and its concomitant properties with biomass remains unclear due to the

complexity of cell wall and lignin structure. Advancement in application of biorefinery to

production of biofuels, chemicals, and bio-derived materials necessitates a fundamental

understanding of the relationship of lignin structure and biomass recalcitrance. In this

mini-review, we focus on recent investigations on the influence of lignin chemical

properties on bioprocessability—pretreatment and enzymatic hydrolysis of biomass.

Specifically, lignin-enzyme interactions and the effects of lignin compositional units,

hydroxycinnamates, and lignin functional groups on biomass recalcitrance have been

highlighted, which will be useful not only in addressing biomass recalcitrance but also in

deploying renewable lignocelluloses efficiently.

Keywords: biomass recalcitrance, lignin structure, cell wall, pretreatment, enzymatic hydrolysis

INTRODUCTION

The conversion of renewable lignocellulosic biomass to fuels and valuable co-products, usually
referred as biorefining, has been advanced recently (Ragauskas et al., 2006). However, transition
from fossil-based to biomass-based products using current feedstocks and technologies has been
challenged by the inherent resistance of plant cell walls to microbial and enzymatic deconstruction,
namely, recalcitrance (Himmel et al., 2007). While other factors could not be neglected, the
presence of lignin (ca. 15–35% by weight) is one of the most significant recalcitrance contributors,
which escalates the processing costs (i.e., necessitated pretreatment and enlarged enzyme amount;
Mosier et al., 2005; Pu et al., 2011, 2013). Lignin is an amorphous and complex aromatic polymer
providing terrestrial plants mechanical support, stress response, pathogen resistance, and water
transport (Boerjan et al., 2003). By bonding or embedding with other biopolymers (cellulose
and hemicellulose), lignin strengthens the integrity and rigidity of the plant cell wall yielding a
complex macro-molecular assembly (Figure 1). This lignin-polysaccharides matrix renders cell
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walls recalcitrance for biorefining. Depending on biological
species, lignin in plants derives primarily from three
phenylpropanoid monolignols—p-coumaryl, coniferyl, and
sinapyl alcohols (Li M. et al., 2016; Yoo et al., 2016b), which
give rise to p-hydroxyphenyl (H), guaicyl (G), and syringyl (S)
units, respectively (Figure 1). The inter-linkages between these
subunits are β-O-4′, β-5′, α-O-4′, 4-O-5′, β-β′ in common, and
β-1′, and 5-5′ in minor amount.

In biomass, lignin content, structure, subunits, and linkages
with polysaccharides own their remarkable importance to
cell wall recalcitrance, usually gauged by biomass enzymatic
hydrolyzability (Zeng et al., 2014; McCann and Carpita, 2015).
Lignin limits the enzymatic hydrolysis of biomass through two
primary mechanisms: restricting polysaccharides accessibility
(physical barrier and/or lignin-carbohydrate complexes) and
non-productive binding with enzymes (inhibition).

Current strategies to reduce lignin involved biomass
recalcitrance mainly include (i) pretreatment technologies
(Mood et al., 2013; Pu et al., 2013), (ii) perturbing lignin
biosynthesis (Bonawitz and Chapple, 2010; Simmons et al., 2010),
and (iii) enzyme engineering and modification (Güven et al.,
2010). Whichever strategy is used, fundamental understanding
of the influence of lignin’s physicochemical properties on
biomass recalcitrance is crucial to advance the biologically-based
biorefinery. This mini-review aims at recent findings on the
relationship between lignin structure and biomass recalcitrance.

LIGNIN DURING PRETREATMENT

Lignin restricts enzymatic hydrolysis commonly through
physical barrier and non-productive/non-specific binding to
enzymes. While many pretreatments (e.g., alkaline/organosolv)
substantially remove lignin yielding biomass with enhanced
cellulose accessibility, some thermochemical pretreatments
such as HWP, DAP, SEP, and AFEX, usually with limited
delignification, lead to reduced biomass recalcitrance too
(Mood et al., 2013; Pu et al., 2015). The cell wall matrix
disruption could be facilitated by cleavage of aryl ether linkages
in lignin and LCC linkages, which increases pore volumes
and cellulose accessibility. For example, β-O-4′ linkages are
significantly cleaved in HWP poplar (Samuel et al., 2013) and
DAP switchgrass (Samuel et al., 2010). AFEX reduced lignin-
hemicellulose ester linkages revealed by a substantial loss of
ferulate groups in the residual lignin (Chundawat et al., 2011). In
addition, the translocation and redistribution of lignin coalescing
into lignin droplets of various morphologies have been found
in corn stem and switchgrass during DAP and HWP, which
related to increased cell wall accessibility (Donohoe et al., 2008;
Pingali et al., 2010). It was found that the lignin-hemicellulose
complex underwent phase separation during pretreatment

Abbreviations: AFEX, ammonia fiber expansion; 4CL: 4-coumarate:coenzyme A

ligase; C3′H, p-coumaroyl quinate/shikimate 3′-hydroxylase; C4H, cinnamate 4-

hydroxylase; CAD, cinnamyl alcohol dehydrogenase; CCR, cinnamoyl-coenzyme

A reductase; CCoAOMT, caffeoyl-CoA O-methyltransferase; COMT, caffeic acid

O –methyltransferase; DAP, dilute acid pretreatment; HCT, hydroxycinnamoyl

CoA: shikimate hydroxycinnamoyl transferase; HWP, hot water pretreatment; SEP,

steam explosion pretreatment.

which drove the lignin aggregation followed by collapse, leading
to increasing cell wall porosity (Langan et al., 2014). Using
mixed poplar and Avicel, the lignin droplets from poplar was
redeposited on the Avicel during HWP, causing 30–40% decrease
of initial hydrolysis compared with Avicel control (Li H. et al.,
2014). Interestingly, lignin-like droplets, pseudo-lignin, which
inhibit enzymatic hydrolysis, can form from carbohydrates
during acidic pretreatments (Sannigrahi et al., 2011; Hu et al.,
2012).

LIGNIN-ENZYME INTERACTIONS

Lignin has remarkable influence on enzymatic performance
owing to lignin-enzyme interactions. Stemming primarily from
hydrophobic, ionic, and hydrogen bond interactions with
protein, lignin-enzyme interactions are highly influenced by the
physicochemical properties of lignin (Nakagame et al., 2011a).
Lignin is generally found inhibitory to cellulose hydrolyzability
due to non-productive/non-specific binding with enzymes. For
example, when added into the enzymatic hydrolysis of Avicel
or pretreated biomass, several commercial lignins and isolated
lignins from variable biomass origins apparently decreased
saccharification (Nakagame et al., 2010, 2011c; Kim, 2012;
Ko et al., 2015). However, cellulolytic lignin residues from
corn stover and wheat straw had minimal impact on the
hydrolyzability of pretreated biomass (Barsberg et al., 2013).
Surprisingly, recent studies reported certain technical lignins
with promoting effects, e.g., lignosulfonate (Wang et al., 2013;
Zhou et al., 2013), organosolv lignin (Lai et al., 2014), Kraft lignin
(Wang et al., 2015), and alkali lignin (Li Y. et al., 2016). These
authors attributed the positive effect of lignin to the alleviation of
non-productive binding via lignosulfonate-enzyme complex or
surfactant protection. Several studies also suggested that lignins
isolated from herbaceous plants had relatively less inhibition
than woody biomass, likely because (i) branched lignin (G-
lignin) is more inhibitory than linear lignin (S-lignin) and (ii)
the formation of metal ion (e.g., Ca2+)-lignin complex could
reduce lignin-enzyme interactions (Liu et al., 2010; Barsberg
et al., 2013). In addition, the inhibitory effects of lignin depend
on pretreatment severity. Lignin derived from more severely
pretreated biomass exhibited more pronounced inhibition to
the hydrolysis of Avicel because increased pretreatment severity
resulted in more condensed structure (Nakagame et al., 2011c;
Ko et al., 2015). Lignin repolymerization with increased C-C
condensed structure presumably via the formation of carbonium
ions can occur during HWP, DAP, and SEP (Pu et al.,
2015). Lignin condensation associated with hydrophobicity
influences lignin-enzyme interactions significantly. A few
studies have shown that lignin with increased condensation
from pretreated biomass tended to adsorb more enzymes,
resulting in more inhibitory to cellulose hydrolysis (Yu et al.,
2014; Ko et al., 2015; Huang et al., 2016; Yang and Pan,
2016).

Isolated lignin seems be more inhibitory to the hydrolysis of
pure cellulose than lignocellulosic materials. Isolated Douglas-
fir lignin decreased the hydrolysis yields of Avicel and
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FIGURE 1 | Simplified structure of plant cell walls (A) (Phitsuwan et al., 2013), lignin isolated from poplar (B), and schematic structure of poplar lignin (C)

(Vanholme et al., 2010).

pretreated softwood by 46 and 9%, respectively (Kumar et al.,
2012). Kraft lignin and lignosulfonate inhibited pure cellulose
saccharification but enhanced the hydrolysis of pretreated
biomass (Liu et al., 2010; Kim, 2012; Zhou et al., 2013;
Wang et al., 2015). In comparison to pure cellulose, the
complexity of lignocellulosic substrates probably plays a role
in the lignin-enzyme interactions. As noted by Zhou et al.,
lignosulfonate interacts with both the bound and soluble lignin
of the substrate (Zhou et al., 2013). Hydrolysis of the same
biomass with different degree of sulfonation demonstrated
different enhanced digestibility when sulfonated lignin was
added (Wang et al., 2015). Another important finding was
that non-productive/non-specific binding predominated for
less accessible biomass; with increased cellulose accessibility
of lignocellulose, the inhibitory effects of lignin dwarfed
(Kumar et al., 2012). Therefore, the lignin-enzyme interactions,
conventionally termed as “detrimental effect,” varies significantly
on lignin chemistry, type of substrate as well as pretreatment
techniques employed.

LIGNIN MONOLIGNOL COMPOSITIONAL
UNITS

The monolignol compositional units (relative abundance of H,
S, and G) of lignin have been documented to affect biomass
digestibility. Without pretreatment, several studies found that
S/G ratio was negatively related to the enzymatic hydrolysis of
untreated biomass, e.g., engineered poplar, eucalyptus mutants,
and maize cell wall (Zhang et al., 2011; Papa et al., 2012; Min
et al., 2013). The authors deduced the negative effect of S/G likely
to a more efficient coverage of S-lignin (extended shape) than G-
lignin (branching) on cellulose fibrils according to a proposed
molecular model (Besombes and Mazeau, 2005a,b). However, a
few other studies reported that the hydrolyzability of untreated
biomass was not affected by S/G ratio, such as Populus natural
variants with different S/G ratio (1.0–3.0) (Studer et al., 2011),
high G (95%) and high S (91%) contained Arabidopsis (Li et al.,
2010), and transgenic poplar lines with 87 and 93% S (Mansfield
et al., 2012) showing basically similar hydrolysis efficiency vs.
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their corresponding controls. It seems that the small hydrolysis
improvement in lower S/G plants without pretreatment might
be influenced by factors arising from other cell wall components,
variated lignin content, or type of enzyme.

By contrast, S/G ratio in lignin has shown remarkable
influence in pretreatment and the hydrolyzability of pretreated
biomass. Enhanced saccharification upon S/G ratio has been
reported on Populus (Studer et al., 2011) and Arabidopsis (Li
et al., 2010) by HWP, and poplar by SEP (Mansfield et al.,
2012). S-unit was preferentially removed relative to G-unit in
poplar during flowthrough pretreatment (Trajano et al., 2013).
In addition, S/G ratio is positively related with delignification
of hardwood by green liquor and Kraft pulping (Santos et al.,
2011; Min et al., 2013). According to these authors, high S/G ratio
benefits pretreatment mainly due to (i) lignin depolymerization:
S-lignin features higher level of labile β-O-4′ linkages which are
readily cleavable during pretreatment; and (ii) delignification: S-
lignin with relatively higher occurrence of β-β′ bonds leads to
lower molecular weight which could facilitate lignin migration
and removal. However, inconsistent results have also been
reported on the correlation of S/G ratio with saccharification
efficiency, e.g., high S/G ratio was negatively associated with
the saccharification of both NaOH and H2SO4 pretreated
Miscanthus (Xu et al., 2012; Li M. et al., 2014) and green liquor
pretreated wheat straw (Xu et al., 2012; Li M. et al., 2014; Jiang
et al., 2016). An unclear correlation has also been reported, such
as green liquor and Kraft pretreated Eucalyptus (Papa et al., 2012;
Santos et al., 2012), NaOH and H2SO4 pretreated wheat and
rice samples (Wu et al., 2013), and mild acid treated maize cell
wall (Zhang et al., 2011). When the S/G ratio of the remaining
lignin in pretreated biomass is studied, contradictory results
also exist: a lesser proportion of non-condensed lignin in the
pretreated biomass was reported to be beneficial to biomass
hydrolysis as non-condensed lignin (high β-O-4′) tended to be
linear shape, likely a higher coverage over cellulose fibers (Zhang
et al., 2011; Yeh et al., 2014); by contrast, others found high
S/G ratio of lignin in the pretreated biomass was positively
correlated with enzymatic digestibility as branched G-lignin gave
rise to more physical barrier (Santos et al., 2012; Yu et al., 2014).
These inconsistent results suggest that S/G ratio contributes
only partially to biomass recalcitrance, and the complexities of
biomass species and pretreatment with concomitant other cell
wall structure changes likely shelter the effects arising from lignin
composition.

Due to the low occurrence of H-lignin reported in natural
plants, the influence of H-lignin on biomass recalcitrance is
relatively less investigated. Interestingly, a few recent studies
revealed that high H-lignin contained plants exhibited reduced
biomass recalcitrance. For instance, transgenic Alfalfa (50–76%
H) had increased alkaline extractability of lignin-like content vs.
control (5% H) (Ziebell et al., 2010); the H/G ratio measured
in the KOH-extractable lignin of wheat and rice had a strong
positive correlation with glucose yield of pretreated biomass
(Wu et al., 2013); H-rich (89%) Arabidopsis mutant exhibited
significantly higher sugar yield than G-rich (96%) and S-rich
(92%) mutants without pretreatment (Shi et al., 2016); hexose
yield increased upon H level in alkali pretreated Miscanthus (Li

M. et al., 2014). The speculated reasons for the positive effect
of H-lignin are (i) reduced lignin molecular weight, (ii) reduced
cellulose crystallinity via H unit-glucan bonding; and (iii) higher
linkage activities between H monomer than G and S.

HYDROXYCINNAMATES IN LIGNIN

Biomass recalcitrance is also related to the presence of
hydroxycinnamates in lignin, mainly ferulates (FA) and p-
coumarates (pCA) which are two important hydroxycinnamates
in grass (Buranov and Mazza, 2008; Ralph, 2010). FA is reported
to meditate the cross-linking of polysaccharides-polysaccharides
and polysaccharides-lignin in cell wall (de O Buanafina, 2009;
Azarpira et al., 2011). The presence of this cross-linking draws
lignin to polysaccharides proximately resulting in an increased
recalcitrance. Reduced FA-mediated cross-linking of lignin-
polysaccharides in maize (Jung and Phillips, 2010) and silage
(Jung et al., 2011) had improved digestibility. Due to the
strong negative correlation of etherified phenols, FA content
in forage crop silages was good predictor for in vivo cell
wall digestibility (Taboada et al., 2010). To enhance biomass
digestibility, one of the effects of pretreatment is to cleave FA
cross-linkages and promote lignin degradation and coalescence
(Li et al., 2012; Qin et al., 2015; Martínez et al., 2016; Yoo
et al., 2016a). Rather than cross-linking inter-components in
cell wall, pCA are usually esters pendantly linked on lignin
(γ-position of S unit), but they are also found to acylate to
polysaccharides (Petrik et al., 2014). The accumulation of pCA
indicating lignin deposition level in plants is likely one reason
for recalcitrance (Taboada et al., 2010). The pCA content of
alkaline hydrogen peroxide pretreated grasses, proportional to
lignin content, was negatively related with enzymatic digestibility
(Li et al., 2012). A study of genetically modified maize lines
with similar lignin level (12–15%) demonstrated that the in
vivo cell wall digestibility is also negatively correlated with the
esterified pCA and lignin content (Zhang et al., 2011). Due to
the acylation with hemicellulose (arabinoxylan), removal of pCA
together with xylan in sugar cane bagasse increased cellulose
accessibility thereof saccharification efficiency (Martínez et al.,
2016).

On the other hand, hydroxycinnamates bearing readily
cleavable ester linkages was incorporated into lignification
to reduce biomass recalcitrance (Ralph, 2010). Incorporation
of hydroxycinnamates conjugate—rosmarinic acid, with
monolignols into maize cell walls via artificial lignification had
remarkably enhanced alkali extractability and digestibility of cell
walls (Tobimatsu et al., 2012). More recently, by introducing
monolignol ferulate into lignin monomer pool, the engineered
poplar demonstrated an improved cell wall digestibility after
alkaline pretreatment (Wilkerson et al., 2014).

LIGNIN HYDROXYL AND CARBOXYLIC
GROUPS

As a major driving force in lignin-enzyme interactions,
the hydrophobicity of lignin changes upon the content of
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FIGURE 2 | Schematic relationship of lignin properties to biomass cell wall recalcitrance.

hydroxyl and carboxylic groups, which has important influence
on enzymatic hydrolysis. Generally, lignin hydrophobicity
increases with phenolic hydroxyl (Ar-OH) and decreases with
aliphatic OH content. High Ar-OH and low aliphatic OH
amounts in lignin were related with higher cellulases adsorption
affinity and binding strength (Yu et al., 2014; Huang et al.,
2016). Lignin with increased Ar-OH had higher enzyme
affinity thereof more inhibition to the hydrolysis of Avicel
(Rahikainen et al., 2013; Guo et al., 2014). Yang and Pan
recently found that Ar-OH (3.5–4.4 mmol/g lignin) blocked by
hydroxypropylation had negligible effect on enzyme adsorption,
however, reduced lignin inhibition significantly, which suggested
Ar-OH was more related with other interaction for inhibitory
effect (Yang and Pan, 2016). Carboxylic groups (COOH)
in lignin alter the physicochemical effects of lignin by (i)
increasing hydrophilicity; (ii) creating electrostatic charge; and
(iii) enhancing hydrogen bond, which could impact lignin-
enzyme interactions differently (Nakagame et al., 2011a).
Increased COOH in lignin enhanced the hydrolysis efficiency
of Avicel as COOH may alleviate the non-productive binding
by increasing hydrophilicity and electrostatic repulsion force
of lignin to enzymes (Nakagame et al., 2011b; Moxley et al.,
2012). Increasing the hydrophilicity of lignin via carboxylation
and sulfonation reduced inhibitory effect substantially (Yang and
Pan, 2016). However, the correlation of Ar-OH and COOH
with enzymatic hydrolysis becomes complicated when different
botanical origins and pretreatment methods are used due to the
complexity of substrates. For example, high Ar-OH was related
with increased sugar yield of Kraft pretreated hardwood and
acid pretreated corn (Moxley et al., 2012; Santos et al., 2012),
while inconsistent correlations between COOH and enzyme
adsorption have been reported on lignins from different botanical
origins (Rahikainen et al., 2013; Guo et al., 2014; Yu et al.,
2014).

OTHER LIGNIN ASSOCIATED FACTORS

Other factors of lignin such as molecular weight and
polydispersity were found associated with biomass recalcitrance
but the correlation is inconclusive (Figure 2). The molecular
weight of alkali lignin and lignosulfonate had an opposite effect
on enzymatic hydrolysis (Zhou et al., 2013; Li Y. et al., 2016) and

no clear impact of the molecular weights on enzyme adsorption
was found (Pareek et al., 2013; Guo et al., 2014). Although
earlier study indicated that lignin with lower polydispersity
thereby higher plasticity, interacts favorably with proteins
(Berlin et al., 2006), a few recent reports had difficulty to
correlate lignin polydispersity with saccharification/enzyme
adsorption (Pareek et al., 2013; Guo et al., 2014; Yang and Pan,
2016).

An alternative approach to enhance saccharification is to
manipulate lignin biosynthesis pathway in plant for reduced
recalcitrance (Phitsuwan et al., 2013). A few strategies used for
lignin biosynthesis perturbation are (i) decreasing lignin content;
(ii) relocating lignin deposition; (iii) altering lignin subunits;
and (iv) modification of lignin backbone and linkages with
carbohydrates (Bonawitz and Chapple, 2010; Simmons et al.,
2010; Cesarino et al., 2012). Although the engineered plants’
agronomical performances are challenged, enhanced cell wall
deconstruction have been found in down-regulation of CCR
and CCoAOMT in maize (Park et al., 2012; Li et al., 2013),
CAD, 4CL and COMT in switchgrass (Fu et al., 2011a,b; Xu
et al., 2011), HCT in Arabidopsis (Gallego-Giraldo et al., 2011),
C3′H and C4H in Eucalyptus (Sykes et al., 2015). In addition,
inclusion of new lignin precursors has also been used to facilitate
lignin depolymerization thereby reduce biomass recalcitrance.
With incorporation of several flavonoids and gallate derivatives
with easily cleavable ester bonds, the artificially lignified cell
wall had enhanced delignification, ruminal and/or enzymatic
digestibility and fermentability (Grabber et al., 2010; Elumalai
et al., 2012).

SUMMARY AND PERSPECTIVES

Although the study of lignin’s influence on cell wall digestibility
has been advanced recently, the correlation of lignin structure
and biomass recalcitrance remain complicated due to lignin
structural variety and cell wall complexity. According to these
studies, the physicochemical properties of lignin are strongly
related with recalcitrance (Figure 2). It should be noted that
this figure only represents the major findings in certain case
and it cannot be solely used as a metric to evaluate biomass
recalcitrance as these factors and other unknown factors usually
contribute together to cell wall recalcitrance. The impact of
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lignin on biomass recalcitrance could be very different depending
upon plant species and pretreatment techniques. To better
understand the cause-effect relation between one property of
lignin and biomass recalcitrance, it is desirable to minimize
the side effects from other cell wall properties and lignin
properties.
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