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Amino acids and peptides have the potential to perform as corrosion inhibitors. The

chemical reactivity descriptors that arise from Conceptual DFT for the twenty natural

amino acids have been calculated by using the latest Minnesota family of density

functionals. In order to verify the validity of the calculation of the descriptors directly

from the HOMO and LUMO, a comparison has been performed with those obtained

through1SCF results. Moreover, the active sites for nucleophilic and electrophilic attacks

have been identified through Fukui function indices, the dual descriptor 1f(r) and the

electrophilic and nucleophilic Parr functions. The results could be of interest as a starting

point for the study of large peptides where the calculation of the radical cation and anion

of each system may be computationally harder and costly.

Keywords: computational chemistry, conceptual DFT, Minnesota density functionals, amino acids, corrosion

inhibition

1. INTRODUCTION

Conceptual Density Functional Theory (DFT) or Chemical Reactivity Theory (as it is also known) is
a powerful tool for the prediction, analysis and interpretation of the outcome of chemical reactions
(Parr and Yang, 1989; Geerlings et al., 2003; Toro-Labbé, 2007; Chattaraj, 2009).

An interesting chemical reaction amenable of being studied through Conceptual DFT is the
electron transfer between an electrodonating organic molecule and a metallic surface thus avoiding
the corrosion (or oxidation) process. This constitutes the foundation of the theoretical studies of
the molecular properties of corrosion inhibitors and there is a vast amount of scientific literature
dedicated to it (Raja et al., 2016 and references herein).

Recently, a number of studies have been published about the possibility of use of natural amino
acids as corrosion inhibitors (Fu et al., 2010; Dehdab et al., 2016; Kaya et al., 2016). Indeed, this idea
could be extended to small peptides (Muruve et al., 2016). However, the problem of corrosion is
pH-dependent. Therefore, the molecular structure of the amino acids being considered as potential
corrosion inhibitors will be different according to the pH of the environment.

Therefore, we believe that it could be of interest to apply the concepts of Density Functional
Theory to the study of natural amino acids bearing an ionizable side-chain (Arg, Asp, Glu, His,
and Lys) in order to find if it is possible to discern between their potential as possible corrosion
inhibitors.
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Following the pioneering work of Parr and Yang (1989),
an useful number of concepts have been derived from the
analysis of the density of any molecular system through DFT.
These concepts that allows a researcher to make qualitative
predictions about the chemical reactivity of a given system, can
also be quantified and are collectively known as Conceptual DFT
Descriptors.

In order to obtain quantitative values of the Conceptual DFT
Descriptors, it is necessary to resort to the Kohn-Sham theory
trough calculations of the molecular density, the energy of the
system, and the orbital energies, in particular, those related to
the frontier orbitals, that is, HOMO and LUMO (Young, 2001;
Lewars, 2003; Cramer, 2004; Jensen, 2007).

Although the foundations of DFT have established that an
universal density functional must exist, and that all of the
properties of the system can be obtained through calculations
with this functional, in practice one needs to resort to some of
the approximate density functionals that have been developed
during the last 30 years. Due to the fact that these are approximate
functionals (that is, not an universal functional), many of them
are good for predicting some properties and others are good for
another properties. Sometimes, you can find density functionals
that are excellent for describing the properties of a given
molecular system with a particular functional group, but it is
necessary to resort to other density functionals for a different
functional group that you want to include in the molecular
system under study.

When one is dealing with the study of the chemical reactivity,
that is, a process that involve the transference of electrons,
it is usual to perform calculations not only of the ground
state, but also for open systems like the radical cation and
radical anion. These systems are often difficult to converge
giving trustworthy results, specially if diffuse functions must be
included in the basis set (Young, 2001; Lewars, 2003; Cramer,
2004; Jensen, 2007). For this reason, it is convenient to have
a method that can give all information that one needs directly
from the results of the calculation of the ground state of the
molecular system under study. In particular, one may want to
obtain the ionization potential (I) and electron affinity (A) of the
system avoiding the calculation of the radicals anion and cation.
Indeed, the link for this is given by the so-called Koopmans’
theorem (Young, 2001; Lewars, 2003; Cramer, 2004; Jensen,
2007).

However, the Koopmans’ theorem is not valid within DFT.
Notwithstanding, from an empirical and practical point of view,
it meaningful to follow the procedure of assigning the KS HOMO
as equal to and opposite of the vertical ionization potential, ǫH =

−I and the KS LUMO as equal to and opposite of the vertical
electron affinity, ǫL =−A. We have coined the acronym KID for
this empirical procedure (for “Koopmans in DFT”). For vertical
ionization potential and vertical electron affinity we mean the
differences between the energies of the radical cation and the
neutral molecule and between the neutral molecule and anion
radical respectively, all of them calculated at the geometry of the
neutral. This is a necessary condition because the Conceptual
DFT descriptors are defined and calculated at constant external
potential v(r).

This means that the goodness of a given density functional
for the purpose of predicting the Conceptual DFT descriptors
directly from the properties of the neutral molecule can be
estimated by checking how well it follows the KID procedure.
Thus, it will be interesting to consider several recent density
functionals that have shown great accuracy across a broad
spectrum of databases in chemistry and physics (Peverati and
Truhlar, 2014) to evaluate their performance in the fulfilling of
this practical technique.

The objective of this work is twofold: (i) to conduct
a comparative study of the performance of some density
functionals from the Minnesota family for the description of
the chemical reactivity of some natural amino acids bearing a
ionizable side-chain (Arg, Asp, Glu, His, and Lys) ; and (ii)
to analyze the potential of the studied amino acids to act as
corrosion inhibitors on the basis of the calculated Conceptual
DFT Descriptors.

As these amino acids present three ionization sites, there will
be four structures for each molecule on the whole range of pH.
We have labeled them with the indices 1–4, according to an
increasing pH, and their structures are shown in Figure 1.

2. THEORETICAL BACKGROUND

As this work is part of an ongoing project, the theoretical
background is similar to that presented in previous research
(Glossman-Mitnik, 2013a,b, 2014a,b; Martínez-Araya et al.,
2013a,b) and will be shown here for the sake of completeness.
Within the conceptual framework of DFT (Parr and Yang, 1984;
Geerlings et al., 2003), the chemical potential µ is defined as:

µ =

(

∂E

∂N

)

v(r)

= −χ (1)

where χ is the electronegativity, while the global hardness η is:

η =

(

∂2E

∂N2

)

v(r)

(2)

Using a finite difference approximation and the KID procedure,
the above expressions can be written as:

µ = −
1

2
(I + A) ≈

1

2
(ǫL + ǫH) = χK (3)

η = (I − A) ≈ (ǫL − ǫH) = ηK (4)

where ǫH and ǫL are the energies of the highest occupied and
the lowest unoccupied molecular orbitals, HOMO and LUMO,
respectively. The electrophilicity indexω has been defined as Parr
et al. (1999):

ω =
µ2

2η
=

(I + A)2

4(I − A)
≈

(ǫL + ǫH)
2

4(ǫL − ǫH)
= ωK (5)
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FIGURE 1 | The molecular structures of the natural amino acids bearing a ionizable side-chain (Arg, Asp, Glu, His, and Lys) at different pHs: (A) Arg1,

(B) Arg2, (C) Arg3, (D) Arg4, (E) Asp1, (F) Asp2, (G) Asp3, (H) Asp4, (I) Glu1, (J) Glu2, (K) Glu3, (L) Glu4, (M) His1, (N) His2, (O) His3, (P) His3, (Q) Lys1, (R) Lys2,

(S) Lys3, and (T) Lys4.

The electrodonating (ω−) and electroaccepting (ω+) powers have
been defined as Gázquez et al. (2007):

ω− =
(3I + A)2

16(I − A)
≈

(3ǫH + ǫL)
2

16ηK
= ω−

K (6)

ω+ =
(I + 3A)2

16(I − A)
≈

(ǫH + 3ǫL)
2

16ηK
= ω+

K (7)

It follows that a larger ω+ value corresponds to a better capability
of accepting charge, whereas a smaller value of ω− makes it a
better electron donor. In order to compare ω+ with −ω−, the
following definition of net electrophilicity has been proposed
(Chattaraj et al., 2009):

1ω± = ω+ − (−ω−) = ω+ + ω− ≈ ω+
K − (−ω−

K )

= ω+
K + ω−

K = 1ω±
K (8)

that is, the electroaccepting power relative to the electrodonating
power. The Fukui function is defined in terms of the derivative of
ρ(r) with respect to N (Geerlings et al., 2003):

f (r) =

(

∂ ρ(r)

∂ N

)

υ(r)

(9)

The function f (r) reflects the ability of a molecular site to
accept or donate electrons. High values of f (r) are related to a
high reactivity at point r (Geerlings et al., 2003). By applying a
finite difference approximation to Equation (9), two definitions
of Fukui functions depending on total electronic densities are
obtained:

f+(r) = ρN+1(r)− ρN(r) (10)

f−(r) = ρN(r)− ρN−1(r) (11)

where ρN+1(r), ρN(r) and ρN−1(r) are the electronic densities
at point r for the system with N + 1, N and N − 1 electrons,
respectively. The first one, f+(r), has been associated to reactivity
for a nucleophilic attack so that it measures the intramolecular
reactivity at the site r toward a nucleophilic reagent. The second
one, f−(r), has been associated to reactivity for an electrophilic
attack so that this functionmeasures the intramolecular reactivity
at the site r toward an electrophilic reagent (Parr and Yang, 1984).

Morell et al. (Morell et al., 2005, 2006, 2008a,b; Ayers et al.,
2007; Toro-Labbé, 2007; Cárdenas et al., 2009) have proposed
a local reactivity descriptor (LRD) (that is, that allows to study
the individual sites within the molecule rather than the global
system) which is called the dual descriptor (DD) f (2)(r) ≡ 1f (r).
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The definition of 1f (r) is shown as indicated by Morell et al.
(2005, 2006):

1f (r) =

(

∂ f (r)

∂ N

)

υ(r)

(12)

The dual descriptor can be condensed over the atomic sites:
When 1fk > 0 the process is driven by a nucleophilic
attack on atom k and then that atom acts as an electrophilic
species; conversely, when 1fk < 0 the process is driven by
an electrophilic attack over atom k and therefore atom k acts
as a nucleophilic species. In 2014, Domingo proposed the Parr
functions P(r) (Chamorro et al., 2013; Domingo et al., 2013)
which are given by the following equations:

P−(r) = ρrc
s (r) (for electrophilic attacks) (13)

P+(r) = ρra
s (r) (for nucleophilic attacks) (14)

which are related to the atomic spin density (ASD) at the r atom
of the radical cation or anion of a given molecule, respectively.
The ASD over each atom of the radical cation and radical anion
of the molecule gives the local nucleophilic P−

k
and electrophilic

P+
k
Parr functions of the neutral molecule (Domingo et al., 2016).

3. SETTINGS AND COMPUTATIONAL
METHODS

Following the lines of our previous work (Glossman-
Mitnik, 2013a,b, 2014a,b; Martínez-Araya et al., 2013a,b),
the computational studies were performed with the Gaussian
09 (Frisch et al., 2009) series of programs with density
functional methods as implemented in the computational
package. The force constants and vibrational frequencies
were determined by computing analytical frequencies on the
stationary points obtained after the optimization to check
if there were true minima. The basis set used in this work
was Def2SVP for geometry optimization and frequencies
while Def2TZVP was considered for the calculation of the
electronic properties (Weigend and Ahlrichs, 2005; Weigend,
2006).

For the calculation of the molecular structure and properties
of the studied systems, we have chosen four density functionals
from the latest Minnesota family, which consistently provide
satisfactory results for several structural and thermodynamic
properties (Peverati and Truhlar, 2014): M11L, which is a
dual-range local meta-GGA (Peverati and Truhlar, 2012b),
MN12L, which is a nonseparable local meta-NGA (Peverati
and Truhlar, 2012a), MN12SX, which is a range-separated
hybrid nonseparable meta-NGA (Peverati and Truhlar, 2012c)
and N12SX, which is a range-separated hybrid nonseparable
gradient approximation (Peverati and Truhlar, 2012c). In these
functionals, GGA stands for generalized gradient approximation
(in which the density functional depends on the up and down
spin densities and their reduced gradient) and NGA stands
for nonseparable gradient approximation (in which the density
functional depends on the up/down spin densities and their

reduced gradient, and also adopts a nonseparable form). All
the calculations were performed in the presence of water as a
solvent, by doing IEF-PCM computations according to the SMD
solvation model (Marenich et al., 2009).

4. RESULTS AND DISCUSSION

The molecular structures of the natural amino acids bearing
a ionizable side-chain (Arg, Asp, Glu, His, and Lys) at
different pHs were pre-optimized by starting with the readily
available MOL structures (ChemSpider: www.chemspider.com,
PubChem: https://pubchem.ncbi.nlm.nih.gov/), and finding the
most stable conformers by means of the Avogadro 1.2.0 program
(Hanwell et al., 2012) through a random sampling withmolecular
mechanics techniques and a consideration of all the torsional
angles through the general AMBER force field (Wang et al.,
2004). The structures of the resulting conformers were then
reoptimized with the four density functionals mentioned in the
previous section in conjunction with the Def2SVP basis set and
the SMD solvation model, using water as a solvent.

In order to check for the applicability of the KID procedure, it
is worth to calculate the electronegativity χ , the global hardness
η and the global electrophilicity ω for the studied systems using
both approximations in order to verify the agreement with the
vertical 1SCF derived values. Additionally, we will include in
the calculations, the electrodonating (ω−) and electroaccepting
(ω+) powers as well as the net electrophilicity 1ω± for further
verifications.

The HOMO and LUMO orbital energies (in eV), ionization
potentials I and electron affinities A (in eV), and global
electronegativity χ , total hardness η, global electrophilicity ω,
electrodonating power, (ω−), electroaccepting power (ω+), and
net electrophilicity 1ω± of the twenty molecular structures
calculated with the M11L, MN12L, MN12SX, and N12SX density
functionals and the Def2TZVP basis set using water as solvent
simulated with the SMD parametrization of the IEF-PCM model
are presented in Tables S1A–S4A of the Electronic Supplementary
Materials (ESM). The upper part of the tables shows the results
derived assuming the validity of the KID procedure (hence the
subscript K) and the lower part shows the results derived from
the calculated vertical 1SCF energies.

We have previously designed several descriptors that relate
the results obtained through the HOMO and LUMO calculations
with those obtained by means of the vertical I and A with a
1SCF procedure. However, it must be stressed that it is not our
intention to perform a gap-fitting by minimizing a descriptor
by choosing optimal range-separation parameter γ , but to check
if the density functionals considered in this study, in which,
some of them contain a fixed range-separation parameter γ ,
follow the KID procedure. As a matter fact, there is no range-
separation parameter γ in our designed descriptors. Moreover,
we have considered A as minus the energy of the LUMO of the
neutral system instead of considering A as minus the energy of
the HOMO of the N+1 electron system, as it was in some recent
works (Kronik et al., 2012; Lima et al., 2016).

The first three descriptors are related to the simplest
fulfillment of the KID procedure by relating ǫH with −I, ǫL with
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−A, and the behavior of them in the description of the HOMO-
LUMO gap: JI = |ǫH+Egs(N−1)−Egs(N)|, JA = |ǫL+Egs(N)−

Egs(N + 1)| and JHL =
√

JI
2 + JA

2.
Next, we consider four other descriptors that analyze how

well the studied density functionals are useful for the prediction
of the electronegativity χ , the global hardness η and the global
electrophilicity ω, and for a combination of these Conceptual
DFT descriptors, just considering the energies of the HOMO and
LUMO or the vertical I and A: Jχ = |χ − χK |, Jη = |η − ηK |,

Jω = |ω − ωK | and JD1 =
√

J2χ + J2η + J2ω, where D1 stands for

the first group of Conceptual DFT descriptors.
Finally, we designed other four descriptors to verify the

goodness of the studied density functionals for the prediction
of the electrodonating power ω−, the electroaccepting
power ω+, the net electrophilicity 1ω± , and for a
combination of these Conceptual DFT descriptors, just
considering the energies of the HOMO and LUMO or the
vertical I and A: Jω− = |ω− − ω−

K |, Jω+ = |ω+ − ω+
K |,

J1ω± = |1ω± − 1ω±
K | and JD2 =

√

J2
ω− + J2

ω+ + J2
1ω± ,

where D2 stands for the first group of Conceptual DFT
descriptors.

The results of the calculations of JI , JA, JHL, Jχ , Jη, Jω, JD1, Jω− ,
Jω+ , J1ω± , and JD2 for the natural amino acids bearing a ionizable
side-chain at different pHs considered in this work are displayed
in Tables S1B–S4B of the Electronic Supplementary Materials
(ESM).

On the basis of the results for the descriptors presented on
Tables S1B–S4B of the ESM, we have compiled the average
values for for each density functional on the whole group of
hexoses and pentoses, and the calculated results are displayed on
Table 1.

As can be seen from Table 1, the KID procedure holds with
great accuracy for the N12SX density functionals, which is a
range-separated hybrid NGA density functionals. Indeed, the
values of JI , JA and JHL are not exactly zero. It is interesting to see

that the same density functional also fulfill the KID procedure for
the other descriptors, namely Jχ , Jη, Jω, and JD1. These results are
very important, because they show that it is not enough to rely
only in JI , JA, and JHL.

In spite of these results, a closer look at Tables S1A–S4A of
the ESM reveals that all the density functionals considered in
this work describe inadequately the energy of the LUMO for the
molecular species at neutral or basic pH, leading to negative (or
unphysical) values of the electron affinity A. For this reason, it
is better to build a new table for the comparison of the average
descriptors, but only considering the results at acid pH. In
particular, we will consider Arg1, Asp1, Asp2, Glu1, Glu2, His1,
and Lys1:

The results fromTable 2 are very impressive. It is not only that
the N12SX density functional is the best fulfilling the validity of
the KID procedure, but also that the values are very close to zero.
Therefore, from this observation one should be very careful in
choosing the proper density functional for predictions in terms
of the HOMO and LUMO energies, and that for the particular
case of the study of corrosion inhibitors, this tool is only valid at
acid pH.

It is a common practice to compare the compare the corrosion
inhibitor ability for a set of molecules in terms of their chemical
hardness η. However, another possible comparison could be
performed in terms of the electrodonating power ω−. By
considering the values presented in Table S4A, the following
trend can be established:

Asp1 ≈ Lys1 > Glu1 > His1 > Arg1 > Glu2 > Asp2

It is possible to evaluate condensed Fukui functions from single-
points calculations directly, without resorting to additional
calculations involving the systems with N− 1 and N+ 1
electrons:

TABLE 1 | Average descriptors JI, JA, JHL, Jχ , Jη , Jω , JD1, Jω− , Jω+ , J1ω± , and JD2 for the natural amino acids bearing a ionizable side-chain at different

pHs calculated from the results of Tables S1B–S4B of the ESM.

JI JA JHL Jχ Jη Jω JD1 Jω− Jω+ J1ω± JD2

M11L 0.33 0.13 0.37 0.13 0.43 0.07 0.46 0.16 0.11 0.26 0.33

MN12L 0.26 0.22 0.35 0.12 0.36 0.09 0.43 0.22 0.12 0.34 0.43

MN12SX 0.24 0.41 0.52 0.32 0.33 0.18 0.51 0.51 0.20 0.71 0.90

N12SX 0.08 0.14 0.17 0.05 0.21 0.04 0.22 0.08 0.05 0.13 0.16

TABLE 2 | Average descriptors JI, JA, JHL, Jχ , Jη , Jω , JD1, Jω− , Jω+ , J1ω± , and JD2 for the natural amino acids bearing a ionizable side-chain at acid pH

calculated from the results of Tables S1B–S4B of the ESM.

JI JA JHL Jχ Jη Jω JD1 Jω− Jω+ J1ω± JD2

M11L 0.38 0.21 0.44 0.08 0.60 0.09 0.61 0.11 0.19 0.30 0.37

MN12L 0.30 0.33 0.44 0.04 0.62 0.14 0.64 0.25 0.23 0.48 0.58

MN12SX 0.28 0.07 0.29 0.17 0.21 0.07 0.29 0.24 0.07 0.30 0.39

N12SX 0.08 0.06 0.11 0.03 0.14 0.02 0.14 0.04 0.04 0.07 0.09

Frontiers in Chemistry | www.frontiersin.org 5 March 2017 | Volume 5 | Article 16

http://www.frontiersin.org/Chemistry
http://www.frontiersin.org
http://www.frontiersin.org/Chemistry/archive


Frau and Glossman-Mitnik Conceptual DFT Descriptors of Amino Acids

TABLE 3 | Nucleophilic Fukui functions, condensed dual descriptors and nucleophilic Parr functions for the Asp1, Asp2, Glu1, Glu2, and Lys1 molecules

calculated with the MN12SX and N12SX density functionals and the Def2TZVP basis set using water as solvent simulated with the SMD parametrization

of the IEF-PCM model.

MN12SX N12SX

f−k 1fk P−
k
(MPA) P−

k (HPA) f−k 1fk P−
k (MPA) P−

k
(HPA)

Asp1 0.60 -0.60 0.42 0.37 0.66 −0.65 0.82 0.76

Asp2 0.75 -0.75 0.89 0.81 0.60 −0.60 0.86 0.80

Glu1 0.62 -0.62 0.85 0.77 0.67 −0.66 0.82 0.75

Glu2 0.74 -0.74 0.88 0.81 0.56 −0.56 0.57 0.51

Lys1 0.62 -0.52 0.84 0.76 0.66 −0.44 0.80 0.74

MPA, Mulliken Population Analysis; HPA, Hirshfeld Population Analysis.

f k
+ =

∑

a∈k



cai
2 + cai

∑

b6=a

cbiSab



 (where i = LUMO) (15)

f k
− =

∑

a∈k



cai
2 + cai

∑

b6=a

cbiSab



 (where i = HOMO) (16)

with cai being the LCAO coefficients and Sab the overlap matrix.
The condensed Fukui functions are normalized, thus

∑

k fk = 1
and f 0

k
= [f+

k
+ f−

k
]/2.

The nucleophilic Fukui function f−
k
, the condensed dual

descriptor 1fk and the nucleophilic Parr function P−(r) over
the carboxyl O atoms of the Asp1, Asp2, Glu1, Glu2, and Lys1
molecules calculated with the MN12SX and N12SX density
functionals and the Def2TZVP basis set using water as solvent
simulated with the SMD parametrization of the IEF-PCM
model are shown in Table 3. For the calculation of the ASD, we
have considered both a Mulliken Population Analysis (MPA)
(Young, 2001; Lewars, 2003; Cramer, 2004; Jensen, 2007) or a
Hirshfeld Population Analysis (HSA) (Hirshfeld, 1977; Ritchie,
1985; Ritchie and Bachrach, 1987) modified to render CM5
atomic charges (Marenich et al., 2012). The condensed Fukui
functions and condensed dual descriptors have been calculated
using the AOMix molecular analysis program (Gorelsky and
Lever, 2001; Gorelsky, 2011) starting from single-point energy
calculations.

For the case of His1, the nucleophilic Fukui function
f−
k
, the condensed dual descriptor 1fk and the nucleophilic

Parr function P−(r) are delocalized over the C atoms
of the imidazole side-chain group, while for Arg1 the
descriptors are delocalized over the guanidinium side-chain
group.

5. CONCLUSIONS

Some density functionals of the Minnesota family (M11L,
MN12L, MN12SX, and N12SX) have been tested for the
fulfillment of the KID procedure by comparison of the
HOMO- and LUMO-derived values with those obtained
through a 1SCF procedure. The range-separated hybrid

meta-NGA density functional (MN12SX) and the range-
separated hybrid NGA density functional (N12SX) are the
best for the accomplishment of this objective. As such, they
represent a good prospect for their usefulness in the description
of the chemical reactivity of molecular systems of large
size.

From the observation of the whole of the results presented
in this work, ione should be very careful in choosing the
proper density functional for predictions in terms of the HOMO
and LUMO energies, and that for the particular case of the
study of corrosion inhibitors, this tool is only valid at acid
pH. The amino acids with a COO− side-chain group (Asp
and Glu), together with Lys are the best candidates for the
design of small peptides with potential to perform as corrosion
inhibitors.
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