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Antimicrobial peptides (AMPs) are gaining popularity as alternatives for treatment of

bacterial infections and recent advances in omics technologies provide new platforms for

AMP discovery. We sought to determine the antibacterial activity of a novel antimicrobial

peptide, buwchitin, against Enterococcus faecalis. Buwchitin was identified from a rumen

bacterial metagenome library, cloned, expressed and purified. The antimicrobial activity

of the recombinant peptide was assessed using a broth microdilution susceptibility

assay to determine the peptide’s killing kinetics against selected bacterial strains.

The killing mechanism of buwchitin was investigated further by monitoring its ability

to cause membrane depolarization (diSC3(5) method) and morphological changes in

E. faecalis cells. Transmission electron micrographs of buwchitin treated E. faecalis

cells showed intact outer membranes with blebbing, but no major damaging effects

and cell morphology changes. Buwchitin had negligible cytotoxicity against defibrinated

sheep erythrocytes. Although no significant membrane leakage and depolarization was

observed, buwchitin at minimum inhibitory concentration (MIC) was bacteriostatic against

E. faecalis cells and inhibited growth in vitro by 70% when compared to untreated

cells. These findings suggest that buwchitin, a rumen derived peptide, has potential for

antimicrobial activity against E. faecalis.

Keywords: microbiome, metagenomics, rumen bacteria, antibiotic resistance, antimicrobial peptides,

antimicrobial activity, Enterococcus faecalis

INTRODUCTION

Enterococcus faecalis is a non-motile, Gram-positive, facultative anaerobic lactic acid bacterium
of about 0.6–2.0 µm in size, that grows as individual cells, in pairs or as short multicellular
filaments (Leavis et al., 2006; Ch. Schroder et al., 2015). It tolerates a wide variety of growth
conditions, including temperatures between 10 and 45◦C, hypotonic, hypertonic, acidic, or alkaline
environments (Ch. Schroder et al., 2015). E. faecalis is normally a gut commensal found in
many animals and in the environment (Gilmore et al., 2013). It is also a frequent cause of
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many serious human infections, including urinary tract
infections, endocarditis, bacteremia, and wound infections
alongside Enterococcus faecium (Kau et al., 2005; Gilmore et al.,
2013; Cahill and Prendergast, 2016). E. faecalis causes a variety of
healthcare associated infections of which urinary tract infections
are the most common (Kau et al., 2005; Hidron et al., 2008; Arias
andMurray, 2012; Gilmore et al., 2013). Infections with E. faecalis
can be especially challenging to treat because of their frequent
resistance tomultiple antibiotics, including aminoglycosides, and
vancomycin, which is considered as drug of last resort for many
Gram-positive infections (Baddour et al., 2005; Hollenbeck and
Rice, 2012; Young et al., 2016). Vancomycin-resistant enterococci
(VRE) are significant opportunistic pathogens in the hospital
environment and often possess a multidrug-resistant phenotype
(Chavers et al., 2003; van Harten et al., 2017) and their potential
to spread enterococcal vancomycin resistance to other species
remains a concern (Chang et al., 2003). VRE are also listed
as priority pathogens by the World Health Organization for
research and development of new antibiotics (WHO, 2017). It is
therefore important to develop new drugs for the treatment of
enterococcal infections.

Continued development of new drugs by the pharmaceutical
industry, aided by genomics, high-throughput screening, rational
drug design, and novel therapies offer a very promising
prospect of effective bactericidal monotherapy for Enterococci
and long-term solutions to VRE (Eliopoulos and Gold, 2001).
Antimicrobial peptides (AMPs) are an integral part of the innate
host defense system of many organisms including vertebrates,
invertebrates, plants and bacteria (Wiesner and Vilcinskas,
2010), with broad spectrum activity against several groups of
organisms including multidrug resistant bacteria, fungi, viruses
and parasites (Jenssen et al., 2006). Due to this, AMPs represent
one of the most promising alternatives to antibiotics, and future
strategies for defeating the threat of antimicrobial resistance in
bacterial infectionsmight depend on peptide-based antimicrobial
molecules (Czaplewski et al., 2016; O’Neill, 2016).

The rumen is one of the most diverse ecosystems in nature,
harboring a microbial community, composed of a complex
mixture of bacteria, protozoa, fungi, and viruses (Church,
1993; Sirohi et al., 2012) commonly referred to as the rumen
microbiome, and enzymes isolated from this ecosystem have the
potential to possess very unique biochemical properties (Hess
et al., 2011; Ross et al., 2012). Several ruminal bacteriocins
have been identified to date, but all of these bacteriocins are
derived from bacteria that can be grown in the laboratory
(Russell and Mantovani, 2002; Azevedo et al., 2015). Culture
independent methods can be used to assess the rumen
microbiome and increase the repertoire of bacteriocins, and other
novel antimicrobials. It is possible to access and explore the total
genetic information of this underexplored, uncultured fraction of
the microbiome associated with any defined ecosystem through
the application of metagenomics (Handelsman et al., 1998;
Ekkers et al., 2012), which is the analysis of the DNA from
a microbiome. Direct cloning of genomic or metagenomic
DNA also offers the opportunity to capture genes encoding
the synthesis of novel antimicrobials (Schloss and Handelsman,
2003), whether from species with already known antimicrobial

properties (bacteriocin production), or from completely new
species.

Previously, we prospected a 8,448 clone fosmid-based rumen
bacterial metagenomic library generated from cow rumen solid
attached bacteria (SAB) for novel antimicrobials, combining
both functional and sequence based metagenomics and in silico
mining (Oyama, 2015; Prive et al., 2015). From this work, we
identified numerous AMPs and mini proteins. Results of the
activity screens of the identified short AMPs (≤25 AA) were
reported elsewhere (Oyama, 2015). One of the longer proteins,
buwchitin (71 AA) was selected for further characterization due
to its potential activity against E. faecalis. In this study, we
report the potential antimicrobial activity of buwchitin against
E. faecalis.

MATERIALS AND METHODS

Bacterial Strains and Vectors
Bacterial strains used for antimicrobial activity testing were
provided in-kind by Bath University. Strains include methicillin
sensitive Staphylococcus aureus (MSSA) RN4220, Escherichia coli
K12, Salmonella enterica serovar Typhimurium SL1344, Listeria
monocytogenes NCTC 11994 (serovar 4b) and Enterococcus
faecalis JH2-2. E. coli TOP10 (Invitrogen, Carlsbad CA, USA)
was used for cloning (to host expression vectors for protein
expression). The pTrcHis TOPO R© vector (Invitrogen, Carlsbad,
CA, USA) was used to clone polymerase chain reaction (PCR)
products for protein expression.

Bacteriological Media and Culture
Conditions
Mueller Hinton (MH) (Sigma-Aldrich UK) and Luria Bertani
(LB) broth and agar (Fisher Scientific Leicestershire, UK)
were used as growth media. When leakage assays were
performed under buffered conditions, 5 mM HEPES (pH 7.2)
supplemented with 5 mM glucose was used (Wu and Hancock,
1999). Media were prepared and sterilized according to the
manufacturers’ instructions. Bacterial strains were grown using
standard conditions unless otherwise specified. Broth cultures
were incubated at 37◦C for 18–20 h with aeration and cultures
on solid media were incubated at 37◦C for 18–24 h.

Identification of Antimicrobial Genes from
Fosmid Metagenomic Library by Agar
Based Functional Screening and
Sequencing Analysis
Antimicrobial genes were identified from the fosmid
metagenomic library as previously described (Oyama, 2015).
Briefly, sterile pin replicators (Molecular Devices Ltd., Berkshire
UK) were used to transfer 2 µl metagenomic clones onto LB agar
plates that had been plated before with 500 µl (OD600 nm = 1) of
pathogens such as S. aureus, E. coli, Sal. Typhimurium, E. faecalis
and L. monocytogenes. Plates were incubated at appropriate
temperatures for 24 h and zones of clearing around the clones
were used to identify clones with inserts encoding antimicrobials.
Putative antimicrobial positive fosmid clones were sequenced
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using Roche’s 454 pyrosequencing platform. BLASTN (v2.2.28)
on NCBI and BioEdit (version 7.1.11) (Hall, 1999) were used to
edit and trim the vector sequence from the contigs. VecScreen on
NCBI was used to search the sequences for vector contamination.
Open reading frames (ORFs) were determined using the NCBI
ORF finder program (Wheeler et al., 2003) and all ORFs with
homology to antimicrobial genes and/or peptides were collated
(Table 1). Based on expression levels and final protein yield, an
ORF composed of 71 amino acids and named buwchitin was
further investigated. Here, we report the activity of buwchitin.

Amplification of Antimicrobial Genes
Extracted fosmid DNA (1 µl) from a metagenomic clone
containing the buwchitin insert was used as template for
PCR amplification. The buwchitin sequence was deposited in
the GenBank database with accession number KY823515 and
predicted to contain a signal peptide, when analyzed on the
SignalP 4.1 server (Petersen et al., 2011). Primers were designed
to start and stop at the first predicted methionine and at the
last stop codon, respectively in order to conserve the reading
frame and take account of the entire gene of interest. The
primers used for the amplification of buwchitin gene were 5′-
ATGAGGCTGTCACACGTTTG-3′ (forward primer) and 5′-
TCACCAATCTGTATGGCACCG-3′ (reverse primer). Primers
were diluted to a stock concentration of 100 µM and a total
volume of 50 µl PCR reaction was set up as follows: 2 µl
DNA template, 1 µl each of the forward and reverse primers
(2 µM final concentration), 39.5 µl molecular grade water and
1 µl Titanium R© Taq DNA Polymerase (Clonetech- Takara Bio
Europe/SAS, France). Taq polymerase was activated for 1 min
at 95◦C, followed by 30 cycles of 95◦C for 30 s, 68◦C for 1.5
min, followed by a final extension step at 68◦C for 1.5 min. PCR
products were verified by electrophoresis on a 1.5% agarose gel
using a 1 kb DNA ladder. Gel image was taken after exposure to
UV using the Gel DocTM XR+ system (BIO-RAD Hertfordshire,

UK). Subsequently, the band of interest was excised with a
sterile scalpel under a Dark Reader blue transilluminator (Clare
Chemical Research Inc. USA) and DNA was purified and eluted
using the QIAquick Gel Extraction Kit (Qiagen, Crawley, UK)
according to manufacturer guidelines.

Cloning of Buwchitin Gene and
Confirmation of Cloning Reaction
Cloning of buwchitin was carried out using the pTrcHis TOPO R©

TA Expression kit as described by the manufacturer. Five
positive colonies from the transformation were analyzed for
correct size, sequence and orientation of the insert. Selected
colonies were cultured overnight in LB medium containing
100 µg/ml ampicillin and 0.5% glucose, and analyzed by PCR.
Briefly, aliquots (1 ml) were lysed by heating for 10 min at
95◦C in sterile 1.5 ml microcentrifuge tubes. The cell debris
was pelleted by centrifugation at 13,000 × g for 2 min. The
supernatant was used as template for the subsequent PCR. The
PCR was set up in a total volume of 50 µl as follows: 2 µl
of template DNA, 1 µl of gene specific forward primer (5′-
ATGAGGCTGTCACACGTTTG-3′) and vector specific reverse
primer (5′-GATTTAATCTGTATCAGG-3′), 21 µl molecular
grade water and 25 µl MyTaqTM Red Mix (Bioline, UK Ltd.,
London UK). Initial Taq activation was performed at 95◦C for
1 min, followed by 35 cycles of 95◦C for 15 s, at insert specific
annealing temperature for 15 s with an extension step at 72◦C for
10 s, and a final extension step at 72◦C for 7 min and holding
at 4◦C. PCR products were verified by electrophoresis on a 1.5%
agarose gel using a 500 bp DNA ladder. A positive PCR control
was also prepared using the control PCR template (expected
size of 750 bp) and primers provided with the pTrcHis-TOPO R©

expression kit. Positive transformants were further analyzed by
Sanger sequencing using plasmid DNA from extracted positive
transformants as templates. The XpressTM Forward sequencing

TABLE 1 | ORFs with homology to antimicrobial (biosynthetic) protein coding genes in rumen metagenome fosmids. All ORFs are from contig 1 of each fosmid and are in

the 5′-3′ direction.

Fosmid plate ID/ORF Gene name Protein

size (AA)

Most similar homolog

(e-value)

Putative function Identity (overlapped AA)/%

similarity

SABPL5 C17/11 Gene 6 184 Prevotella ruminicola 23

WP_013063463.1 (3e-104)

4′-phosphopantetheinyl transferase family

protein

Synthesis of unusual molecules including

polyketides, atypical fatty acids, and

antibiotics

140/184(76%)

Butyrivibrio crossotus CAG:259

WP_021960962.1 (2e-33)

Putative biosurfactants production protein 58/161(36%)

SABPL12(1) C3/9 Gene 17A 350 Prevotella sp. CDD20257.1(0.0) 3-dehydroquinate synthase

DHQS represents a potential target for the

development of novel and selective

antimicrobial agents

250/346(72%)

SABPL12(1) C3/50 Gene 17B 80 Pseudomonas putida S16

NP_744149.1 (1.4)

Colicin V production protein 19/61(31%)

SABPL27 L10/66 Buwchitin 71 Streptomyces mobaraensis

WP_004942604.1 e-value 5.0

Penicillin amidase

Penicillin biosynthesis and metabolism

16/43(37%)

SABPL27 L10/73 Gene 68 68 Ornithinibacillus scapharcae

YP_004810705.1 e-value 8.4

beta-lactam antibiotic acylase

Penicillin biosynthesis and metabolism

22/63(35%)
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primer for pTrcHis-TOPO R© (5′-TATGGCTAGCATGACTGGT-
3′) was then used to sequence the insert and alignments to
original sequence orientation was confirmed using BioEdit (Hall,
1999).

Expression and Purification of His-Tagged
Buwchitin
A single recombinant E. coli colony from a clone confirmed
as containing the buwchitin gene was inoculated into LB broth
containing 100 µg/ml ampicillin and grown overnight at 37◦C
with aeration and agitation (225–250 rpm). The following day, 1
L of LB broth containing 100 µg/ml ampicillin was inoculated
with 20 ml of the overnight culture and incubated at 37◦C
under aeration (225–250 rpm). Gene expression was induced
at OD600 nm = 0.6 with 1 mM IPTG. Cells were harvested
after 4 h by centrifugation (3,000 × g for 10 min at 4◦C)
and cell pellets were stored at −80◦C for subsequent protein
purification. Simultaneous purification and concentration of the
buwchitin protein was carried out under native conditions using
the Amicon R© Pro Purification System (Merck Millipore Ltd
Carrigtwohill, Ireland) following the manufacturer’s protocol.
Protein concentration was calculated as the ratio of absorbance
at 280 nm [BioTek’s EpochTM Multi-Volume Spectrophotometer,
(BioTek Instruments, Inc. Vermont, USA)] to the extinction
coefficient absorbance (Abs 0.1% = 1 g/l calculated using the
ExPASy ProtParam tool) (Gasteiger et al., 2005).

Determination of Minimum Inhibitory
Concentration (MIC) of Buwchitin
Vancomycin, Polymyxin B sulfate and ciprofloxacin
were purchased from Sigma-Aldrich (Poole, Dorset,
United Kingdom). All stock solutions were dissolved in
the appropriate solvent prior to dilution in sterile distilled
water (Andrews, 2001). MICs of buwchitin was measured by
broth microdilution method using two-fold serial dilutions of
antimicrobial agents in MH broth (CLSI, 2012). Buwchitin or
comparator agents, vancomycin hydrochloride, polymyxin B
sulfate and ciprofloxacin were added to the wells of a 96-well
plate containing bacteria from overnight culture (adjusted to
1 × 108 CFU/ml) to achieve a final inoculum concentration
of 5 × 105 CFU/ml (Cherkasov et al., 2008; Wiegand et al.,
2008). MIC was defined as the lowest concentration of test agent
that inhibited visible growth of the organism after 18–24 h of
incubation at 37◦C.

Bactericidal/Bacteriostatic Activity of
Buwchitin
The bactericidal or bacteriostatic activity of buwchitin against
E. faecalis was measured at MIC concentration using optical
density measurements. An increase in both cell mass and cell
number can readily be estimated by measuring the turbidity of
a cell suspension using a spectrophotometer, thereby offering a
rapid and sensitive alternative to cell counting (Dalgaard and
Koutsoumanis, 2001; Madrid and Felice, 2005). This method has
been shown to produce comparable results to plate counting, flow
cytometric and green fluorescence viability analyses methods

(Lehtinen et al., 2006). In a 96 well plate, buwchitin was added
to cells in mid-logarithmic phase (1 × 106 CFU/ml, OD600 nm of
≤0.2) in MH broth and serially diluted as previously described.
Plates were incubated at 37◦C in a microplate incubator shaker.
Wells without antimicrobial agents were used as growth control
while wells with MH broth alone served as negative control. The
rate of kill was calculated as a percentage (OD600 nm) of surviving
cells over a 24 h period (Lehtinen et al., 2006; Hazan et al., 2012).
The percentage of viable cells was normalized to 100% for the
growth control (cells without antibiotic treatment).

Erythrocyte Leakage Assay
The ability of buwchitin to lyse red blood cells was assessed
in a 96 well plate using defibrinated sheep blood (Oxoid Ltd
Hampshire, UK). Sheep red blood cells (RBC) washed and
diluted (4%) in phosphate buffered saline (35 mM PBS) (pH
7.3) were treated with buwchitin at different concentrations and
incubated at 37◦C for 1 h. Triton X-100 (0.1% causes 100% cell
lysis) served as a positive control. Absorbance (OD450 nm) of the
supernatant (70 µl) from each well of the plate was measured to
detect hemoglobin leakage from the erythrocyte cytoplasm and
obtained results were used to determine the percentage hemolysis
given that the 0.1% Triton X-100 represented 100% lysis after
normalizing auto-hemolysis (PBS only treatment).

Inner Membrane Depolarization Assay
(diSC3(5) Method)
The ability of buwchitin to disrupt the electrochemical potential
across the bacterial cytoplasmic membrane was measured by
determining the amount of the membrane-associated probe,
3,3′-dipropylthiadicarbocyanine iodide [diSC3(5)] released from
the cytoplasm (Wu et al., 1999; Lee et al., 2004). Briefly, mid-
logarithmic phase (OD600 nm = 0.2) E. faecalis cells were washed
and resuspended to an OD600 nm of 0.05 in 5 mM HEPES-
glucose buffer, pH 7.2. In a 96-well plate, the cell suspension was
incubated with 100 mM potassium chloride (KCl) and 0.4 mM
3,3′-dipropylthiadicarbocyanine iodide [diSC3(5)] until a stable
reduction of fluorescence (excitation λ 622 nm, emission λ 670
nm) was achieved (∼1 h). The KCl was added to equilibrate
the cytoplasmic and external K+. After 1 h, buwchitin, positive
control agent (0.1% Triton X-100) or negative control agent
(untreated cells) were added to the cells in the wells. The plate
was further incubated at 37◦C with shaking while fluorescence
was continuously monitored (excitation λ 622 nm, emission λ

670 nm) upon addition of peptide at 2–5 min intervals for 2 h.

Transmission Electron Microscopy (TEM)
Exponential phase cultures of E. faecalis grown in MH broth
were washed and resuspended to an OD600 nm of 0.2 in 10 mM
PBS. The cell suspensions (1 ml) were incubated at 37◦C with
buwchitin at 1 × MIC concentration in microcentrifuge tubes.
To investigate possible changes in cell morphology following
exposure to buwchitin, samples were removed at 1 and 24 h
after exposure and prepared for TEM as previously described
(Huws et al., 2013). Briefly, samples were fixed with 2.5% (v/v)
glutaraldehyde, after which they were post-fixed with 1% (w/v)
osmium tetroxide. Fixed samples were then stained with 2%
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(w/v) uranyl acetate and Reynold’s lead citrate and observed using
a JEOL JEM1010 transmission electron microscope (JEOL Ltd,
Tokyo, Japan) at 80 kV.

Molecular Modeling of Peptide 3D
Structures
Structural modeling of buwchitin was completed using the
PHYRE2 web portal (Kelley et al., 2015). Results were visualized
using the PyMOL v1.7.6 program (Schrödinger, 2010). The
biophysical properties of buwchitin were predicted on the
antimicrobial peptide database (APD2) (Wang et al., 2009).

Statistical Analysis
Two-way analysis of variance (ANOVA) with factors
“antimicrobial treatments” and “time” was performed to
determine whether there were significant changes in cell
viability and membrane depolarization before and after
treatment (Harmon, 2011). This was followed by post-hoc
multiple comparisons using Tukey’s HSD (Honestly Significant
Difference) test (Bender and Lange, 2001; Feise, 2002; Harmon,
2011). Alpha (α) levels were set at P < 0.05.

RESULTS

Sequencing, Cloning, Expression and
Purification Using In vivo Expression
Systems
The buwchitin gene was successfully PCR amplified using DNA
from the fosmid clone, SAB PL27 L10/66. Bands of the correct
size (expected size of 216 bp) were excised from the gel before
proceeding to cloning. Electrophoresis results confirmed that
the transformants carried the gene of the correct size, which
was also confirmed by Sanger sequencing. The antimicrobial
protein was expressed with an N-terminal 6xHis-Tag in E. coli
to facilitate purification and investigation of its biochemical
properties. Preliminary protein expression assay indicated that
protein expression was optimal 4 h after induction (data not
shown). SDS PAGE analysis of negative expression control (E.
coli Top10 cells without plasmid) showed no protein expression
bands while positive expression control (E. coli Top10 cells with
pTrcHis-TOPO/lacZ) showed expression of the protein with a
correct size of 40 kDa (data not shown). Cultivation of buwchitin
transformants were scaled up to a total volume of 1 L to produce
cell pellets for protein purification. Recombinant proteins were
purified in their native conditions to preserve their activity
(Karakus et al., 2016). Figure 1 shows the SDS-PAGE analysis of
the purification fractions for buwchitin. The purification protocol
reproducibly yielded a total of ∼0.8 mg of purified protein per
liter of culture.

Antimicrobial and Cytotoxic Activity of
Buwchitin
Buwchitin was active against E. faecalis with an MIC of 100–
200 µg/ml (Table 2). It also showed some inhibition of E. coli
growth (observed in growth curves), but no detectable MIC at
the highest concentration tested. This may account for the low

level of expression of buwchitin in the E. coli expression host. The
highest concentration of buwchitin tested was 400 µg/ml due to
low levels of protein expression and/or yield of purified protein.
The killing activity of buwchitin against E. faecalis was calculated
as a percentage (OD600 nm) of surviving cells compared to the
growth control. Only about 30 ± 1.4% surviving E. faecalis cells
remained after a 24 h incubation period (P < 0.05). It would seem
that buwchitin had a bacteriostatic effect against E. faecalis cells
(Figure 2) as no change in E. faecalis cell density was observed
over an incubation period of 24 h. Very little hemolytic effect
(12.81 ± 0.02%) was observed when sheep red blood cells were
treated with buwchitin at a concentration twice as high as the
MIC determined for E. faecalis (Table 3).

Buwchitin did not induce membrane depolarization in E.
faecalis in the first 2 h of treatment. To determine whether the
loss of viability in E. faecalis following exposure to buwchitin was
accompanied by or was a result of changes in cell morphology
and cell wall ultrastructure, TEM was performed. Electron
micrographs of untreated E. faecalis at 1 and 24 h reveal intact
healthy cells. Electron micrographs of buwchitin treated E.
faecalis cells at 1 h showed intact outer membranes with blebbing
but no major damaging effects and cell morphology changes.
In contrast, micrographs of buwchitin treated E. faecalis cells at
24 h revealed several changes in cell morphology including cell
lysis and detachment of the cell interior from the cell envelope
(Figure 3).

Structural Modeling of Buwchitin
Modeling and visualization of the 3D conformation of buwchitin
using PHYRE2 (Kelley et al., 2015) and PyMOL v1.7.6
(Schrödinger, 2010), respectively, suggested that buwchitin
is composed of a compact, all-helical, structure with major
amphipathic helix connecting two smaller helices (Figure 4). The
amphipathic helix agrees with a common structural feature of
AMPs as the dual hydrophilic/hydrophobic nature allows the
interaction and embedding of cellular membranes (Hancock
and Sahl, 2006). As predicted by the APD2 database, buwchitin
(71AA) is positively charged (+9), has a total hydrophobicity
ratio of 29% and total Arginine and Lysine ratio of 19%.

DISCUSSION

Many currently used antibiotics were discovered by screening
soil microorganisms that can be grown in the laboratory using
standard microbial techniques for their antimicrobial activity
(Ling et al., 2015). However, as natural product resources are
practically inexhaustible, and approximately 99% of all species in
external environments require more complex growth conditions
than those provided using standard cultivation techniques, the
majority of the world’s microbial biodiversity remains to be
explored (Harvey, 2007; Berdy, 2012; Lewis, 2013). Several recent
studies already suggest that new organisms such as uncultured
bacteria are likely to harbor new antimicrobials (Degen et al.,
2014; Doroghazi et al., 2014; Gavrish et al., 2014; Wilson
et al., 2014) and underexplored complex microbial communities,
including the rumen, very likely represent rich sources of novel
antimicrobials. These microbiomes have the potential to revive
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FIGURE 1 | SDS-PAGE analysis of purification steps of buwchitin protein expressed in E. coli TOP10 cells on a 20% denaturing polyacrylamide gel (4 h after induction

with 1 mM IPTG). Lane 1, protein molecular weight marker; Lane 2, cell lysate; Lane 3, supernatant; Lane 4, Wash step; Lane 5, eluted buwchitin protein. The arrow

indicates band of purified protein of interest. Expected size is 8.35 (±3–4 kDa from His-tag).

TABLE 2 | Minimum inhibitory concentration (MIC) of buwchitin and comparator

antimicrobial agents (n = 6), > (precedes the highest concentration tested).

Peptide ID MICs (µg/ml)

Sal. typhimurium E. coli S. aureus E. faecalis

Polymyxin B sulfate 1.95 1.95 250 31.25

Ciprofloxacin 0.12 0.06 >250 62.5

Vancomycin hydrochloride 250 125 0.98 62.5

Buwchitin >400 >400 >400 100–200

Highest concentration of buwchitin tested is 400 µg/ml due to low protein yield.

the platform of natural product discovery in a new culture-
independent perspective, unbiased by the culturing aptitude
of microbial species (Lewis, 2012; McCann et al., 2014; Kang
et al., 2015). The potential for application of metagenomics to
biotechnology seems endless as functional screens can be used to

identify new enzymes, antibiotics and other biological agents in
libraries from diverse environments (Gillespie et al., 2002; Lorenz
and Schleper, 2002; Piel, 2002; Voget et al., 2003; Berdy, 2012).

In this study, we used a combination of functional and
sequence based metagenomic screening strategies to prospect the
rumen microbiome for novel antimicrobials as both strategies
present advantages and limitations (Uchiyama and Miyazaki,
2009). Whereas, sequence homology based analysis allows for the
identification of new enzymes from a range of environments, it
requires a certain sequence similarity to members from known
gene families, therefore limiting novelty. Functional screening
of metagenomic libraries on the other hand, does not depend
on previous sequence knowledge and therefore has the potential
to discover novel classes of genes coding for desired functions
without depending on their sequence similarity to already
known genes (Ferrer et al., 2009; Simon and Daniel, 2009).
We identified a novel antimicrobial gene, buwchitin, from the
rumen microbiome and sought to express and characterize its
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FIGURE 2 | Growth rate of E. faecalis in presence of antibacterial agents. Growth rate was determined by monitoring cell density at OD600 nm in three independent

measurements at 1 × MIC concentration. Error bars represent the standard deviation.

TABLE 3 | Hemolytic activity of buwchitin against sheep erythrocytes. Sheep

erythrocytes resuspended and diluted (4%) in PBS were treated with buwchitin (at

different concentrations) or 0.1% (v/v) Triton X-100 and hemolysis was monitored

at OD450 nm at 1 h after incubation at 37◦C, (values from three independent

replicates and showing the standard deviation).

Concentration (µg/ml) % hemolysis

400 12.81 ± 0.02

200 9.69 ± 0.09

100 5.23 ± 0.08

50 4.12 ± 0.06

25 4.15 ± 0.06

12.5 3.08 ± 0.03

6.25 2.80 ± 0.02

3.125 3.11 ± 0.06

antimicrobial activity against E. faecalis. Firstly, a fosmid-based
cow rumen metagenomic clone library created from the solid
attached bacteria of rumen content was functionally screened
for antimicrobial activity. Clones with antimicrobial activity were
subsequently sequenced to identify genes potentially involved
in the antimicrobial activity observed in functional screens.
Buwchitin, which was identified as a potential antimicrobial
gene, was then expressed and further tested for antimicrobial
activity. Buwchitin is a cationic (charge of +9), α-helical peptide
(as predicted by 3D modeling), 71 amino acids in length and
has a molecular weight of 8.35 kDa. Expression of buwchitin
yielded on average 0.8 mg of purified protein per liter of culture.
This relatively low yield may be due to the inhibitory effects of
buwchitin on E. coli growth. However, this yield falls in the range
reported in literature where concentrations of 0.5–2.5 mg/ml

(Guerreiro et al., 2008), and 0.8 mg/ml (Zorko et al., 2009;
Pei et al., 2014) were retrieved from 1 L cultures by different
approaches using Ni-NTA columns. It may be useful to explore
alternative expression systems, such as Pichia sp. or Aspergillus
sp. to improve the yield of the protein.

Buwchitin was active against E. faecalis JH2-2 with an
MIC of 100–200 µg/ml. This MIC is high when compared
to antimicrobial proteins isolated and expressed using similar
methods in other studies (Zorko et al., 2009; Elhag et al.,
2017). Buwchitin (at MIC concentration) inhibited growth of
E. faecalis cells with no change in E. faecalis cell density over
a 24 h incubation period and has a minimum bactericidal
concentration (MBC) of 200–400 µg/ml, suggestive of a
bacteriostatic killing activity. Although most antimicrobial
peptides are bactericidal (Hancock, 2001; Reddy et al., 2004;
Lohner, 2017), many examples of bacteriostatic antimicrobial
peptides exist in literature (Mine et al., 2004; Choi et al., 2016).
For example, the human β-defensin 2 (hBD-2) is bacteriostatic
against S. aureus only at concentrations as high as 100 µg/ml
(Harder et al., 1997; Jung et al., 2011). Another example of a
bacteriostatic antimicrobial peptide is the human lactoferricin
(LfcinH) (Gifford et al., 2005). Furthermore, most antibacterials
are potentially both bactericidal and bacteriostatic depending
on bacterial pathogen (Pankey and Sabath, 2004). Further
investigations into the mechanism underlying the bacteriostatic
action of buwchitin would be necessary to come to a final
conclusion about its accurate classification. Buwchitin had
minimal hemolytic activity against sheep erythrocytes, suggesting
that buwchitin may have selective activity against microbial cells.
Despite these encouraging results, it will be necessary to carry
out cytotoxicity assays on human and other mammalian cell
lines to determine whether buwchitin can induce apoptosis and
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FIGURE 3 | Representative transmission electron micrographs of E. faecalis. (A) Untreated E. faecalis cells at 1 h. (B) Buwchitin treated cells (200 µg/ml) at 1 h. (C)

Untreated E. faecalis at 24 h. (D) Buwchitin treated cells (200 µg/ml) at 24 h. Scale bars on micrographs.

necrosis in cells (Paredes-Gamero et al., 2012). Very little or
no membrane depolarization was observed in E. faecalis cells
treated with buwchitin and TEM images of buwchitin treated
cells showed intact outer membrane and very little changes in
cell morphology after 1 h of treatment. Only after 24 h of
treatment were large vacuoles in the cytoplasm and separation
of the cell envelop observed. Given the low depolarizing activity
of buwchitin, it would seem that membrane-destabilizing activity
alone does not explain the antimicrobial activity of buwchitin.
It is known that poly-cationic AMPs bound to teichoic acids
including lipoteichoic (LTA) and wall teichoic acids (WTA)
build a poly-anionic ladder and may initiate bacterial killing by
facilitating the entry of peptides into the cytoplasmic membrane
without membrane depolarization (Schneewind and Missiakas,
2014; Malanovic and Lohner, 2016). Further investigation into
buwchitin teichoic acid binding and other mode of action studies
are required to gain insights into its mechanism of action and the
events leading to cell death.

Buwchitin is positively charged and has an amphiphilic
structure with 29% hydrophobic residues as has been observed
for many antimicrobial peptides (Hancock and Sahl, 2006).
This positive charge greatly facilitates the accumulation of
AMPs at the polyanionic microbial cell surfaces and may be
sufficient for antimicrobial action (Hancock and Sahl, 2006), thus

perturbing the membrane integrity. Some cationic peptides have
been shown to translocate or form multimeric transmembrane
channels promoting the membrane depolarization, which seems
to contribute to their activity (Shai, 1999; Bhattacharjya and
Ramamoorthy, 2009) at higher concentrations. The amphipathic
nature of the predicted peptide structure and the observations
in the TEM images is in agreement with this type of interaction,
indicating that although buwchitin is not membrane destructive,
it may interact with components of the cell envelop such as the
enterococcal polysaccharide antigen. The formation of vacuoles
in the cytoplasm also appear to support this idea. Still, at the
current stage, it remains difficult to say which of the known
membrane interaction and disruption models (i.e., barrel stave,
carpet models, or micellar aggregate model) explains the activity
of this peptide without further experimental evidence.

Further studies remain to be performed to enhance the
antimicrobial phenotype of buwchitin. One potential strategy to
improve the antimicrobial activity of buwchitin is the pepscan
technology, in which shorter active fragments and optimized
amino acid substitutions and/or modifications are identified by a
scanning approach. These active peptide fragments identified by
pepscan can then be SPOT-synthesized on cellulose membranes
and systematically screened for antimicrobial activity (Hilpert
et al., 2007; Winkler et al., 2009). The use of pepscan
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FIGURE 4 | Structural model of buwchitin (gray) in cartoon and surface

representation. Side chains of selected amino-acid colored according to atom

type (N: blue; C: white; O: red). The N- terminus (Nt) and C- terminus (Ct) is

also shown. Figure prepared using PyMol (Schrödinger, 2010).

mapping and SPOT arrays has been shown to be useful for
simultaneous optimization of peptides to generate new sequences
that possess a variety of therapeutic and biological properties
(Chico et al., 2010; Haney et al., 2015; Merino-Gracia et al., 2016;
Ortega-Villaizan et al., 2016). Peptide improvements that might
result from the pepscan technology might provide buwchitin
derivatives with greater antimicrobial activity, similar to what has
been achieved for other peptides in the literature (Knappe et al.,
2016; Mikut et al., 2016). An evaluation of MICs against a panel
of different bacterial species and in vitro stability studies in the
presence of plasma or serum would also be beneficial. To explore
the possible therapeutic relevance of buwchitin, further in vitro

cytotoxicity studies and in vivo studies with acute toxicity in mice
at concentrations above the MIC would be required.

In conclusion, the data we generated and present here suggest
that we discovered a novel rumen protein, buwchitin, with
potential antimicrobial properties. It is furthermore possible
that with substantial modification, this AMP might qualify as
a potential antimicrobial agent for the treatment of E. faecalis
infections, which would favor further investigation of the protein.
This study also highlights the enormous value of prospecting the
rumen microbiome, and other microbial communities for novel
compounds to expand our limited antimicrobial drug toolbox.
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