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During the past decade, new directions of modern research, broadly defined as nanoscale
science and technology have emerged. Nanotechnology is not a separate scientific field, it is a
complex platform for the existing disciplines of chemistry, physics, biology, medicine, neurology,
information technology, and engineering, a new multidisciplinary scientific research area. In recent
years, the nanotechnology has attract a great deal of attention in both synthesis methodologies
and wide applications of medicine, energy, environmental, electronics etc. Despite of significant
progress in nanotechnology and rise of many commercialized products involving nanomaterials,
nanoscience, and technology are still facing many new challenges, especially in the areas of great
concern to the public: energy and health.

NANOMATERIALS FOR ENERGY CONVERSION

As versatile components of optoelectronic devices, the nanostructured materials attracted a great
deal of attention due to its unique ability to manipulate light and control energy flow at nearly the
atomic level (Ge and Yin, 2011; Linic et al., 2011). Actually, most of the so called next generation
solar cells are based on the nanostructured materials, include those that are based on nanomaterials
and/or nanostructures such as quantum dot solar cells, nanowire, mesoscopic nanostructures,
and so on (Beard et al.,, 2012, 2014). They exhibit great promise of new conception or routes for
converting solar energy into some other types of energy, such as electronic (Masuko et al., 2014;
Mei et al., 2014), chemical fuels (Reece et al., 2011; Thomann et al., 2011), etc. However, there are
still many challenges need to be addressed before they were fully used in the practical applications.

Most of today’s commercial solar cells with typically efficiency of 10-25% are based the silicon
(Green et al., 2015). To make solar energy economically competitive with other energy sources, it
is critical find ways to lower the solar cell’s costs by improve the efficiency. The nanotechnology
provides us a valuable clue, because the nanomaterials can exhibit quite different and new
properties compared with the corresponding bulk materials, which allow us to develop new ways to
convert the solar energy into electricity or fuels (Nozik et al., 2010). Generally, there are three broad
routes based on nanostructures are used to decrease the cost of solar cells (Shockley and Queisser,
1961): (1) decrease the usage of the materials, for example fabrication of the thin film solar cells;
(2) increase the efficiency of the photovoltaic devices, for example fabrication of the multi-junction
solar cells; (3) increase the stability and life cycle of the device. All the methods, individually or in
combination, can lead greatly lower the costs of the solar energy.

For the front surface reflectivity in solar cell devices, nanostructured surfaces can effectively
enhance the anti-reflection ability when the diameter of the nanostructure decreased below
the wavelength of the incident light. If the active components can be patterned to the
anti-reflection nanostructure, the usage of the solar light can be great enhanced, and the costly
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anti-reflection coatings and texturing can be avoided (Oh et al,,
2012). In addition, because the patterned nanostructures can
capture more light via light trapping so that less material
is needed to absorb the solar flux (Garnett and Yang, 2010;
Kelzenberg et al., 2010). New photovoltaic nanotechnologies
should not only possess the potential to reduce the cost
of module, but also to achieve power conversion efficiency
beyond ~33% (Shockley-Queisser Efficiency Limit; Shockley and
Queisser, 1961). Both the more efficient usage of high-energy
photons and using the normally not converted photons with low
energy (upconversion) can achieve higher limiting efficiencies.
The two approaches to eliminate the energy losses are related the
exploring of novel nanostructures (Beard et al., 2009, 2012; Choi
et al.,, 2011; Wang et al,, 2011; Krogstrup et al., 2013; Cirloganu
et al., 2014). The device stability is another important factor
need to be considered in the photovoltaic technologies for the
decreasing of the cost of the solar energy (Zhang et al., 2013;
Chuang et al., 2014; Ning et al., 2014).

The nanotechnology is a double-edged sword, some of the
features that benefit to solar cells may also introduce additional
challenges at the same time. The influence of surfaces and
interfaces on recombination pathways are more important for
nanocrystals due to its large surface/volume ratio. The migration
of photo-excited charges can be hindered across nanocrystal
grains, and the increased amount of surface states can deactivate
the charge carriers. So, in a nanocrystal solid device, where
each individual nanocrystal carries size dependent properties
of the nanomaterials, the transport of charges is dominated by
the interparticle medium. The surface ligands of the colloidal
nanostructures should be well designed: (i) to make sure the
stabilization of the colloidal stabilization, (ii) provide facile and
stable charge transportation between the nanocrystals, and (iii)
constructively supplement the properties of the nanocrystal solid.

While the new generation of photovoltaic cells (thin-
film chalcogenides, hybrid perovskite materials, multi-junction
solar cells, quantum dot-based solar cells, polymer solar
cells etc.) exhibit great promise in the applications, it also
presents challenges in the practical application. The challenges
can be addressed in the following directions: (1) a simple
fabrication processing with low manufacturing complexities and
costs. Solution-based deposition and processing by using the
nanoparticles inks is an appealing route. It has attracted a great
deal of attention in the energy conversion, due to its unique
properties including atmospheric pressure and low temperature
processing, compatibility for the flexible substrates and large-
area, high throughput, and so on. In addition, these approaches
can be readily adapted for patterning materials without any
subsequent processing steps. (2) One-dimensional nanomaterials
can also offered new opportunities to design more efficient
solar cells for enhancing solar cell efficiencies. By facilitating
electron collection, transport and photon absorption, the one-
dimensional nanostructures, including nanorods, nanotubes,
nanowires etc. provide significant opportunities for improving
solar cell efficiency. (3) The development of new materials with
not only high photon absorption, electron transport, etc. but
also heavy metal free is much more important for the practical
application, because the many of the present energy conversion

nanomaterial, such as perovskites, CdTe share a common
disadvantage of environmentally hazardous heavy metal, which
hinder the commercialization of them.

Beside the energy conversion, the energy economical
consumption is also very important for the energy sustainable
development. Among the straightforward successes of
nanotechnology familiar to consumers, the light emitting
devices (LED) with high electron to light conversion efficiency
have been well developed in the past decade. The high
luminescence efficiency and uniquely size-tunable color of
solution processable semiconducting colloidal quantum dots
(QDs) highlight the potential of QDLEDs for use in energy-
efficient, solid state lighting and high color quality thin-film
display. The key advantages of using quantum dots QDs in
display and lighting applications, including their color purity,
stability, and solution processability. From a device efficiency
perspective, the three key challenges facing by QDLEDs are
QDs photoluminescence quenching, poor photon outcoupling,
and a limited understanding of the fundamental operating
mechanisms of QDLEDs. Additionally, if the QDLED are to
become a broad commercial reality, the operational lifetime and
cost of QDLEDs must be addressed in the further research.

NANOMATERIALS FOR ENERGY
STORAGE

Besides the high efficient conversion of the solar energy, the
storage of the converted energy is also critical desired, because the
night or cloudy weather can interrupt solar energy’s steadiness.
We should capture and store the solar energy for the usage during
the interruptions of the sun light. So, energy storage is very
important for the efficient consumption of energy sources. As
one of the most important constituent part, the nanomaterials
are closely related to the energy conversion and storage. Owing to
the innovation and advancement of materials science, the energy
storage nanotechnologies have also been well-developed in the
decades, especially the researches on hydrogen storage and Li-ion
batteries.

Efficient hydrogen storage is regarded as the key challenge in
large-scale applications of hydrogen energy. Hydrogen storage
materials are the core technology for the storage of hydrogen
sources with efficient and safe manner. To meet the stringent
requirements of application of hydrogen energy, people has
devoted many efforts to develop the potential materials for
hydrogen storage (Liu et al., 2010). By setting up new reaction
routes, several novel systems with well thermodynamic stability
were developed based the hybrid nanomaterials. The intrinsic
binding states can be tuned by substituting the cation/anion
in host structures, which can induced the modification of
the dehydrogenation thermodynamics and kinetics (Kang
et al., 2008; Xiong et al., 2008; Hugle et al., 2009; Wang
et al,, 2009). For example, Wang et al. found that the peak
dehydrogenation temperature can be effectively decreased by
introducing potassium salts in the kinetic modification study
of a Li-Mg-N-H material (Wang et al., 2009). By lowering the
activation energy, catalytic activation also play a versatile and
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efficient role in the enhancement of the kinetically stability of
the hydrogen sorption rate at the interface of solid, gas and
liquid (Bluhm et al,, 2006; Denney et al., 2006; Yao et al,
2007; Gunaydin et al., 2008; Yang et al., 2008; Berseth et al.,
2009). Different from the heterogeneous catalysis based hydrogen
storage materials, the more efficient homogeneous catalysis is
characterized by molecule-level dispersion of catalyst within
the host material, which can realized by directly dissolving
ammonia borane into solvents. Denney et al.’s research result
shows that the dehydrocoupling temperature of ammonia
borane in THE polyether etc. organic solutions can effectively
decreased (typically 45-60°C) in the presence of transition-
metal complexes (Denney et al., 2006). However, the separation
processes in homogeneous catalysis are more complicated than
that of the heterogeneous catalysis. To overcome the kinetic
barrier in the mass transport and enhance the thermodynamic,
the nanoscaling can provide an effective way (Wagemans et al.,
2005; Li et al., 2007; Baldé et al., 2008). Balde et al. established
the relationship between size and dehydrogenation performance
in the carbon nanofibers supported NaAlHs nanoparticles.
With the decrease of particle size from 1-10mm to 2-10nm,
the active energy can be successively reduced from 116 to
58 kJ mol™! H, (Baldé et al, 2008). With the assistant of
the nano-confinement, the dilemma between the high capacity
hydrogen storage and low dehydrogenation temperature may
be addressed (Gutowska et al., 2005; Ingleson et al., 2009; Kim
et al., 2009). Beside the chemisorption for the hydrogen storage,
the physisorption possess the superiority of facile reversible
storage at ambient temperature. The morphology and surface
modification is crucial in the physisorption for achieving high
hydrogen capacity (McKeown et al., 2006; Dinca and Long,
2007; Yang et al., 2007; Hamaed et al, 2008; Vitillo et al,
2008; Tsao et al, 2009). It has been demonstrated that a
responsible pore diameter for the efficient hydrogen storage
at liquid N, temperature and ambient pressure is <1 nm. For
example, the carbon materials (synthesized by using zeolite as
the template) with surface area as high as 3,200 m?/g and
narrow pore size distribution below 1 nm exhibit a high hydrogen
binging energy of 8.2 kJ/mol (Yang et al., 2007). The last but
not the least, the volumetric/weight hydrogen density, energy
efficiency, thermodynamics, and kinetics of de-/rehydrogenation
safety, cost etc. are other important factors need to overall
considered for both chemisorption and physisorption in the
developments of novel materials, nanostructures, and efficient
synthetic techniques and strategies (Liu et al., 2010).

Li-ion batteries is one of the most important and widely
used secondary batteries for the energy storage. The higher
power/energy density, high speed recharge/discharge, and
longer cycling life is much important for the newly emerging
electronic devices, advanced communication and transportation
facilities. In the past decades, many efforts were devoted to
the development of the electrode materials with desirable
electrochemical properties, including larger Li storage capacity,
better cycling performance, and higher rate capability (Chen
and Cheng, 2009). With the assistant of nanostructured
materials with reduced Li-ion diffusion length and alleviated
inner stress, the performance of the Li-ion batteries can be

greatly improved in the rate capability and cyclability (Lee
et al., 2003; Deng and Lee, 2008; Guo et al., 2008). It is
very important for the development of the advanced Li-ion
batteries to study the relationship between the performance and
composition/nanostructure of an electrode material from the
view of both theory and experiment. The compatibility of the
electrode materials with electrolytes, redox sites, and surface
conductivity can be greatly improved by surface engineering of
the electrode materials, which further result in the improved
electrochemical performance (Liu et al., 2010; Sun et al., 2016).
On the other hand, rate capability and cycling performance can
also be improved by growing the active nanomaterials directly
on a current collector with enhanced electrical conductivity
and bonding of the components (Zhang et al, 2006; Chan
et al, 2008; Liu et al, 2010). Accompanied by the notable
advantages, the shortcomings are also along with the subtly
designed electrode nanomaterials, including large irreversible
capacity, low packing density, complex synthesis processes, high
cost, and so on, which further result in the limited practical
applications until now. The major challenges at the material
and electrode levels were large volume expansion and fracture,
unstable SEI, slow electron/ion transport rate and movements
of electrode atoms/molecules (Sun et al., 2016). Future works
on understanding the fundamental electrode and materials
chemistry taking place in these electrode systems are needed.
Detailed information about the electrochemical mechanisms
involved in these battery systems is still absent due to their
complexity. Meanwhile, investigation of the ion and electron
kinetic transport at the electrode/electrolyte interface is also
important (Lin et al., 2014; Wang et al., 2014; Li et al., 2015).

NANOMATERIALS FOR BIOMEDICINE

Theranostics is a term derived from therapy and imaging,
which provide an integrated platform for the personalized
medicine to meet the challenges in modern health care (Chen
et al., 2011; Lammers et al., 2011). The theranostics is quite
related to the biocompatible nanoparticle based nanomedicine,
which contain both imaging and therapeutic nanocomponents.
The radio-, gene-, or chemo therapeutics may be integrated
in one nanoparticles. After combine it with the intrinsic
optical, magnetic, etc. physicochemical properties or appropriate
biomarkers, the nanocomposites would not only allow us to
diagnose disease, but also evaluate treatment efficacy by track the
nanoparticles’ pharmacokinetics and the drugs releasing (Prabhu
and Patravale, 2012; Li et al., 2014; Muthu et al., 2014).

The nano-theranostics will face a series of biological barriers
during circulation in living subjects which will influence the
nanoparticle delivery efficacy: the nanoparticles firstly should
cross blood vessels, then escape the entrapment of organs
and removal of phagocytic cells, finally reach the specific
target (Kievit and Zhang, 2011; Blanco et al., 2015). An ideal
theranostic nanoparticle should possess the following characters:
rapid, selective, and high efficient accumulation in target
diseased tissues; feedback the detailed information (biochemical,
morphological, etc.) about the interest tissues or organs; release
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the guests (drugs, chemicals, etc.) with a controllable manner for
the effective therapy; easy metabolism according to a safe with
less side effects after its function completed.

It has been demonstrated that the circulation and metabolism
in living subjects are profoundly effected by the Size (Tang
et al., 2014), shape (Shah et al., 2011; Toy et al., 2014), rigidity
(Ghassemi et al., 2012), charge (Frohlich, 2012), and surface
chemistry (Mout et al,, 2012) of the nanoparticles (Albanese
et al,, 2012; Blanco et al.,, 2015). The theranostic nanoparticles
are the complex of the delivery carriers and cargo, targeting
ligands, and bio-imaging labels, which means that the clinical
translation is nontrivial for these fancy materials (Ambrogio
et al, 2011; Chow and Ho, 2013). There are many factors need
to considered: the prerequisite robust scale-up synthesis; the
biological responses for the theranostic nanoparticles including
exposure levels, systemic accumulation, excretion profiles, tissue
and organ distributions of test living subjects; the potential
toxicity of the nanoparticle in short and long term (Prabhu and
Patravale, 2012; Muthu et al., 2014).

CONCLUSIONS

In the past decade, various nanostructures have been fabricated
to address the significant material and applications challenges
that exist in energy, environment, and health. Although, there
are diverse specific requirements for nanomaterials in different
applications, many commonality criterions for the research in the
nanoscience can be built and summarized as following:
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