
ORIGINAL RESEARCH
published: 15 November 2017

doi: 10.3389/fchem.2017.00099

Frontiers in Chemistry | www.frontiersin.org 1 November 2017 | Volume 5 | Article 99

Edited by:

Ramesh L. Gardas,

Indian Institute of Technology Madras,

India

Reviewed by:

Sugata Chowdhury,

National Institute of Standards and

Technology, United States

Miguel Rubi,

University of Barcelona, Spain

*Correspondence:

Amir H. Ghaderi

amirhoseinghaderi@gmail.com

Specialty section:

This article was submitted to

Physical Chemistry and Chemical

Physics,

a section of the journal

Frontiers in Chemistry

Received: 10 August 2017

Accepted: 30 October 2017

Published: 15 November 2017

Citation:

Ghaderi F, Ghaderi AH, Ghaderi N and

Najafi B (2017) Prediction of the

Thermal Conductivity of Refrigerants

by Computational Methods and

Artificial Neural Network.

Front. Chem. 5:99.

doi: 10.3389/fchem.2017.00099

Prediction of the Thermal
Conductivity of Refrigerants by
Computational Methods and Artificial
Neural Network
Forouzan Ghaderi 1, Amir H. Ghaderi 2*, Noushin Ghaderi 3 and Bijan Najafi 4

1 Faculty of Chemistry, University of Isfahan, Isfahan, Iran, 2Department of Cognitive Neuroscience, University of Tabriz,

Tabriz, Iran, 3 Faculty of Engineering, Shahrekord University, Shahrekord, Iran, 4Department of Chemistry, Isfahan University of

Technology, Isfahan, Iran

Background: The thermal conductivity of fluids can be calculated by several

computational methods. However, these methods are reliable only at the confined

levels of density, and there is no specific computational method for calculating thermal

conductivity in the wide ranges of density.

Methods: In this paper, two methods, an Artificial Neural Network (ANN) approach and

a computational method established upon the Rainwater-Friend theory, were used to

predict the value of thermal conductivity in all ranges of density. The thermal conductivity

of six refrigerants, R12, R14, R32, R115, R143, and R152 was predicted by these

methods and the effectiveness of models was specified and compared.

Results: The results show that the computational method is a usable method for

predicting thermal conductivity at low levels of density. However, the efficiency of this

model is considerably reduced in the mid-range of density. It means that this model

cannot be used at density levels which are higher than 6. On the other hand, the ANN

approach is a reliable method for thermal conductivity prediction in all ranges of density.

The best accuracy of ANN is achieved when the number of units is increased in the

hidden layer.

Conclusion: The results of the computational method indicate that the regular

dependence between thermal conductivity and density at higher densities is eliminated. It

can develop a nonlinear problem. Therefore, analytical approaches are not able to predict

thermal conductivity in wide ranges of density. Instead, a nonlinear approach such as,

ANN is a valuable method for this purpose.

Keywords: thermal conductivity, transport properties, refrigerant, RF theory, ANN

INTRODUCTION

Fluids, containing gases and liquids, have a wide range of applications in daily life and play an
important role in modern industrial processes. Since refrigerants are crucial in the refrigeration
industry, we must have a scientific knowledge about their transport properties. Computational
methods that allow for the prediction of transport properties serve as valuable tools due to their
time efficiency when compared to the time it would take to conduct the work in a laboratory. The
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effect of microscopic motions and the interactions of molecules
on the transport properties of gases are considered to form the
basis of these methods.

The transport properties of refrigerants have been investigated
in numerous studies. Kandlikar et al. (1975) predicted the
transport properties of R12 and R22 (Kandlikar et al., 1975).
Assael at al. performed the absolute thermal conductivity
measurement of liquid refrigerants R11 and R12 at the
temperature range of 250–340K and pressures from saturation
to 30 MPa (Assael et al., 1992). In another study, the
thermal conductivity of R134a, R152a, and R123 was evaluated
using the transient hot-wire method (Gross et al., 1992).
The viscosity coefficient of R152 was investigated by Krauss
et al. (1996). A practical representation for the transport
coefficients of pure refrigerants R32, R125, R134a, and R125

+ R32 mixtures was presented by Kiselev et al. and was
valid in the vapor-liquid critical region (Kiselev et al.,
1999). Also, the transport properties of R14 have been
examined in some studies (Smith and Pace, 1969; Rubio et al.,
1985).

In 1917, Sydney Chapman and David Enskog solved the
accurate equation for the transport properties of gases that
had been presented by Maxwell and Boltzmann in 1860–1870
(Levine, 1995). Chapman-Enskog relations for monatomic gases
and mixtures of these gases are expressed through the use of
inter-atomic potential and temperature. In this theory, each
coefficient of transport properties in gases is related to the
collision integral (�) that depends on the value of potential, the
nature of the interaction, and the reduced temperature (T∗). The
basis of the calculation of (�) in this work was the expansion of
corresponding states presented by Najafi et al. (1983).

The Chapman-Enskog theory relates the effect of local
binary molecular collisions. Furthermore, the role of higher-
order molecular collisions is considered in the regions of
higher density in gases. The existence of the internal degree
of freedom in polyatomic gases has a considerable influence
on thermal conductivity (λ), and thus thermal conductivity
cannot be definitely calculated by the Chapman-Enskog theory
(Maitland et al., 1978). In 1980, Rainwater and Friend proposed a
microscopic theoretical methodology for calculating the second
transport virial coefficients of moderately dense gases (up to
2mol.dm−3; Friend and Rainwater, 1984; Rainwater and Friend,
1987). In this theory, thermal conductivity is described according
to the second thermal conductivity virial coefficient (Bλ) and
depends on interatomic potential and temperature. Rainwater
and Friend calculated Bλ by utilizing the Lennard-Jones potential
(Rainwater and Friend, 1987). Bich and Vogel then presented
correlation functions for B∗λ (reduced second virial coefficient
of thermal conductivity; Millat et al., 1996). Since the Lennard-
Jones potential is a rough approximation of reality, Najafi et al.
(1998) calculated the thermal conductivity of some gases at
moderate density by applying a highly accurate and realistic
potential known as Aziz potential (Aziz and Slaman, 1990; Aziz,
1993).

Husseinnejad and Behnejad estimated the thermal
conductivity of a number of refrigerants via Bich and Vogel

potential scaling parameters (Hosseinnejad and Behnejad,
2008). In 2014, Geller et al. calculated the viscosity and
thermal conductivity of refrigerant mixtures using a set
of models. They utilized a corresponding states method
to anticipate thermal conductivity in refrigerant mixtures
(Geller et al., 2014). Huber and Assael used Chapman-Enskog
method to predict the transport properties of (R1234yf)
and [R1234ze(E)] as refrigerant replacements (Huber
and Assael, 2016). Perkins et al. represented the thermal
conductivity of (R245fa) as a sum of three contributions
in a range of temperatures and pressures (Perkins et al.,
2016).

At densities higher than the moderate range of the RF theory,
new residual correction functions were offered by Najafi et al.
(1998, 2000). These functions are density-dependent. However,
at higher levels of density, these methods are defeated and, thus,
an appropriate method is required to solve this problem.

Recently, some nonlinear methods have been presented to
classify and predict the behavior of nonlinear systems. One of the
most famous approaches in these contexts is the artificial neural
network (ANN). The ANN prediction method is employed in
many areas including climate (Ghaderi and Darooneh, 2012;
Abdellatif et al., 2015) and economy (Aydin et al., 2015) as well
as in thermodynamic and thermophysics applications (Di Nicola
et al., 2016; Rostamian et al., 2016).

The thermodynamic characteristics of an alternative
refrigerant (R407c) have been examined by Sozen et al. They used
an ANN to determine the specific volume, enthalpy, entropy,
viscosity, and thermal conductivity of R407c. Promising results
were obtained from the thermodynamic specifications of this
refrigerant in acceptable error (Sozen et al., 2009).

The determination of thermophysical properties in the case
of refrigerants was accomplished by Sencan et al. using ANN.
R413A, R417a, R422a, R422d, and R423a were considered while the
liquid and vapor thermophysical properties of refrigerants were
obtained by ANN (Sencan et al., 2011). The thermodynamic
analyses of R12, R22, and R502 using ANNs were performed
by Arcaklioglu et al. (2004). In some studies, ANN has been
used for predicting the viscosity of refrigerants (Cristofoli et al.,
2002; Ghaderi et al., 2013). Thermodynamic properties such as
enthalpy, entropy, and specific volume of R413a, R417a, R422d,
and R423a were predicted using ANN and the adaptive neuro-
fuzzy approach by Sahin et al. (2012). Furthermore, Sozen
et al. utilized ANN method for estimating the thermodynamic
properties of an environmentally friendly refrigerant (R404a)
in both superheated vapor region and saturated liquid-vapor
region (wet vapor) as numerical equations. In this study,
the calculated thermodynamic properties had an acceptable
uncertainty (Sozen et al., 2010). A three-layer feed-forward
neural network was employed to predict the thermal conductivity
of pure gases, and the performance of ANN was compared with
those of several commonly used models. The results indicated
that the commonly used regular conductivity correlations are
used for a limited range of temperatures and components,
while the network method can cover a wide range of
temperatures and substances (Eslamloueyan and Khademi,
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2009). In the case of refrigerants, the viscosity of six refrigerants
was predicted by ANN and computational methods. The
ANN method shows a very good accuracy at high levels
of density, while computational methods are defeated in
the case of density levels higher than 8 (Ghaderi et al.,
2013).

In the present study, the thermal conductivity of six
refrigerants containing R12 (dichlorodifluoromethane), R14
(carbontetrafluoride), R32 (diflouromethane), R143a (1, 1,
1trifluoroethane), R115 (chloropentafluoroethane), and R152a
(1, 1difluoroethane) was calculated by the RF method at low
and moderate levels of density. For higher ranges of density,
a modified RF theory was applied which stretched beyond the
validity range of the RF theory and allowed for the development
of corresponding states correction functions. Residual thermal
conductivity was also computed. Then, the graphs of 1λ vs. ρ

were drawn. The principle of corresponding states was used to
confirm the graphs. The parameters λ∗ and ρ∗ of refrigerants
were also found.

The results of thermal conductivity calculation were
compared with the existing experimental data (Keyes, 1954;
Oshen et al., 1967; Rosenbaum and Thodos, 1967; Rodgers
et al., 1974; Makita et al., 1981; Yata et al., 1984; Imaishi et al.,
1985; Millat et al., 1988; Hahne and Song, 1989; Tanaka et al.,
1991; Assael et al., 1992, 2000; Gross et al., 1992; Assael and
Karagiannidis, 1993; Kim et al., 1993; Papadaki and Wakeham,
1993; Vargaftik, 1994; Gao et al., 1995; Hammerschmidt, 1995;
Ro et al., 1995; Zaporozhan and Geller, 1995; Gross and Song,
1996; Krauss et al., 1996; Tsvetkov et al., 1996; McLinden
et al., 2000; Le and Garrabos, 2001). After that, a feed forward
ANN was used to predict the thermal conductivity of six
refrigerants in the entire range of densities. The ANN training
data were collected from the National Institute of Standards
and Technology (NIST) (http://webbook.nist.gov/chemistry/).
The NIST Chemistry Web Book has provided a great online
database of chemical and physical properties for chemical
species. The NIST also introduces many useful references
and experiments that contain practical and experimental
data.

Since there is no established method for determining
the thermal conductivity of refrigerants in a wide range of
densities, the ANN’s efficiency was investigated. It is proposed
that ANN as a nonlinear approach can successfully predict
thermal conductivity. Finally, the two methods were compared.
According to the results, the computational method is a reliable
method only at low levels of density, while ANN is a valuable
method at moderate and high levels of density where the
computational method fails.

This paper is organized as follows: Computational methods
for predicting thermal conductivity are described in first section.
The feed-forward ANN and the learning algorithm are explained
in second section. Applications of the computational method
and the ANN approach for predicting thermal conductivity
are stated in third and fourth sections. Finally, fifth and sixth
sections are devoted to the expression of results, discussion, and
conclusions.

COMPUTATIONAL METHOD FOR
PREDICTING THERMAL CONDUCTIVITY
OVER A WIDE RANGE OF DENSITIES

Refrigerant Thermal Conductivity at Low
and Moderate Levels of Density
Since polyatomic gas refrigerants have internal degrees of
freedom, the unity between translational and internal modes has
a significant influence on the thermal conductivity of these gases.
The Chapman-Enskog theory is applicable only to monatomic
gases with a symmetrical and spherical intermolecular potential.
Therefore, the thermal conductivity of the refrigerants cannot be
calculated with this theory (Felder et al., 1964).

The thermal conductivity of refrigerants in the moderate
density (up to 2mol.dm−3) has been calculated using the
Rainwater-Friend theory. In this method, the thermal
conductivity has been considered as a function of second
virial coefficients (Rainwater, 1981; Rainwater and Friend, 1987):

λ = λ0
(

1+ NAσ 3B∗λρ
)

(1)

In the RF method, the Lennard-Jones potential has been used
to calculate Bλ over the reduced temperature (T∗). In this
equation, λ0 is the thermal conductivity in zero density limits,
ρ is the molar density, NA is Avogadro’s constant, and σ is the
collision diameter. RF theory deals with realistic potentials and
the reduced second thermal conductivity virial coefficient (B∗)
(Rainwater, 1981; Rainwater and Friend, 1987). B∗ is composed
of three statements:

B∗λ = B
∗(2)
λ + B

∗(3)
λ + B

∗(M−D)
λ (2)

where B
∗(2)
λ ,B

∗(3)
λ ,B

∗(M−D)
λ are monomer-monomer collisions,

triple molecular collisions and monomer-dimer collisions,
respectively. B∗(T∗) of a gas is dependent on the potential and
the reduced temperature and is presented as:

B∗ = a0 +
a1

T∗
(3)

where the coefficients are:

a0 = 2.14610−1
± 7.5× 10−3, a1 = 5.359± 1.3× 10−2

T∗ is the reduced temperature and equals to kT
ε
, where k is the

Boltzmann constant, T is the absolute temperature and ǫ is the
potential well depth. In this section, RF theory is developed to
calculate the thermal conductivity of refrigerants. Furthermore,
by applying the Mason-Monchick theory (Mason and Monchick,
1962), an appropriate correction is applied for computing the
internal contribution of thermal conductivity. In the Mason-
Monchick theory, the thermal conductivity of polyatomic gases
is expressed as the sum of two private contributions. (Bich and
Vogel, 1991):

λ = λtr + λint (4)

With an acceptable approximation, these two statements of
contributions are assumed to be separate. Combining the

Frontiers in Chemistry | www.frontiersin.org 3 November 2017 | Volume 5 | Article 99

http://webbook.nist.gov/chemistry/
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Ghaderi et al. Prediction of the Thermal Conductivity of Refrigerants

Mason-Monchick theory and Enskog hard sphere theory, the
expansion of the RF theory is written as: (Vesovic andWakeham,
1992; Heck et al., 1995)

λint = ρNADCint (5)

where D is the diffusion coefficient and Cint is the contribution
of internal states of heat capacity. The self-diffusion coefficient
is density dependent and in the Enskog theory, it is defined as
(Bennett and Curtiss, 1969):

D = D0

(

1− 0.625ρ∗
+ . . .

)

(6)

where D0 is the self-diffusion coefficient in zero density and ρ∗ is
the reduced density that is expressed as:

ρ∗
=

(

2π

3

)

NAσ 3ρ (7)

so the Equation (5) rearranges as:

λint = ρNAD0Cint

(

1− 0.625ρ∗
+ . . .

)

(8)

by combining Equations (1, 8), the density dependence of the
thermal conductivity is defined as (Mason and Monchick, 1962):

λ = λ0

(

1+
2π

3
NAσ 3bλρ

)

(9)

where bλ is presented as the extended RF second thermal
conductivity virial coefficient for polyatomic gases. bλ is then
calculated as follows:

Bλ =
3

2π
B∗λ

λ0tr

λ0
− 0.625

(

1−
λ0tr

λ0

)

(10)

and

λ0 =
15kB

4m
η0 =

15R

4M
η0 (11)

where kB is the Boltzmann constant, M is molecular weight and
η0 is viscosity at zero density (Bennett and Curtiss, 1969).

Thermal Conductivity of Refrigerants at
Higher Levels of Density
At the high levels of density, residual thermal conductivity is
presented as Dλ. This term is a function of both temperature
and density. At density levels beyond the range of the RF theory,
there is a regular dependence between thermal conductivity and
density which can be presented as: (Millat et al., 1996)

λ(ρ,T) = λ0(T) + Dλ(ρ,T) + Dλc(ρ,T) (12)

where λc(ρ,T) is the thermal conductivity critical enhancement.
The refrigerants are not considered at their critical range.
Therefore, λc(ρ,T) can be ignored in the discussion of the

refrigerants’ behavior. It means that the residual thermal
conductivity can be defined as:

λ(ρ,T) = λ0(T) + Dλ(ρ,T) (13)

Dλ for aforesaid refrigerants is calculated via the following
relation:

Dλ = λ − λ0

(

1+
2π

3
NAσ 3bλρ

)

(14)

Correction functions have been used for the corresponding states
offered by Najafi et al. (2000). The curves of Dλ vs. ρ for six
refrigerants are used to show Dλ/λ∗ vs. ρ/ρ∗:

Dλ

λ∗
=

∑

j= 2,4,6,8

dJ
ρJ

ρ∗
(15)

where expansion coefficients are:

d2 = 7.257× 10−2
± 2.01× 10−3, d4 = 1.534× 10−5

± 9.55× 10−6

d6 = 1.36× 10−7
± 1.2× 10−8, d8 = −4.939× 10−11

± 4.6× 10−12

Thermal conductivity for each of the refrigerants has been
obtained by a simple equation:

λ = λ0
(

1+ bλρ
∗
)

+ Dλ (16)

ANN, MLPs, and Back-Propagation
Algorithm
ANNs are models of the cognitive process of the brain with
an incredible potential for advancing the types of problems
solved by computers (Steeb, 2005). The neuron is the basic
processor in these models. Each neuron receives several inputs
from other neurons. In 1958, perceptron was suggested as
the simplest model of computational neuron by Rosenblatt.
Perceptron is used for classifying linearly separable patterns. The
network which consists of a set of perceptrons in a layer-by-
layer structure is known as Multi-Layer Perceptrons (MLPs). In
layered architectures, the first-layer perceptrons (input layer) are
only connected to the second-layer units (first hidden layer) and
so on (Ghaderi andDarooneh, 2012). The input signal propagates
through the network in a forward direction and there is no
recurrent connection in these networks. Consequently, these
networks are called multi-layer feedforward ANNs. The model of
each neuron in theMLP includes a nonlinear activation function.
Therefore, the output of each perceptron is:

yk = sig

(

n
∑

i= 0

wikxi

)

(17)

where wik is synaptic weight of the neuron k, xi is input to the
each neuron and n is the number of inputs. sig is a nonlinear
sigmoid function. The output of these functions is in the range
of−1 to+1 or 0 to+1.

In a multilayer feed-forward network, several learning
algorithms can be applied for network training. The back-
propagation algorithm is a powerful method which is operated
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based on the gradient descent rule in the weight space. Three
stages are implemented in this algorithm: (1) the feed-forward
of input signals, (2) the calculations of the associated error and
back-propagations of the error signal, and (3) the improvement
of synaptic weights [79]. The error signal is calculated by
subtracting the desired output from the network output. Using
the error signal, the instantaneous value of error energy for
neuron j is indicated by:

E (n) =
1

2

∑

1→n

e2j (n) (18)

where n is the number of neurons in the output layer. The
associated error in the back-propagation algorithm is calculated
using average squared error energy:

Eav =
1

N

N
∑

n= 1

E (n) (19)

where E(n) is error energy for neuron j.

Application of Computational Method for
Predicting of Thermal Conductivity
The six refrigerants including R12, R14, R32, R115, R143, and
R152 are polyatomic. As a result, available experimental data
should be used to obtain λ0 (thermal conductivity in the zero
density). Rainwater-Friend theory was employed for moderate
density range (Equation 1). In addition, the value of η0
(Equation 11) was calculated for these six refrigerants in
Ghaderi et al. (2013).

At the high densities, Dλ is dependent on density. Therefore,
different isotherms of the residual thermal conductivity will
confirm on a single curve. Dλ was calculated using Equation 14,
and Dλ vs. ρ were drawn for the aforementioned refrigerants
(Figure 1). Using the Sigma-Plot software, adjust quantities
λ∗ and ρ∗ were found. The corresponding states principle
was applicable for the thermal conductivity as a transport
property. It means that the six curves were fitted on, as
shown in Figure 2. The values obtained by the computational
method are compared with the experimental values in Table 1.
The calculated values of the noted refrigerants are in good
agreement with the experimental values. Adjust quantities and
predicted values for thermal conductivity are compared with
the experimental data for six refrigerants in Table 1. The results
are in agreement with the experimental data outside the critical
area.

Predicting Thermal Conductivity by ANN at
Low, Moderate, and High Levels of Density
A three-layer feed-forward ANN was constructed using
MATLAB neural network toolbox. Three neurons were
considered in the input layer and one neuron in the output
layer. The three input variables were temperature, density, and
pressure, while the output variable was thermal conductivity.
These variables proved to be effective parameters on the thermal
conductivity value.

FIGURE 1 | Dλ vs. ρ for six refrigerants.

FIGURE 2 | Reduced Dλ vs. reduced ρ according to corresponding states

principle.

The ANN structure is illustrated in Figure 3. Resilient
back-propagation algorithm was used as the training
algorithm and a nonlinear sigmoid function (logsig), which
showed better results than the other sigmoid function
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TABLE 1 | Values obtained by computational method were compared with the experimental data of λ for 6 refrigerants in low and low-moderate density.

Fluid ρmin–ρmax Tmin–Tmax λ* ρ* Av.(Max)%1 No. points

R12 0.24–3.3 350–500 1.2 × 10−4 9.8 × 10−2 0.9 (2.9) 31

R14 0.1–4.3 200–600 1.4 × 10−4 0.1298 1.3 (3.3) 41

R32 0.17–5.1 200–600 5.7 × 10−4 0.2041 1.3 (2.5) 19

R115 0.04–2.7 250–500 1.2 × 10−3 0.1629 1.1 (2.6) 35

R143 0.7–4.0 342–600 4.7 × 10−4 0.135 1.1 (2.9) 25

R152 0.7–4.5 275–500 5.9 × 10−4 0.1501 0.8 (3.5) 41

FIGURE 3 | Three-layers neural network, three neurons in input, 10, 20, and

30 nodes in hidden layer and one node in output.

(tansig), was employed as the activation function in the
hidden and output layers. The logsig function is defined
as:

log sig (n) =
1

1+ e−n
(20)

where n is the input value. Additional data about this
network are presented in Table 2. NIST data were used
as the training data, while the testing data were obtained
from experimental references. The number of training
and testing patterns of the six refrigerants is indicated in
Table 3.

Networks with 10, 20, and 30 neurons in the hidden layer
were tested and the performances of each network in low, mid,
and high densities are represented in Tables 4–6, respectively.
The efficiency of the ANN method for predicting the thermal
conductivity of the six refrigerants and a comparison of this
method with computational method are depicted in Figures 4–9
and Tables 4–6.

TABLE 2 | Additional data about ANN structure.

Learning rate Act. Func. Act. Func. Training Epochs

(hidden) (output) algorithm

0.05 logsig Logsig trainrp 30,000

TABLE 3 | Number of training and testing patterns for ANN training.

Fluid No. of training patterns No. of testing patterns

R12 393 65

R14 347 57

R32 350 58

R115 350 58

R143 377 62

R152 391 65

RESULTS AND DISCUSSION

In the case of calculating the thermal conductivity of the six
refrigerants, the efficiency of the two methods (ANN and the
computational approach) was compared. The RF theory is a
statistical method for predicting the thermal conductivity of
refrigerants in low densities (Rainwater, 1981; Rainwater and
Friend, 1987). Nevertheless, this model fails at higher levels of
density. To predict thermal conductivity at higher densities, the
RF theory can be used (Najafi et al., 2000).

On the other hand, the ANN approach is a nonlinear method
which can be applied for predicting thermal conductivity in all
ranges of density (Sencan et al., 2011; Ghaderi et al., 2013).
The performances of the ANN approach and the computational
method were compared at low, mid, and high levels of density,
with the results presented in Tables 4–6, respectively. At the low
densities (<2), the twomethods were reliable. However, the ANN
approach had better results (Table 4). These results show that, in
the case of R14, R32, R115 , R143, R153, all of the three ANNs
represented slightly better predictions than the computational
method. In the moderate range of density, (Tables 1, 5 and
Figures 4–9), the computational method could be used only for
R32 and was defeated in other cases. In another study, however,
the computational method showed reliable results in this range
of density for predicting the viscosity of the same fluids (Ghaderi
et al., 2013). Furthermore, the thermal conductivity of the six
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TABLE 4 | The R values of computational method and ANN with 10, 20, and 30 hidden neurons, for thermal conductivity prediction in low density.

Fluid ANN 10 nodes ANN 20 nodes ANN 30 nodes Computational method Density range No. of patterns

R12 0.99726 0.98225 0.99494 0.92245 0.30 < ρ < 1.90 6

R14 0.99909 0.99893 0.99984 0.99856 0.05 < ρ < 1.73 25

R32 0.99839 0.99226 0.99837 0.97967 0.00 < ρ < 1.72 21

R115 0.99482 0.99632 0.99965 0.98791 0.05 < ρ < 1.58 22

R143 0.99964 0.99927 0.99980 0.99485 0.00 < ρ < 1.72 23

R152 0.98677 0.99362 0.99064 0.98051 0.02 < ρ < 1.85 17

The best accuracy of prediction has been indicated in bold type.

TABLE 5 | The R values of computational method and ANN with 10, 20, and 30 hidden neurons, for thermal conductivity prediction in mid density.

Fluid ANN 10 nodes ANN 20 nodes ANN 30 nodes Computational method Density range No. of Patterns

R12 0.99692 0.97797 0.99851 −0.53954 2.34 < ρ < 5.66 6

R14 0.99790 0.99975 0.99955 0.61753 2.27 < ρ < 5.84 18

R32 0.99944 0.99999 0.99976 0.98372 2.56 < ρ < 5.81 3

R115 0.55564 0.60352 0.97271 0.63932 2.72 < ρ < 5.83 9

R143 0.95954 0.95828 0.99542 0.40548 3.35 < ρ < 5.63 3

R152 0.85657 0.91610 0.88369 0.88707 2.09 < ρ < 4.22 3

The best accuracy of prediction has been indicated in bold type.

TABLE 6 | The R-values of computational method and ANN with 10, 20, and 30 hidden neurons, for thermal conductivity prediction in high density.

Fluid ANN 10 nodes ANN 20 nodes ANN 30 nodes Computational method Density range No. of patterns

R12 0.99977 0.99965 0.99991 −0.94797 6.38 < ρ < 14.20 52

R14 0.99304 0.99994 0.99956 −0.96277 7.42 < ρ < 19.72 11

R32 0.99967 0.99819 0.99993 −0.88905 9.22 < ρ < 27.41 33

R115 0.99745 0.99836 0.99992 −0.93994 6.13 < ρ < 11.30 27

R143 0.99978 0.99984 0.99984 −0.95836 7.55 < ρ < 15.77 25

R152 0.99856 0.99112 0.99954 −0.92912 9.24 < ρ < 18.06 44

The best accuracy of prediction has been indicated in bold type.

refrigerants was precisely predicted by ANN in the mid-density
range.

In the high range of density, the computational method was
invalid for the six refrigerants, while the ANN approach proved
to be a reliable method for predicting thermal conductivity at
density levels up to 27. These results are consistent with the
results of another study on viscosity prediction (Ghaderi et al.,
2013).

The number of hidden neurons in the ANN structure is
selected as 10, 20, and 30. Based on the results, a network with
30 hidden neurons has the best prediction at higher levels of
density. On the other hand, the results of the computational
method indicate that the regular dependence between thermal
conductivity and density at higher densities is eliminated. It can
develop a nonlinear problem. Therefore more nodes in hidden
layer are needed to solve the nonlinearity problem.

CONCLUSION

The ANN approach proved to be a reliable method for
predicting thermal conductivity in all ranges of density, while
the computational method was restricted to low densities

(Figures 4–9 and Tables 1, 4–6). In the low levels of density
(ρ < 2), the computational method based on RF theory was
usable (R > 0.92) (Tables 1, 4 and Figures 4–9). However, in the
moderate and high levels of density (ρ > 2), this model often
failed.

On the other hand, the results showed that, in the case

of R32, this model succeeded at moderate levels of density
(R = 0.98372). Thus, according to the results, we concluded

that the computational method is an accurate model at

low levels of density for predicting thermal conductivity
prediction. Nevertheless, since the accuracy of computational
method based on RF theory is reduced at higher levels
of density, the ANN with MLPs as a nonlinear method
is proposed for solving this problem. There is a nonlinear
relationship between the thermal conductivity and other
thermodynamical properties such as, pressure and density.
As a result, analytical approaches are unable to predict
thermal conductivity in a wide range of densities. Instead, a
nonlinear approach such as, ANN is a valuable method for this
purpose.

Other thermodynamic properties may be predicted by the

ANN approach and the accuracy of predictions can be compared
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FIGURE 4 | Thermal conductivity regression. Comparison between computational and ANN Methods for R12. (A) Comparition in low density (ρ < 2). (B) Comparison

in moderate density (2 < ρ < 6). (C) Comparison in high density (ρ > 6).
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FIGURE 5 | Thermal conductivity regression. Comparison between computational and ANN Methods for R14. (A) Comparison in low density (ρ < 2). (B) Comparison

in moderate density (2 < ρ < 6). (C) Comparison in high density (ρ > 6).
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FIGURE 6 | Thermal conductivity regression. Comparison between computational and ANN Methods for R32. (A) Comparison in low density (ρ < 2). (B) Comparison

in moderate density (2 < ρ < 6). (C) Comparison in high density (ρ > 6).
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FIGURE 7 | Thermal conductivity regression. Comparison between computational and ANN Methods for R115. (A) Comparison in low density (ρ < 2).

(B) Comparison in moderate density (2 < ρ < 6). (C) Comparison in high density (ρ > 6).
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FIGURE 8 | Thermal conductivity regression. Comparison between computational and ANN Methods for R143. (A) Comparison in low density (ρ < 2).

(B) Comparison in moderate density (2 < ρ < 6). (C) Comparison in high density (ρ > 6).
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FIGURE 9 | Thermal conductivity regression. Comparison between computational and ANN Methods for R152. (A) Comparison in low density (ρ < 2).

(B) Comparison in moderate density (2 < ρ < 6). (C) Comparison in high density (ρ > 6).
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with those of computational methods. Moreover, other nonlinear
methods may be used for prediction in this context.
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