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The characteristics and performances of catalyst are the key in catalytic ultrasonic

treatment of wastewater, and iron based catalysts are known for low cost, high

accessibility and safety. This paper reviewed the current research status of iron-based

catalysts in water treatment assisted by ultrasound. Zero valent iron, Fe3O4 and iron

composited with other metals were analyzed, their behaviors in catalytic sonochemistry

were summarized, and the potential catalytic mechanisms were discussed in details.

Finally, the future development in this field was proposed.
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INTRODUCTION

Each year, many kinds of refractory organic pollutants are charged into water (Richardson and
Kimura, 2017). These pollutants are hard to be removed by conventional treatment methods,
and development of advanced treatment technology is necessary. Ultrasound has attracted great
attentions for its safety, easy operation, high degradation efficiency, and free of secondary
pollutants (Pokhrel et al., 2016). But removal efficiencies of organic pollutants by ultrasound are
sometimes low and the energy consumption is high. Combination with catalyst to form catalytic
sono-reactions can improve the efficiency of organic pollutants removal and reduce the energy
consumption (Chatel et al., 2016). Many catalysts have been applied in the ultrasonic degradation
of pollutants (Descorme, 2017). More andmore papers are published in this field from 2010 to 2017
according to search results of the Web of Science (Figure 1).

Among all types of catalysts, iron-based catalysts are of the highest potential due to their low
cost, high safety and wide-distribution. Zero valent iron (ZVI), Fe2(SO4)3, FeSO4, FeCl3, and
FeOOH have long been used in water and wastewater treatment. Sonication alone achieved 22%
diclofenac degradation while combination of FeCeOx improved the efficiency to 81% (Chong et al.,
2017). Fe0/TiO2 nano-particle catalytic sonication achieved 100% removal of reactive black 5 in 20
min (Bhaumik et al., 2017).

This paper aims to provide an overview of this developing field of iron-based catalysts in water
treatment assisted by ultrasound. The properties, performances, and combination with othermetals
of iron-based sonocatalysts were discussed. Reaction mechanisms of sonocatalytic degradation of
organic pollutants were reviewed. Future development was proposed.
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FIGURE 1 | Number of articles on the subject of “catalyst and ultrasound” from 2010 to 2017.

FE-BASED SONOCATALYSTS

Iron element is famous for Fenton’s reagent (Fe2++H2O2),
a classic advanced oxidation technology. However, hazards
associated with the transport, handling and storage of bulk
quantities of H2O2 have made the process unsafe and
economically challenging. The combination of ultrasound and
iron-based catalysts can achieve high degradation efficiency of
organic pollutants without H2O2 (Chandran et al., 2014). Iron
based sonocatalysts, ZVI, Fe3O4, and iron composited with other
metals (lutetium and silver), have been examined. The reaction
scheme is based on sonochemistry and Fenton-like reaction. The
powerful ultrasound dissociates water to form·OH and H2O2,
which then reacts with Fe2+ and Fe3+ ions in sonocatalysts as
shown in Equations (1–5) (Jamalluddin and Abdullah, 2014). The
catalytic activity of Fe0 is also based on the surface chemistry
reactions of Fe0 to initiate the reactions in water, as shown
in Equations (6–8). Application of Fe0 as catalyst has a few
advantages: enhance mass transfer to the surface of the catalyst,
continuous damage of the catalyst surface to create more defects,
and cleaning of the catalyst surface (Güyer and Ince, 2011).

H2O(g)+ ultrasound → ·OH(aq) + ·H(aq) (1)

·OH(aq)+ ·OH(aq) → H2O2(aq) (2)

Fe2+(aq)+H2O2(aq) → Fe3+(aq)+ ·OH(aq)+ OH−(aq) (3)

Fe2+(aq)+ ·OH(aq) → Fe3+(aq)+ OH−(aq) (4)

Fe3+(aq)+H2O2(aq) → Fe2+(aq)+ ·OOH(aq)+H+(aq) (5)

Fe0 (s) + ultrasound → Fe2+(aq)+ 2e− (6)

Fe0 (s) + 2Fe3+(aq) → 3Fe2+(aq) (7)

Fe0 (s) +H2O2(aq) → Fe2+(aq)+ ·OH(aq)+ OH−(aq) (8)

Table 1 summarizes the typical iron-based sonocatalysts. The
dechlorination of Fe0 for complicated chlorinated compounds is
often incomplete and with low efficiency. Luo et al. (2010) found
that the Ag/Fe catalyst was quite effective for the degradation of
chlorinated organics, and silver also provide some disinfection
effect.

When nonmagnetic catalysts (e.g., TiO2) are employed, their
recovery is a troublesome issue. Super-paramagnetic Fe3O4

facilitates fast recovery/re-dispersion of the catalyst by simply
switching on/off an external magnet (Richardson and Kimura,
2017), which is the most effective and simplest method to
enhance the recovery and reuse of catalysts (Kang et al.,
2015). Taghizadeh and Seifi-Aghjekohal (2015) found that the
sonocatalytic activity of Fe3O4 was the best among Fe3O4, Rutile-
TiO2, ZnO, and Anatase-TiO2 nanoparticles. The proposed
reason was that Fe3O4 enhanced the ·OH radical generation by
the electron transfer between iron ions and H2Omolecules.

The activity of ZVI and Fe3O4 is promoted in acidic solution.
However, the reuse property is poor due to severe iron leaching
in acidic condition. Besides, acidic pH limits the practical
application of sonocatalysts. Therefore, iron composites catalysts
have been proposed. Zhou et al. (2015) found that the pH value
had a small effect on the sonocatalytic degradation of RhB by
LuFeO3, and the LuFeO3 particles exhibited a good structural
stability with no structural change before and after sonication.
Alwash et al. (2013) found that Fe/Ti-NaY kept its high activity
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TABLE 1 | Ultrasonic catalytic degradation of organic pollutants by iron sonocatalysts.

Sonocatalyst Organic pollutant Removal efficiency (%) References

1 Reactive ZVI Diclofenac k = 0.0786 min−1 Güyer and Ince, 2011

2 Fe0 Phenol 90 (TOC) Segura et al., 2012

3 ZVI aggregate C.I. Direct Red 23 95 Weng and Tsai, 2016

4 Rectorite-supported nanoscale ZVI Methyl orange and metronidazole 93 and 97 Yuan et al., 2016

5 Chitosan-stabilized nanoscale ZVI Acid fuchsine 99 Jin et al., 2016

6 Fe3O4 nanoparticles 2-hydroxyethyl cellulose k = 3.9 × 1010 mol−1
·L−1

·min Taghizadeh and Seifi-Aghjekohal,

2015

7 Nanosized Fe3O4-loaded coffee waste hydrochar Acid red 17 100 Khataee et al., 2017

8 Fe3O4/Polyaniline Methyl orange 100 Wang et al., 2015

9 Fe3O4-SiO2-TiO2 Ibuprofen 70 Kang et al., 2015

10 α-Fe2O3 nanoparticles Eosin Y 72.5 Gobouri, 2016

10 Fe2O3/SBA-15 Phenolic aqueous 100 Bremner et al., 2009

11 LuFeO3 RhB 82.9 Zhou et al., 2015

Acid orange 7 89

12 Fe/Ti-NaY Amaranth 75 Alwash et al., 2013

13 Fe-doped zeolite Y Acid red B 100 Jamalluddin and Abdullah, 2014

14 FeCeOx Diclofenac 83 Chong et al., 2017

15 TiO2 and Fe2+ 17α-ethynylestradiol 100 Frontistis and Mantzavinos, 2012

16 Fe-TiO2 nanotubes Rhodamine 99 Pang and Abdullah, 2012

17 Fe3+ doped TiO2 nanotubes Real textile waste water 79.9 Pang and Abdullah, 2013

18 Fe-fullerene/TiO2 Acid red 17 92 Meng and Oh, 2011

19 Fe-based catalysts Ibuprofen 100 Ziylan and Ince, 2015

20 Fe2+ Reactive blue 181 93.5 Basturk and Karatas, 2014

21 Modified montmorillonite Acid red 17 82 Acisli et al., 2016

22 Iron–silver bimetallic nanoparticles Tetrabromobisphenol A 100 Luo et al., 2010

in the decolorization of amaranth after three times of reuse; X-
ray diffraction proved that the catalyst was stable after reuse
and maintained its crystallinity. Another method to improve the
stability of catalyst is doping the active component on supports
like graphene and zeolite (Rakmae et al., 2016). Even at neutral
and alkaline medium, a good decolorization and degradation
efficiency could still be achieved in the present of Fe-doped zeolite
Y under ultrasound. Fe (III)/Y demonstrated good catalytic
efficiency, low Fe leaching, and good reusability (Jamalluddin and
Abdullah, 2014).

Iron has been used to modify TiO2 and formed new
sonocatalysts. TiO2 nano-tubes possess a relatively wide energy
band gap (3.2 or 3.0 eV in Anatase or Rutile phase) and fast
recombination rate of charge carriers (Richardson and Kimura,
2017). One possible solution to this problem is introducing
suitable transition metals such as Fe, Cr, or Co into TiO2 to form
a new sonocatalyst with narrower band gap and longer lifetime of
charge carriers (Pang and Abdullah, 2013).

POTENTIAL MECHANISMS OF
SONOCATALYTIC DEGRADATION OF
ORGANIC POLLUTANTS

The main mechanism of ultrasound is cavitation effects,
which can be enhanced by addition of sonocatalysts. Some

organic pollutants are adsorbed on the surface of catalysts,
thus increases the removal rate due to shorter reaction path.
Meanwhile, ultrasound enhances the redox reaction between
catalyst and organic pollutants. Potential mechanisms of
sonocatalytic degradation of organic pollutants are shown in
Figure 2.

Cavitation Effects
The most import sonocatalytic mechanism lays in the cavitation
of water during ultrasonic irradiation (Wang et al., 2015).
The cavitation involves the processes of formation (nucleation),
rapid growth (expansion), and violent collapse (implosion) of
cavitation bubbles. Such a violate collapse of cavitation bubbles
cause local high temperature and pressure (up to 5,000K and
1,000 atm) and the emission of light (sono-luminescence),
and generate free radicals including ·OH, ·OOH, and O−

2 ·

(Pokhrel et al., 2016). The free radicals can react with target
contaminants.

Mechanical effect is a main advantage of ultrasound
irradiation (Alwash et al., 2013). Ultrasound can promote
the mass transfer, which leads the contact of pollutants with
free radical or the catalyst more sufficiently. In addition,
the micro jet can collapse the catalyst into smaller particles,
which offer a higher surface area, thus enhances the surface
reaction.
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FIGURE 2 | Potential mechanisms of sonocatalytic degradation of organic pollutants.

The Enhancement of Cavitation Effects by
Catalyst
Catalyst particles in water can act as nucleus for cavitation
bubbles (Zhao et al., 2014). Once the catalyst particles sizes
are in the same order of magnitude with the size of the
cavitation bubbles, catalyst particles can form extra nucleus
of cavitation bubbles. Extra nucleus generates more cavitation
bubbles, causes stronger cavitation effects, leading to higher
degradation efficiency.

Adsorption of Catalysts
Organic pollutants can be adsorbed on the surface of catalysts due
to electrostatic attraction and sonication (Thangavel et al., 2015).
The adsorbed pollutants then react with the sono-generated free
radicals from/around the catalyst. Moreover, the concentration
of free radicals is high on the surface of catalysts and the
adherence of organic pollutants upon the catalyst can shorten the
path for radicals/cavities to decompose the pollutants. Then the
degradation rate of organic pollutants is improved.

Redox Reaction between Sonocatalyst and
Organic Pollutants
Organic pollutants can react with the surface of sonocatalyst. The
free radicals produced by ultrasound improve the redox reaction
between sonocatalyst and organic pollutants, which accelerates
the removal of organic pollutant. Free radicals react with
polyvalent metal sonocatalyst such as iron-based composites,
which may produce some new valence state sonocatalyst to
accelerate the reaction (Chong et al., 2017).

The Cleaning Effects of Ultrasound for
Catalyst
The cleaning effect of ultrasound for catalysts refers to the
phenomenon that ultrasound waves in the ultrasonic system
continuously remove the intermediates or by-products from the
surface of catalysts to reactive the surface (Alwash et al., 2013).

The cleaning effects of ultrasound are based on the cavitation
effects. Ultrasound generates many bubbles in water and they
collapse fast, then the catalysts are cleaned by the shock wave.
Such an ultrasonic regeneration of the sonocatalyst is of great
advantage via removing the contaminants and decomposition of
toxic organic pollutants (Wang et al., 2015).

CONCLUSIONS AND PERSPECTIVES

In this mini-review, the typical iron-based sonocatalysts
are summarized. Their sonocatalytic activity is different for
different organic pollutants. The special property for iron-
based sonocatalysts is magnetism, which is beneficial to
separate catalysts from water. The mechanisms of sonocatalytic
degradation of organic pollutants involve both ultrasound
irradiation and sonocatalyst. In the future, more works will be
done on this developing field and following issues might be of
great values:

(1) Produce better sonocatalysts
Obviously the sonocatalytic efficiency depends on the type of
catalyst. Development of novel catalyst with higher efficiency
has always been the hot topic, and better understanding of
the sonocatalytic mechanisms is also necessary to promote
the application of the sonocatalytic technology.

(2) Pay more attention to the safety and cost efficiency
Most researchers only investigate the activity of sonocatalyst,
but pay little attention on the economy and safety of
sonocatalyst. If the materials for preparing sonocatalyst are
rare or expensive and the preparation method is complex,
these sonocatalysts are difficult to be applied. The stability
and reusability of sonocatalyst also need be considered,
which are relative to the service life of sonocatalyst.

(3) Enhance the selectivity of sonocatalysts
In some situations, trace toxic substances and high
concentration of non-poisonous pollutants co-exist in water,
the sonocatalyst must have good selectivity, but little
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investigation is available on this subject, which needs be
addressed.
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