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GPR142 (G protein receptor 142) is a novel orphan GPCR (G protein coupled receptor)
belonging to “Class A” of GPCR family and expressed in β cells of pancreas. In this study,
we reported the structure based virtual screening to identify the hit compounds which can
be developed as leads for potential agonists. The results were validated through induced
fit docking, pharmacophoremodeling, and system biology approaches. Since, there is no
solved crystal structure of GPR142, we attempted to predict the 3D structure followed by
validation and then identification of active site using threading and ab initiomethods. Also,
structure based virtual screening was performed against a total of 1171519 compounds
from different libraries and only top 20 best hit compounds were screened and analyzed.
Moreover, the biochemical pathway of GPR142 complex with screened compound2 was
also designed and compared with experimental data. Interestingly, compound2 showed
an increase in insulin production via Gq mediated signaling pathway suggesting the
possible role of novel GPR142 agonists in therapy against type 2 diabetes.

Keywords: GPR142, virtual screening, pharmacophore hypothesis, VSW, IFD, systems biology, MD simulation,

type 2 diabetes mellitus (T2DM)

INTRODUCTION

Worldwide around 382 million people have been diagnosed with type 2 diabetes mellitus. With
an increasing incidence of type 2 diabetes, this disease has engrossed great concern (Du et al.,
2012). It is characterized by high level of blood glucose resulting from synergistic effect of reduced
insulin production and insulin resistance by the pancreatic β-cell (Lizarzaburu et al., 2012). One
of the important features is the deterioration of glucose control progressively over a period
of time. The hyperglycemia increases the risk of cardiovascular complications in patients with
diabetes that includes stroke, neuropathy, nephropathy, and retinopathy. Hence, to prevent chronic
diabetic complications, it is important to have effective glycemic control (Ahrén, 2009). Presently,
sulfonylureas and meglitinide as insulin secretagogues are being used for treatment of type 2
diabetes in patients (Winzell and Ahrén, 2007). However, these compounds lead to insulin release
independent of blood sugar level and result into hypoglycemia. The novel glucose stimulated
insulin secretagogues such as 5 GLP-1 analogs, DPP-IV inhibitors, GPR119 agonists and GPR40
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agonists have opened new and alternative treatment against Type
2 diabetes (Augeri et al., 2005). Also, diabetes requires multi-drug
therapies with a new intervention every few years to have better
control. Hence, it is essential to develop the therapies that can
lower the glucose level in the blood without risk of hypoglycemia.

GPR142, an orphan G protein-coupled receptor, is
predominantly expressed in pancreatic β-cells (Overton
et al., 2008). The stimulation of GPR142 by tryptophan initiated
intracellular signal transduction leads to enhanced glucose
dependent insulin secretion in isolated mouse islets (Kahn
et al., 2006). Hence, GPR142 can be a potentially advantageous
drug target for diabetes therapy and can provide an alternative
therapy with reduced risk of hypoglycemia. However, the
3D-structure and signaling pathways downstream of GPR142,
and its mechanisms are poorly characterized.

In this study, we have reported the structure based virtual
screening to find the hit compounds that can be used to develop
potential leads for novel agonists of GPR142 (Gund et al., 1974;
Hopfinger, 1985; Guner, 2000). The compounds were validated
through induced fit docking studies whilst ligand based virtual
screening was employed for pharmacophore modeling to derive
the structural requirements crucial for receptor binding (Dixon
et al., 2006b). A complete network pathway was constructed,
and kinetic studies were carried out for the screened compounds
binding to GPR142 to better understand the mechanism as well
as effect on insulin secretion.

METHODOLOGY

3D Structure Prediction and Validation
The sequence of GPR142 (UniProt ID: Q7Z601 and GenBank ID:
NP-861455.1) was retrieved from UniProt Database (Chen et al.,
2017; Pundir et al., 2017). As there is no solved crystal structure
of GPR142 and sequence showed a homology of only 21%,
3D structure prediction was done using threading and de-novo
methods. The threading approach was based on sequence-
structure alignment that includes searching of homologous
protein structures in the PDB (Lemer et al., 1995). Whereas, ab
initio modeling was based on conformational search under the
guidance of a designed energy function and model precision was
highly defined by the protein sequence length i.e., <100 amino
acid residues produced better results (Hardin et al., 2002). A
Delta-type opioid receptor chimeric protein [PDB ID: 4N6H]
(Fenalti et al., 2014) was initially selected as reference template
for build secondary structure of GPR142 using Modeler v9.8
program (B. Webb, A. Sali. 2014, Eswar et al., 2008). The 3D
modeled structure of GPR142 was then prepared using Protein
Preparation Wizard (Sastry et al., 2013). The model was further
validated by various modules available in SAVE server (Lüthy
et al., 1992; Colovos and Yeates, 1993; Laskowski et al., 1993;
Hooft et al., 1996; Pontius et al., 1996; Vaguine et al., 1999;
Benkert et al., 2008, 2009a,b, 2011). The methodology adapted
in this manuscript is shown as flowchart in Figure 1.

3D Tunnel and Domain Prediction
To understand the mechanism of ligand movement and probable
binding sites, tunnels were located in the modeled structure

of GPR142 using CAVER2.1 (Beneš, 2008; Beneš et al., 2010).
Domain predictions were performed using TMbase (Hofmann
and Stoffel, 1993) and GPCRHMM server (Wistrand et al., 2006).
TMbase and GPRCRHMM algorithm were based on statistical
and HMM analysis, respectively.

Active Site Prediction
Sitemap module of Schrödinger software suite (Halgren, 2007,
2009) was used to predict the binding site of GPR142. SiteMap
used the interaction energies to locate the energetically favorable
regions. It initially traced the sites that include a set of site points
on a grid. The numbers of site points for a site were set to 15
and the number of sites to be found was set to 5. More restrictive
definition of hydrophobicity and OPLS force field was used for all
the calculations.

Receptor Based Virtual Screening
The structure based virtual screening analysis was performed
using Virtual screening workflow of Schrödinger software suite
(Friesner et al., 2004, 2006; Halgren et al., 2004) against different
libraries of compounds. All the ligand structures present in
the databases were in 2D SDF format and converted to 3D
for docking studies. OPLS 2005 force field (Jorgensen and
Tirado-Rives, 1988; Jorgensen et al., 1996; Shivakumar et al.,
2010) was used for geometry optimization by truncated newton
conjugate gradient (TNCG) minimization. Receptor grid was
generated using centroid of active site residues with van der
Waals scaling factor of 1.0 and partial charge cutoff at 0.25.
LigPrep (Schrödinger Release, 2015) was used to prepare the
ligands with Epik (Shelley et al., 2007; Greenwood et al., 2010)
at 7 ± 2.0 pH units to expand protonation and tautomeric
states with OPLS2005 force field. Low energy stereoisomers were
generated for each ligand and ones holding low energy 3D
structures with correct chiralities were retained. The different
used libraries were namely; (1) Zinc, (2) SchrodingerDB, (3)
TimTec, (4) PUBCHEM, (5) Not annotated NCI, (6) Marine,
(7) DrugBank (Approved, Biotech, ILLICIT, Investigational,
Nutraceutical, Withdrawn), (8) ChemBank, (9) Anti-HIV NCI,
(10) DrugLikness NCI, (11) Asinex Ltd., and (12) ChEBI
(Grotthuss et al., 2004; Irwin and Shoichet, 2005). Virtual
screening was carried out in three phases: (a) Structure based
virtual screening (HTVS), (b) Standard Precision (SP), and (c)
(XP); Top 20 screened compounds were selected following virtual
screening based on docking score range (−13.041 to−8.0).

Validation
The top 20 compounds screened through virtual screening
were validated through blind docking, induced fit docking, and
pharmacophore generation. The validated compounds were then
used for further studies.

Blind Docking
Blind Docking using SP and XP was done without specifying
the active site residues. The epik state penalties were added to
the docking score (Shelley et al., 2007; Greenwood et al., 2010).
Scaling of van der Waals radii was also set to 0.8 and partial

Frontiers in Chemistry | www.frontiersin.org 2 February 2018 | Volume 6 | Article 23

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Kaushik et al. SBV Studies for GPR142 Hits

FIGURE 1 | Flow chart diagram for the modeling, Virtual screening, Pharmacophore generation, and 3D database screening for potential lead compounds as
GPR142 agonists.

charge cutoff at 0.15. The number of poses generated per ligand
was 100.

Induced Fit Docking
The 20 screened compounds were evaluated by induced fit
docking (IFD) (Farid et al., 2006; Sherman et al., 2006a,b)
wherein flexibility was imparted to the residues in active site
and its vicinity in GPR142, and implicit membrane was used in
induced fit docking. All the ligands were prepared using LigPrep
(Schrödinger Release, 2015) and were optimized with OPLS force
field. The induced fit docking was carried out in different stages.
During first stage, ligands were docked to rigid protein using
initial softened-potential Glide docking with vdW van der Waals
radii scaling of 0.7/0.5 for receptor/ligand, respectively. The top
20 poses for each test ligandwere used to sample protein plasticity
using Prime module of Schrodinger suite software (Jacobson
et al., 2002, 2004). In the next step, receptor sampling and
refinement was performed. Residues having at least one atom

within 5 Å of any of the 20 ligand poses were subjected to a
conformational search and minimization while residues outside
this range were fixed. So, in this way the flexibility of proteins
was taken into account. The backbone, side-chains and ligand
were subjected to subsequent energy minimizations. Further, re-
docking of the ligands was carried out into their respective 10
structures that were selected within 30.0 kcal/mol of their lowest
energy structure. Glide XP (extra precision) was used for all the
docking calculations. Finally, ligand poses were scored using a
combination of Glide Score functions and Prime (Jacobson et al.,
2002, 2004) where the top ranked poses for each ligand were
chosen as their respective final results.

Pharmacophore Development
The common pharmacophore hypothesis was performed using
Phase module of Schrödinger software suite (Dixon et al.,
2006a). Sixty compounds had been reported as potential GPR142
agonists (Du et al., 2012; Lizarzaburu et al., 2012) and compounds
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with EC50 value range between 0.036 and 33.00, were selected
from literature. These compounds were prepared by generation
of stereoisomers, neutralizing the charges on the structures and
generating ionization states at pH 7.0 using OPLS2005 force
fields. One thousand conformers were generated per compound
by ConfGen module of Schrodinger suite software (Watts et al.,
2010). All the conformations were pre-minimized and post-
minimized. OPLS2005 force field was used with GB/SA water
solvent treatment for calculation of minimization. Distance
dependent dielectric and maximum relative energy difference
were 10.0 Kcal/mol relative to the global energy minima and
redundant conformers were eliminated.

The Pharmacophore features i.e., Acceptor (A), Donor (D),
Hydrophobic (H), Negative (N), Positive (P), and Aromatic
Rings (R) defined by three chemical structure patterns were
point, vector and groups as SMARTS queries. These patterns
were assigned as one of three possible geometries, which defined
the physical characteristics of site. In case of aromatic rings, the
site includes directionality, defined by a vector that is normal to
plane of the ring.

A scoring function was used to examine the common
pharmacophore features (CPHs) to yield the best alignment of
active ligands and quality of alignment measured by a survival
score defined as:

S = WsiteSsite +WvecSvec +WvolSvol +WselSsel +Wm
rew

where weights are represented byWDs and scores are represented
by SDs, and Ssite represents an alignment score, Svec represents
the vector score and averages the cosine of the angles formed
by corresponding pairs of vector features in aligned structures.
Svol represents the volume score based on overlap of the van der
waals models of non-hydrogen atoms in each pair of structures.
Ssel represents the selectivity score, and accounts for the fractions
of molecules that are likely to match the hypothesis regardless of
their activity toward a receptor. Wsite, Wvec, Wvol, andWrew have
a default value of 1.0 while Wsel has a default value of 0.0. Wm

rew
represents the reward weights, where m is the number of actives
that match the hypothesis minus one.

Different data sets were used to build the pharmacophore
features:

First data set (high affinity EC50 value)
All the 60 compounds were chosen. The activity threshold was
set to 0.036. The compounds were considered active above 0.036
and inactive below 0.001. The maximum activity was at 0.930
and minimum activity was 0.036. The hypothesis was selected to
match at least 35 compounds out of 38 actives.

Second data set (medium affinity EC50 value)
All the 60 compounds were in second Dataset and activity
thresholds were set in such a way that, the compounds are
active if activity was above 1.060 and inactive it was below 1.000.
The maximum activity was set at 6.600 and minimum activity
was fixed at 1.060. The hypothesis was set to match at least 30
compounds out of 51 actives or active group.

Third data set (low affinity EC50 value)
All the 60 compounds were chosen in the third Dataset and
activity thresholds were set again in such a way that compounds
are active if activity was above 0.036 and inactive if below 0.035.
The maximum activity was at 33.000 and minimum activity at
0.036. The hypothesis was set to match at least 20 compounds
out of 60 actives or active group.

The hypothesis generated was used for matching against
screened ligands.

Combining the Ligand Based Virtual
Screening with Structure Based Virtual
Screened Compounds
A Phase database was created for the best compounds obtained
from virtual screening from different compound libraries. A
maximum of 100 conformers per structure of the phase database
were generated and up to 10 conformations per rotable bonds
were retained. This database was then searched to match the
pharmacophore hypothesis ADPRR. The Phase database was
searched for geometric arrangements of pharmacophore sites
that match inter-site distances and the site types. The conformers
that aligned to the hypothesis were rapidly retrieved from the
database. Fitness score was used to filter the conformers or hits
and then filtered by number. A comparative analysis was done
for experimental compound (with known EC50 value 0.036) with
compound21 obtained from matching with pharmacophoric
hypothesis.

Biochemical Pathway Construction of
GPR142 Complexes with the Potential
Compound
In order to explore the signal transduction in cellular process of
GPR142 membrane protein that terminates with the regulation
of transcription or downstream cellular process and ultimately
to understand their effect on insulin secretion, a biochemical
pathway for the GPR142 was constructed in presence of potential
compound. The interacting species (gene, protein, and other
molecules) were prioritized, collected from different sources
and literature survey, that included association studies of
GPR142 with drug or drug like compounds, linkage studies of
GPR142 and GPR41, gene expression studies related to insulin
production, drug kinetics in diabetes, and biological regulatory
pathways of type 2 diabetes. The concentrations were assigned
for each gene, protein and other molecules in micro molar. A
mathematical computational model of the signaling pathway of
GPR142 was then developed and visualized in Cell Designer
v4.4 (Funahashi et al., 2003). Systems biology approach was used
to investigate interactions of ligands with known EC50 vlaues
(0.054) and different concentrations of virtual screened ligands
against the GPR142. GPR142, GPR41, Gαs, Gαi, Gαq/11, and
Gα12/13 data were retrieved from different databases, servers,
tools and literature (Kanehisa, 1996, 1997, 2002; Kanehisa and
Goto, 2000; Kanehisa et al., 2002, 2004, 2006, 2008, 2010, 2011,
2014; Moriya et al., 2007; Harmar et al., 2009; Kotera et al.,
2012; Muto et al., 2013; Nakaya et al., 2013). A complete GPR142
pathway beginning with potential compound binding to GPR142
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for Type 2 diabetes was constructed within cell compartment.
During simulation the input values were assigned using kinetic
irreversible simple Michaelis Menten equation V =

VmS
Km +

S and mass action kinetics equation V = K 5i S. The kinetic
simulations were used to investigate which genes and proteins
interact with each other and effect the insulin secretion.

Molecular Dynamics Simulation
Molecular dynamics (MD) simulation was performed using
Desmond package v31023 (Bowers et al., 2006; Guo et al., 2010;
Shivakumar et al., 2010). MD simulation of GPR142 complex
structure with compound2 and compound21 was performed
by Desmond Schrödinger package for 50 ns (nanoseconds)
each. The system was build using simple point charge
water (SPC) model with membrane model 1-hexadecanoyl-
2–(9Z-octadecenoyl)-sn-glycero-3-phosphocholine (POPC) by
applying periodic boundary conditions (PBC) in simulation
box (orthorhombic). An embedded system neutralized with
counter ions and geometry of SPC molecules, SHAKE algorithm
neutralizing heavy atom bond lengths with hydrogen’s and
particle mesh ewald (PME) were applied for electrostatic
interactions. The full system composed of GPR142 structure with
compound2 and compound21 was simulated through multistep
MD simulation protocols, where initially system was minimized
with restraints on solute for maximum 2,000 iterations using
steepest descent and followed by conjugate gradient algorithm
with 50.0 kcal/mol/Å threshold energy. The system equilibrations
were performed by applying 10 ps (picoseconds) simulation
time for non-hydrogen solute atoms in NVT ensemble at 10K
temperature. Then 12 ps MD simulations were performed for
restraining non-hydrogen’s solute atoms in the NPT ensemble
at 10K temperature. Further, 24 ps MD simulation were
performed for restraining all non-hydrogen solute atoms in the
NPT ensemble at 300K temperature and similarly 24 ps MD
simulation were again performed to relax the system without
restraints in the NPT ensemble at 300K temperature. Complex
structure of GPR142 with compound2 and compound21, 50
ns each MD simulations were performed. Trajectories were
recorded after every 4.8 ps, where energy recording interval
was 1.2 ps. RMSD and RMSF of the complex structure of
GPR142 with compound2 and compound21 in each trajectory
was analyzed with respect to 50 ns simulation using OPLS2005
(Optimized Kanhesia for Liquid Simulations) force fields.

RESULTS

Structural Modeling and Validation of
3D-Model of GPR142
The 3D-structure of GPR142 was modeled using threading
and ab initio method. Ab initio approach is based on the
“thermodynamic hypothesis,” which states that the native
structure of a protein is the one for which the free energy
achieves the global minimum; ab initio is most difficult approach,
but a very useful approach. Threading and ab initio/de-novo
approach were applied to predict the 3D structure of GPR142
using available structural information from the resolved X-
Ray structures in PDB databank. Out of 462 amino acids, 283

were modeled from residue 151-433. Residues 1-150 from the
N-terminus and 434-462 from the C-terminus were trimmed
(Kaushik and Sahi, 2017). A total of twenty models were
generated and validated by SAVE server (Kaushik and Sahi,
2017). Best predicted model structures were further refined by
using Modeler v9.8, calculation of probability density function
(pdfs) and Discrete optimized potential energy (DOPE). The 3D-
model had DOPE score of −34453.63 which was lowest against
the predicted other models. Also, Ramachandran plot showed
94.9% residues in the allowed region that depicted the stability
of predicted model.

Active Site Prediction
The top ranked potential receptor binding sites were identified
using SiteMap. The best site had a score of 1.12 Å, 521 Å3 volume,
0.72 hydrogen bond acceptor score, 0.68 hydrophilic score, and
1.00 hydrophobic score. The active site residues were identified as
Phe212, Arg224, Asn235, Glu238, Trp300, Arg301, Lys314, and
Asp397. Active site regions were largely located in extracellular
regions of seven transmembrane domains where the potential
leads can bind and play crucial role in signal transduction.

3D Tunnel Representation and Domain
Prediction
Figure 2 represents the Trans membrane domains: 160 to 182,
TM2 194 to 216, TM3 236 to 258, TM4 278 to 300, TM5 315
to 337, TM6 357 to 379, and TM7 394 to 416. The tunnels
were generated using CAVER2.1 program. The tunnel leading
to active site had following coordinates; X coordinate at −4.95,
Y coordinate at −70.93, and Z coordinate at 66.58. Whereas,
bottleneck radius, length, curvature average gate radius was 3.60,
12.01, 1.03, and 4.67, respectively.

FIGURE 2 | (A) Predicted active site of GPR142 using Sitemap showing
different domains. (B) Tunnel region of GPR142; where active site resides
(Surface in mesh form) are color coded according to their property like
hydrophobicity, charge, and polarity. The Orange color depicts GLY and atoms
without PDB residues name, Green, Hydrophobic residues; Cyan, Polar
uncharged residues; Blue, Positively charged residues, and Red, Negatively
charged residues.
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Receptor Based Virtual Screening
A total of 1171519 compounds obtained from different libraries
were docked into the predicted active site of GPR142. A step wise
filtering protocol was used, in the first stage compounds were
docked using HTVS where a total of 112,927 hits were obtained.
These 112,927 compounds were further docked with Glide SP
where a total of 11,281 hits were obtained. Finally, the hits from
previous stage were subjected to Glide XP docking and only one
pose per ligand was retained. Finally, a total of 1,120 hits were
obtained as shown in Table 1.

Compound1 with a docking score of −13.041 is a
comfortable legend in the active site of GPR142. The 2,4-
dioxo-(1,2,3,4-tetrahydropyrimidin-1-yl)-3,4-dihydroxyoxolan-
2-yl moiety forms hydrogen bond with side chain residues
Arg224 and Asp397. The oxy phosphinato moieties form strong
H-bond interactions with side chains residues Asn235, Arg301,
and Lys314. The amino group of the dihydropyrimidine moiety
forms H-bond with the backbone oxygen of residues Phe212 and
Arg224 (Figure 3). The interactions analysis for the 20 screened
compounds is given in the Table 2 and their 2D structures are
given in Supplementary Data (Table S3).

Compound2 (docking score −11.331) and compound3
(docking score −11.265) both have chrome-4-one group and
trihydroxy methyl oxanyl moieties. In case of Compound2 the
hydroxyl groups form strong H-bond interactions with Arg224
and Asp397 residues. The hydroxy groups of dihydroxyl phenyl
moiety form strong interactions with Leu396 and His393. The
Chrome-4-one moiety is oriented in such a way that it has
hydrophobic interactions with Ala213, Leu394, and Met377.

In compound3 although it fitted well in the active
site, however, the orientation was such that the hydroxy
methoxy phenyl moiety did not have any H-bond interactions.
Compound4 and compound14 are dicarboxamide derivatives.
In Compound4, the dihydroxy propyl amino group had

TABLE 1 | Combinatorial library of chemical compounds which represents the
number of input compounds in different parameters of Glide Schrodinger suite
software and number of outputs compounds.

Zinc 358399 35831 3576 349 349

SchrodingerDB 416151 41615 4161 416 415

TimTec 9211 921 92 09 09

PUBCHEM 21592 2159 215 21 20

Not annotated NCI 17487 1748 174 17 01

Marine 419 41 04 01 01

DrugBank 5352 532 52 08 08

ChemBank 3919 391 39 3 03

Anti HIV NCI 10100 1010 101 10 10

Drug Likness NCI 200052 20005 2000 200 200

Asinex Ltd. 86748 8674 867 86 86

ChEBI 42089 0 0 0 0

Total 1171519 112927 11281 1120 1120

Top 20 screened compounds were shortlisted on the basis of docking scores (range

−13.041 to −8.0).

H-bonding interaction with Asn400 and Arg224 residues.
Hydrophobic interactions were observed with Ala213, Val226,
Ala234, Asn235, Leu394, Leu396, and Asp397 residues. In
compound14, the carboxamide moiety interacted with Leu396
and His393 residues. The amino group attached to the thiazole
ring had H-bond interaction with Arg224 and Asp397 residues.
Compound5 (docking score −10.076) was structurally similar
to Compound1. The phosphonate oxy groups formed strong
H-bond interactions with side chain of Lys314 and Arg301
residues. The purine moiety formed H-bond with Ala213
residue and the carbamoyl moiety of pyridine had H-bonded
interaction with Leu222 and Arg224 residues. Compound6 with
docking score of −8.97 formed H-bond with Arg224 residue.
It had strong hydrophobic interactions with Asp397, Leu396,
Asn235, Ala234, Glu238, and Lys314 residues. Compound7
(docking score of −8.743) sits well in the cavity of GPR142.
The indole triazine moiety has hydrophobic interactions with
Phe212, Ala213, Ala234, Val226, Asp397, and Asn400 residues.
The oxygen of imidazole ring forms H-bond with Leu396
residue. The oxygen of hexonoate group has strong H-bond with
Arg301 residue. Compound8 well occupied the binding site of
GPR142 through hydrophobic interactions. Only one H-bond
was observed between aminogroup of benzylamino moiety
and side chain of Asp397 residue. Compound9, compound11,
and compound16 are derivatives of phosphonic acid. In all
the three compounds, the phoshonic acid moiety formed
H-bond with side chain of Arg301 and Lys314 residues. The
oxygen of carbamoyl moiety formed H-bond with side chain
of Asn235 in compound9, compound16 and Asn400 with
compound11. Hydrophobic interactions were also observed with
Val209, Val226, Ala234, Asn235, and Leu396. Compound10 and
compound18 both have anthracene group. In compound10,
hydroxyl ethyl amino group formed H-bond with Arg301,
Asn235, Glu238, and Asn242 residues. Hydrophobic interactions
were observed with Ala234 and Val226 residues; whereas,
in compound18 the hydroxyl propyl amino group formed

FIGURE 3 | Compounds1 docked in the active of GPR142. The compound is
shown in sticks and the protein is depicted as ribbons and H-bonding is
shown as dotted lines.
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TABLE 2 | Top 20 screened chemical compounds screened based on using virtual screening along with respective Glide emodel score, number of Glide poses, their
hydrogen bond interactions, and ADMET properties.

Compound’s Molecular formula Database’s Docking score Glide emodel Glide poses Interactions (Hydrogen

bond interactions)

logP logS

Compound 1 C18H23N5O21P4 DrugBank −13.041 −93.629 40 Arg301, Asn235, Phe212,
Arg224, Asp397, Lys314

−0.53 −1.34

Compound 2 C27H30O16 ChemBank −11.331 −88.517 1 Arg224, Leu396, Asp397,
His393, Asp389

0.15 −2.24

Compound 3 C28H32O15 ChemBank −11.265 −90.187 5 Arg301, Asn235, Lys314,
Gln225

0.08 −2.60

Compound 4 C19H26I3N3O9 DrugBank −10.694 −78.884 32 Asp389, His393, Asn400,
Arg224, Phe212

−2.78 −2.66

Compound 5 C21H26N7O14P2 ChemBank −10.433 −93.381 1 Asp389, His393, Leu222,
Arg224, Lys314, Arg301,
Ala213, Ala234, Asn235

−1.38 −2.22

Compound 6 C41H42O6 DrugBank −8.971 −107.43 2 Arg224 6.11 −6.24

Compound 7 C29H30N6O4S1 Zinc −8.743 −74.994 11 Leu396, Arg301 4.57 −5.07

Compound 8 C30H35N3O2 Zinc −8.620 −74.959 46 Asp397 −0.05 −8.53

Compound 9 C20H21N1O8P1 Druglikness −8.609 −74.756 1 Arg301, Asn235, Lys314 1.16 −4.10

Compound 10 C22H30N4O6 AntiHIV NCI −8.530 −83.930 1 Arg301, Asn235, Arg224,
Glu238, Asn242

0.23 −4.76

Compound 11 C21H24N2O5P1 Druglikness −8.492 −63.345 2 Lys314, Arg301, Arg373,
Asn400

2.60 −4.06

Compound 12 C22H19Cl3O5 Druglikness −8.464 −67.858 5 His380, Lys314 4.31 −5.33

Compound 13 C12H20N3O7 PUBCHEM −8.386 −43.623 7 Asn400, Asn242 −2.00 −0.95

Compound 14 C29H28F1N5O4S1 Druglikness −8.301 −81.932 3 Asp389, Leu396, His393,
Asp397, Arg224

3.47 −5.73

Compound 15 C41H32O11 Zinc −8.281 −82.301 2 Asn400, Val231 4.80 −5.57

Compound 16 C20H21N1O8P1 Schrodinger −8.194 −68.208 9 Arg301, Lys314, Asn235 1.16 −4.10

Compound 17 C33H32N4O8 Zinc −8.098 −93.738 1 Arg224, Arg373, Asn400 3.61 −5.52

Compound 18 C24H34N4O6 Druglikness −8.089 −80.004 18 Asn235, Glu238, Asn242,
Asp389, His393

0.53 −5.15

Compound 19 C26H38N2O4 Druglikness −8.050 −52.984 1 Arg301 3.69 −5.55

Compound 20 C23H19NO10 Druglikness −8.036 −58.247 1 Asn235, Arg301, Arg373,
Asn400

3.27 −4.73

H-bond with His393 and Glu238 residues. The hydroxyl
group attached to anthracene moiety showed H-bonding
with Asn235 residue. Compound12 had mainly hydrophobic
interactions and one hydrogen bond. The hydroxyl methyl
group formed H-bond with Lys314 residue. Hydrophobic
interactions were observed with Ala234, Asn235, and Glu238
residues. In compound13, hydroxyl group of pentahydroxy
hexyl imino group formed H-bond with Asn242 and Asn400
residues. Hydrophobic interactions were observed with Ile206,
Val209, Ala234, Arg224, and Ala213 residues. Compound15
had hydrophobic interactions with Phe212, Arg224, Ala234,
Val231, Asn235, Leu396, His380, Asn400, and Asp397 residues.
It did not show any strong H-bonds. Compound17 had strong
H-bond interaction between with side chain of Arg224 and
Arg373 residue. Hydrophobic interactions were observed with
Asp397, Leu396, and His317 residues. In compound19, hydroxyl
group of the phenyl moiety formed H-bond with side chain
of Arg301 residue. The major hydrophobic interactions were
with residues Ala213, Ala234, Asn235, Phe239, Lys314, Glu238,
and Leu396. In compound20, hydroxyl group formed H-bonds

with Asn235, Arg301, and Arg373 residues. Hydrophobic
interactions were observed with Ala234, Glu238, and Leu396
residues.

Strong hydrogen bond interactions with amino acid residues
Arg224, Asn235, Arg301, Lys314, Asn85, and Asp397 played a
key role in binding affinity of potential compounds with GPR142.
Therefore, compounds with donor or acceptor groups that can
formH-bonds with these residues are likely to have better affinity.

Validation
Blind Docking
In order to cross validate the above results blind docking for
top compounds was performed. All the compounds docked
in the active site region are shown in Figure 4 and hence,
eliminating the possibility of other binding sites for these
screened compounds.

Induced Fit Docking
The most important feature of induced-fit docking (IFD) is
that both ligand and the residues in receptor’s active site
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FIGURE 4 | Cross validation of active site region where top 20 compounds
shown in different colors were docked at same active site regions which
validate the structural activity.

and its vicinity are imparted flexibility. The results of IFD
for the 10 screened compound was done to validate and
refine the interactions (Table 3). The Induced fit docking of
compound2 with GPR142 (Figure 5) showed with best docking
score of −13.449 and strong H-bonds. Therefore, compound2
was selected for further studies.

Common Pharmacophore Hypotheses Generation
A common pharmacophore hypothesis was generated using
Phase module of Schrodinger suite software. The known
experimental EC50 values for chemical compounds was retrieved
from the literature. For information of experimental compounds
used in study see Supplementary Data (Table S1). Using selected
variants, the common pharmacophore hypothesis was generated
amongst the given active ligands (Table 4). For scoring, the
maximum and minimum number of sites were set at 7 and 4,
respectively with a threshold such that at least 30 compounds
should match out of 51 actives. Clustering was done to
score hypotheses, vector and site filtering to retain those with
RMSD below 1.20 Å and vector score above 0.50 Å. The best
score hypotheses was ADPRR (Figure 6) with 3.224 survival
score, 0.71 site score, 0.912 vector score, 0.604 volume of
pharmacophoric feature. Survival score was calculated using
survival score formula (1.000 vector score, plus 1.000 site score,
plus 1.000 volume score, minus 0.000 reference ligand relative
conformational energy, plus 0.000 selective score, plus 1.000
number of matches, plus 0.000 reference ligand activity).

Pharmacophore Matching in Screened Compounds
Further, to investigate whether some of the screened compounds
shared the pharmacophoric features derived from known
potential GPR142 agonists, 1038 compounds obtained through

TABLE 3 | Top 10 potential screened chemical compounds after Induced Fit
docking analysis showing the score and the non-bonded interactions.

Compound’s Induced fit

(XP)

docking

IFD score XP interactions

Compound1 −11.173 −577.105 Arg301, Trp300,
Asp397, Asn235,
Glu238, Lys314

Compound2 −13.449 −572.7 Arg224, Lys314,
Leu396, His380,
Asp397, His393,
Asp389

Compound3 −11.567 −569.821 Asn235, Leu396,
Asp397, Arg224,
His380, Leu222,
Asp389, His393

Compound4 −9.6643 −572.504 Ile206, Glu238,
Arg373, Asn400,
Arg224, Tyr322

Compound5 −12.3708 −574.37 Val383, Lys314,
His380, Arg301,
Asn235, Gln225,
Leu222, Leu396,
His393, Asp389

Compound6 −10.468 2828552 –

Compound7 −9.1587 969.8008 His380, Ala395,
Leu396, Asp397

Compound8 −10.600 −575.545 Glu238

Compound9 −9.7384 −572.791 Lys314, Arg301,
Asn235

Compound10 −10.170 −565.303 Trp370, Arg373,
Asn400, Asp397,
His393, Asp389

FIGURE 5 | Compound2 with the highest Induced Fit docking score after
docking at same active site, where receptor and ligand both were flexible.
Interacting residues are shown as sticks. The dotted lines respresent the
H-bonded interactions.

receptor based virtual screening were searched for matches with
pharmacophore hypothesis. Some of the screened compounds
shared the same pharmacophoric features. Top 10 compounds
showed ADPRR pharmacophoric features and their 2D
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structure are given in Supplementary Data (Table S2); where
compound21 showed good binding affinity with the docking
score of −6.470. Interestingly, Compound21-Compound 30 had
good docking scores; however, comparatively the experimental
compound (compoundE1) had better docking scores and
stronger interactions. Comparative analysis between one of the
compounds (CompoundE1) with EC50 0.036 and compound21
revealed that both the compounds bound to the active site of

TABLE 4 | Selected variants for common pharmacophore hypothesis.

Variant Maximum number of hypotheses

ADRRR 1

AADPR 5

AAPRR 8

APRRR 7

DPRRR 6

ADPRR 22

AADRR 3

FIGURE 6 | Representation of common pharmacophore hypotheses, where
R5 has most important common pharmacophoric feature required to inhibit
Type 2 diabetes.

GPR142. CompoundE1 had a docking score of −4.860 against
that of −6.470 for compound21. Also, in CompoundE1 (mol wt:
450.56 g/mol) the amino group attached to the thiazole moiety
formed H-bond with Glu238. It had hydrophobic interactions
with Val204, Asn235, Ala234, Leu396, Asp397, where molecular
weight of experimental compound was 450.568 g/mol shown
in (Figure 7A). Compound21 (mol. Wt: 442.51 g/mol) had
two strong H-bonded interactions with Arg224 and Leu396
residues. Hydrophobic interactions formed with Ala213, Val231,
Ala234, Lys314, Met377, Leu394, Asp397, and His393 residues
(Figure 7B). Using Pharmacophoric hypotheses approach new
potential lead compounds were identified. ADMET analysis
of compoundE1 showed logP value of 2.54 and logs value of
−4.67 while compound21 showed good bioavailability of the
compounds with oral absorption value of 93.391%, logP value
3.00 and logS value−5.88.

Biochemical Pathway of GPR142 Complexes with

Screened Compound
The biochemical pathway of GPR142 complexes with
compound2 and compound21 was constructed to study the
effects of these compounds under the assumption that these
compounds bind to GPR142, as shown by virtual screening,
on the biochemical pathway in type 2 diabetes. In the network
three different signaling pathways were identified through which
insulin secretion enhanced on binding of compound2 and
compound21 with GPR142 (Figure 8). Stimulation of GPR142
by diverse hormones, growth factors and compounds stimulate
the hydrolysis of Phosphatidylinositol 4,5-bisphosphate (PIP2)
by phospholipase C (PLC) and produces two second messenger
as diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3)
through activation of Gq signaling pathway. (1) DAG in turn
stimulates protein kinase C (PKC) which triggers insulin
secretion. These results agree with the experimental results
that activation of Gq and Gi signaling by GPR142 agonists can
stimulate glucose-dependent insulin secretion. (2) IP3 stimulates
downstream signaling pathways and activates Ca2+ mobilization
which may enhance insulin secretion. (3) GPR142 through Gi
signaling pathway binds to adenyl cyclase (AC) and activates
cAMP pathway which may regulate insulin secretion through

FIGURE 7 | (A) Represents the docked complex of GPR142 with CompoundE1 (Experimental compound) and (B) Represents the docking complex of GPR142 with
compound21. Hydrogen bonded interactions are shown as dotted lines. For clarity, only few transmembrane domains of the protein are shown.
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protein kinase A (PKA) and exchange protein directly activated
by cAMP (Epac). The kinetic simulations of the test compounds
were done at different concentrations to see the effect on insulin
production. The kinetic studies were carried out using different
concentration of compounds. The optimum concentration

which enhanced the insulin production was taken as 0.036µM
for compound2 (Figure 9). We previously published complete
biochemical pathway of GPR142 network involved in type 2
diabetes (Kaushik and Sahi, 2015). The results showed significant
increase in insulin production. However, an inhibitory effect was

FIGURE 8 | Network depicting three different signaling pathways through which insulin secretion may be enhanced on binding of compound2 and compound21 with
GPR142.

FIGURE 9 | Kinetic studies of compound2 and its effect on insulin secretion X-axis represent the concentration of species and Y-axis represents the time of interaction.
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TABLE 5 | Hormones, ATP/ADP, ions and nutrients that affect insulin secretion via interaction through GPC.

Ligand Receptor Effect on insulin secretion Effect on glucagon secretion G protein Concentrations (mumol)

Value Min Max

ATP/ADP P2Y Stimulatory Not known Gs 1 0.1 1.9

CCK CCKA Stimulatory Stimulatory Gq 1 0.1 1.9

Compound2 GPR142 Stimulatory Not known Gs 0.036 0.036 0.068

Compound21 GPR142 Stimulatory Not known Gs 0.036 0.036 0.068

Glucagon Gcgr Stimulatory Stimulatory Gs, Gq 1 0.1 1.9

GLP-1 GLP-1R Stimulatory Inhibitory Gs 1 0.1 1.9

GIP GIPR Stimulatory Stimulatory Gs 1 0.1 1.9

NPY Y1 Inhibitory Stimulatory Gi 1 0.1 1.9

PACAP PAC1 Stimulatory Stimulatory Gs 1 0.1 1.9

Ach Ca2+/K+ Stimulatory Stimulatory Gq 1 0.1 1.9

AC cAMP Stimulatory No Effect/ Modulating Gi/o 1 0.1 1.9

PLC IP3/PIP2/DAG Stimulatory Inhibitory Gi 1 0.1 1.9

PKA GPCR Modulating Secretion Inhibitory Gq 1 0.1 1.9

cAMP Epac Inhibitory Stimulatory Gi 1 0.1 1.9

DAG analog PKC Stimulatory Inhibitory Gi 1 0.1 1.9

FIGURE 10 | (A) RMSD of carbon alpha atoms of complex structure of compound2 for 50 ns simulation, where Y axis represents the RMSD value in Å and X axis
represents the Time (ns) for GPR142 structure and compound21. (B) RMSD of carbon alpha atoms of complex structure of compound21 for 50 ns simulation, where
Y axis represents the RMSD value in Å and X axis represents the Time (ns) of GPR142 structure and compound21. (A1) RMSF of carbon alpha of complex structure
of compound2 for 50 ns simulation, where Y axis represents the RMSF value and X axis represents residues, where blue peaks represents the backbone, green peaks
represents the ligand contacts. (B1) RMSF of carbon alpha of complex structure of compound21 for 50 ns simulation, where Y axis represents the RMSF value and X
axis represents residues, where blue peaks represents the backbone, green peaks represents the ligand contacts.
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observed on cAMP production. This could be due to activation
of GPR142 through Gq signaling pathway via DAG and IP3. The
effect of different compounds/substrates/messengers on insulin
and glucagon secretion is given in (Table 5) (Winzell and Ahrén,
2007).

Molecular Dynamics Simulation
Molecular dynamics (MD) simulations provided an insight into
dynamic perturbations within the complex and interactions of
ligand, lipid and water molecules.

The root mean square deviations (RMSD) of complex2 and
complex21 protein were analyzed using carbon alpha (Cα) atoms
and stability of compounds by using heavy atoms RMSD over
50 ns on generated 10430 trajectory frames. The complex2
protein Cα atoms RMSD showed between 1.8 and 2.7 Å while in
complex21 showed higher RMSD but in constant range between
2.4 and 2.8 Å which is also comes in stable and acceptable range
(Figures 10A,B). Compund2 heavy atoms showed stable and
constant RMSD between 1.2 and 1.8 Å. It also showed some
fluctuations in RMSD between 20 and 25 ns, after 25 ns it remain
constant till end of the simulation. Compound21 also showed
constant RMSD at 0.8 Å that means it was stable throughout
simulation time.

The fluctuations in local domain of protein Cα atoms
and effect of compounds binding in protein analyzed by
root mean square fluctuations plot. Complex2 and 21 showed
two higher fluctuations in loop regions, first fluctuation
in loop which connects domain 3 and 4 between 300
and 312 residues and second connects domain 5 and 6
between 345 and 356 residues. N-terminal has large loop
region between 421 and 450 residues with fluctuations in
the acceptable range between 1.8 and 2.8 Å for the both
complexes. Domain 3 and 4 loops did not show binding
with compound2 while binding was recorded in compound21
(Figures 10A1,B1).

The interaction fraction analysis of ligand binding mode
in protein based on occupancy of hydrogen and hydrophobic
bonding throughout simulation periods. Compound2 showed
more than 90% hydrogen boding with Asn235 and Glu238
while 20% with Arg224, His393, Asp397, and Asn400 residues.
Hydrophobic occupancy showed between 30 and 60% during
simulation with Val209, Phe212, Ala213, Val226,Met377, His380,
Met381, Pro385, and Leu396 residues. In compound21, showed
less than 20% hydrogen bonding with Arg224 and Leu396
while showed hydrophobic occupancy between 20 and 50% with
the Val209, Ile210, Phe239, Lys314, Tyr322, Arg373, Met377,
His380, Pro235 residues. These interaction fractions suggested
that compound2 had strong binding affinity in comparison

to compare compound21 as given in Supplementary Data
(Figure S1).

CONCLUSIONS

GPR142 is a potential drug target for diabetes. Using structure
based virtual screening at the active site of GPR142, 1038
compounds were screened as potential inhibitors from the
set of 1171519 compounds at different libraries. Further, top
twenty screened compounds were selected and validated by
blind docking and induced fit docking studies. The compounds
that showed strong hydrogen bond interactions with amino
acid residues Arg224, Asn235, Arg301, Lys314, and Asp397
were concluded as potential agonists of GPR142. Also, a
pharmacophore hypothesis was generated using compounds
with known EC50 values that searched against the screened
compounds. A few compounds amongst the screened
compounds shared the same pharmacophoric features as
observed in the compounds reported in literature. The system
biology approach was used to study the effect of compound2
and compound21 on insulin secretion. Interestingly both the
compounds triggered insulin secretion on binding to GPR142 via
Gq signaling pathway. Thus, we were able to identify structurally
diverse compounds particularly compound1, compound2 and
compound21 which can be used as scaffold to design and develop
lead GPR142 agonists.
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