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Recently, a method based on non-equilibrium continuum thermodynamics which

derives thermodynamically consistent reaction rate models together with thermodynamic

constraints on their parameters was analyzed using a triangular reaction scheme. The

scheme was kinetically of the first order. Here, the analysis is further developed for

several first and second order schemes to gain a deeper insight into the thermodynamic

consistency of rate equations and relationships between chemical thermodynamic and

kinetics. It is shown that the thermodynamic constraints on the so-called proper rate

coefficient are usually simple sign restrictions consistent with the supposed reaction

directions. Constraints on the so-called coupling rate coefficients are more complex

and weaker. This means more freedom in kinetic coupling between reaction steps in

a scheme, i.e., in the kinetic effects of other reactions on the rate of some reaction

in a reacting system. When compared with traditional mass-action rate equations, the

method allows a reduction in the number of traditional rate constants to be evaluated from

data, i.e., a reduction in the dimensionality of the parameter estimation problem. This is

due to identifying relationships between mass-action rate constants (relationships which

also include thermodynamic equilibrium constants) which have so far been unknown.

Keywords: affinity, entropic inequality, independent reactions, kinetics, rate constants, rate equations,

thermodynamics

INTRODUCTION

Investigating impacts of thermodynamics on kinetics of chemical reactions is an area of unflagging
interest and continuous research. Due to the inherent non-equilibrium nature of ongoing chemical
reactions, especially the non-equilibrium thermodynamics brings significant progress to the aim
to put thermodynamics and kinetics in a common framework (for example, Pagonabarraga et al.,
1997; Bedeaux et al., 2010; Kannan and Rajagopal, 2011; Klika and Grmela, 2013; Rubí et al., 2013;
Arato and Morro, 2014; Bothe and Dreyer, 2015; Ge and Qian, 2016; N’Guyen et al., 2016).

Recently, a paper was published describing the detailed (non-equilibrium) thermodynamic
analysis of chemically reacting mixtures with consequences for kinetic models (Pekař, 2016). A
mixture of three isomers was used as an example to illustrate this approach, i.e., a first order kinetic
model was analyzed. An anonymous reviewer raised the question of what the effect would be of
including a second order reaction (a bimolecular reaction, in this case, but for the purpose of this
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Pekař Thermodynamic Analysis of Reacting Systems

work the distinction between order and molecularity is not
essential; only the term order will be used henceforth). Because
the answer to this interesting and important question is neither
short nor simple, providing it was postponed until this work.

The abovementioned approach (Pekař, 2016) attempts to find
some thermodynamic restrictions on chemical kinetics (Boyd,
1977). The majority of these approaches are of an a posteriori
type and use principles already established in equilibrium
thermodynamics (Qian, 2007; Ederer and Gilles, 2008; Al-
Khateeb et al., 2009; Vlad and Ross, 2009; Fleming et al., 2010;
Hernández-Lemus et al., 2014; Jones et al., 2015). A posteriori in
this context means that a reaction scheme is designed first and
then thermodynamics is applied to corresponding kinetic (rate)
equations.

The method of this (and the preceding) paper is of an a priori
type—it begins only with a list of components of a reacting
mixture. Then, the results of non-equilibrium thermodynamics
(Pekař and Samohýl, 2014) are combined with the mathematics
of stoichiometry (Bowen, 1968) to find independent reactions
and, subsequently, their final rate equations in the form of a
thermodynamic polynomial. This polynomial is very close to
traditional mass-action rate equations. The rate equations are
then analyzed for their consistency with a condition emerging
from the entropic inequality (the second law) given inmore detail
below (see Equation 2). The method not only directly derives
thermodynamically consistent and sufficient rate equations but
also gives constraints on their coefficients (representing, in fact,
rate constants) required to ensure consistency with the second
law. At this stage of development the method is worked out for
a reacting mixture of linear fluids (Pekař and Samohýl, 2014),
which, however, comprises many systems of interest to chemists.

The main steps of the method are briefly as follows. First, the
number of independent reactions is determined on the basis of
the list of components of a reacting mixture and their atomic
compositions (Bowen, 1968; Pekař and Samohýl, 2014; Pekař,
2016). Non-equilibrium continuum thermodynamics proves
(Samohýl, 1982; Pekař and Samohýl, 2014) that reaction rates
(of independent reactions) are functions of concentrations and
temperature: J = J(T, c1, c2,. . . , cn) = J(T, c). This function is
approximated by a polynomial in concentrations:

J =

Z
∑

β = 1

kEνβ

n
∏

α = 1

c
νβα
α ,

n
∑

α = 1

νβα ≤ M (1)

Here, J is the vector whose components are the rates of R
independent reactions, J = (J1, J2,. . . , JR), ci is the molar
concentration of component i, and n is the total number of
components. The vector kEνβ

contains polynomial coefficients
dependent on temperature only, the vectors Eνβ = (νβ1,νβ2,. . . ,
νβn) contain polynomial powers and are also used as subscripts
to index various vectors of polynomial coefficients (kEνβ

), and M
is the polynomial degree. For the total number of terms Z, see
Bowen (1968) and Pekař and Samohýl (2014).

The equilibrium condition is applied and the polynomial is
modified to a simplified final form, called the thermodynamic
polynomial, which contains also thermodynamic equilibrium

constants; no reversed rate constants are used. Although the
second law was already applied in the application of results of
non-equilibrium thermodynamics mentioned above, there is still
a condition resulting from this law which is not used and is
ignored in other works. This condition refers to reaction rates
expressed as functions of (chemical) affinities (Ap) and reads
(Pekař and Samohýl, 2014):

R
∑

p = 1

R
∑

r = 1

(∂Jr/∂A
p)eqA

pAr ≤ 0 (2)

Equation (2) is a negative semidefinite quadratic form in
affinities and the well-known conditions for a quadratic
form to be negative semidefinite can be applied. These
conditions give restrictions on rate coefficients (rate constants)
in the thermodynamic polynomial; in other words, they put
additional conditions on the thermodynamic consistency of rate
equations. However, the transformation of the above function
of concentrations, J(T, c), to the function of affinities is a
mathematical procedure which requires correct and rigorous
steps. These steps include expressing chemical potentials as
functions of concentrations, resulting in the appearance of both
chemical and so-called constitutive affinities (Pekař and Samohýl,
2014; Pekař, 2016). The results are generally J(T, c) = J(T, µ)
= J(T, A, B), where the vector µ contains chemical potentials,
the vector A contains chemical affinities, and the vector B

contains constitutive affinities. Condition (2) is applied to the
final function to find restrictions on rate parameters (constants).

OVERVIEW OF ANALYZED REACTING

SYSTEMS

The method described in previous works (Pekař and Samohýl,
2014; Pekař, 2016) and outlined in the introduction is applied
here on four different reacting mixtures in order to compare its
outcomes for the resulting first and second order kinetic models.
First, all four reacting systems are overviewed together with their
models of different orders which result from (1). Then, condition
(2) is applied on all models. Although in this method the order is
a matter of the degree of the approximating polynomial in (1)
and not a matter of a priori kinetic considerations, these two
views are related. To demonstrate this is a further aim of this
work. Beforehand, however, the relevant terminology should be
clarified. Strictly speaking, degree refers to the polynomial in (1)
and order to traditional rate equations. However, these two terms
are closely connected, as will be seen in what follows. Polynomial
degrees are whole numbers only and in a kinetic interpretation
of the thermodynamic polynomial they correspond to orders—in
this sense and according to this interpretation the two concepts
can be used and should be understood interchangeably.

The first reacting system is a simple mixture of two isomers, A
and B. Chemically, the simplest reaction here is assumed to be in
the form:

A ⇆ B, (R1a)
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which, as written, invokes first order kinetics. Its second order
version can be expressed in traditional kinetics as

2A ⇆ 2B. (R1b)

In this mixture, only one independent reaction is possible; the
vector J is thus one-dimensional. Reaction (R1a) is selected as
the independent reaction and the second-degree thermodynamic
polynomial can be written as (for derivation see Supplementary
Material):

J = k10(cA − K−1cB)

+ k20(c
2
A − K−1cAcB)+ k02(c

2
B − KcAcB) (3)

where the vectors k are also one-dimensional and K is
the thermodynamic equilibrium constant of the independent
reaction. At the same time, the first term on the right hand side
of (3) represents the first-degree thermodynamic polynomial.

The second analyzed system is composed of two single
components, A and B, and their compound AB. Here, the
combination reaction

A+ B ⇄ AB (R2)

occurs naturally and is of the second order (forward direction).
Also here, only one independent reaction exists—the most
natural selection is just the reaction (R2). The first-degree
thermodynamic polynomial vanishes in this reacting mixture;
consequently, only the second-degree (or possibly higher)
polynomial is reasonable. It has the following very simple form

J = k110(cAcB − K−1cAB), (4)

which resembles the traditional mass-action expression; K
is the thermodynamic equilibrium constant of the selected
independent reaction (R2). Note that, here also, the vector J

is one-dimensional. The vanishing first-degree thermodynamic
polynomial is a natural consequence of the mathematical non-
existence of paired pure first-power terms in the polynomial.
However, this does not mean that kinetically first-order terms are
missing—cf. the last term on the right hand side of (4).

The third system is just the mixture of three isomers (A, B,
and C) analyzed in the previous work, but, here, modeled with
the second degree thermodynamic polynomial:

J = k100(cA − K−1
1 cB)+ k001(cC − K2cB)+ k020(c

2
B − K2

1c
2
A)

+ k002(c
2
C − K2

1K
2
2c

2
A)+ k110(cAcB − K1c

2
A)+ k101(cAcC

− K1K2c
2
A)+ k011(cBcC − K2

1K2c
2
A) (5)

Here, two independent reactions are possible and are selected
(Pekař, 2016) as A = B and B = C with the corresponding
thermodynamic equilibrium constants K1 and K2, resp. The
vectors J and k are thus two-dimensional, the former containing
the rates of the two independent reactions: J = (J1, J2). The first
two terms on the right hand side of (5) represent the first-degree

thermodynamic polynomial which was analyzed in the previous
work (Pekař, 2016).

Traditionally, “triangular” reactions, (R3), are assumed to
occur in this mixture, one of them being dependent.

A B

C

1

2

3
4

5
6

(R3)

The last (fourth) system is similar and is that suggested by the
reviewer of the previous work. Here, also, a compound of two
isomers is included and the mixture thus contains the following
components: A, B, AB, BA where (only) AB and BA are isomers.
Analogically to (R3), a triangular scheme (R4) is suggested here
in traditional kinetics.

The number of independent reactions is still two. The second-
degree thermodynamic polynomial is:

J = k0001(cBA − K2cAB)+ k1100(cAcB − K−1
1 cAB)

+ k0002(c
2
BA − K2

2c
2
AB)+ k0011(cABcBA − K2c

2
AB)

+ k1001(cAcBA − K2cAcAB)+ k0101(cBcBA − K2cBcAB)(6)

The vectors J and k are two-dimensional, the first term on the
right hand side of (6) representing the only possible first-degree
term. The two independent reactions are selected as A+ B= AB
and AB = BA with corresponding thermodynamic equilibrium
constants K1 and K2, resp.

A + B AB

BA

1

2

3
4

5
6

(R4)

RESULTS AND DISCUSSION

Now, the results of the thermodynamic analysis of these four
reacting systems are discussed. Crucial for this analysis is the
application of condition (2).

Reacting System 1; A Mixture of Two

Isomers
The first-degree thermodynamic polynomial contains only one
rate coefficient (also called here “rate constant”), namely k10 (the
bold symbol is not retained due to the one-dimensionality of
k10 from (3), similarly for other one-dimensional quantities).
The transformed thermodynamic polynomial corresponding to
the function J(T, A, B) is (for derivation see Supplementary
Material):

J = k10 exp
−µo

A

RT
exp

B

RT
exp

A

2RT

(

exp
−A

RT
− 1

)

(7)
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where ◦ denotes the standard state and A and B are the two one-
dimensional affinities. Condition (2) results here in the following
simple expression:

(

∂J

∂A

)

eq

= −(1/RT)k10 exp
−µo

A

RT
exp

Beq

RT
≤ 0 (8)

and from this it follows that k10 > 0 (k10 = 0 makes no sense
in a reacting mixture), which is consistent with A being the
reactant and with its component rate JA being equal to –J, cf.
also (3), where JA represents reactant A’s formation rate. Thus,
the traditional mass-action kinetics expressed in the form of the
first-degree version of (3), including the sign of the rate constant,
is fully consistent with non-equilibrium thermodynamics—
particularly, with entropic inequality (the second law). It should
be noted that the presented method does not inherently include
restrictions on the non-negativity of concentrations; these should
be added as additional constraints.

In the case of the second-degree polynomial, the
transformation to the function J(T, A, B) is more complex
than (7) and can be found in Supplementary Material. Here, only
the final restriction resulting from (2) is shown:

k10 + k20cA,eq − k02K
2cA,eq ≥ 0, (9)

which should be fulfilled for an arbitrary equilibrium
concentration. This enables the following theorem1 to be
applied (the theorem was not necessary in the first-degree
models).

Theorem. If the inequality

a+ bx ≥ 0, (10)

where a, b, x are real numbers, is valid for any positive x, then it
is necessary and sufficient that

a ≥ 0, b ≥ 0. (11)

Proof. The sufficiency is obvious. The necessity is proven by
contradiction. First, (10) is not fulfilled for any x > 0 if a, b are
chosen as any of these three combinations: 1) a= 0, b< 0; 2) a<

0, b = 0; 3) a < 0, b < 0. If a, b are chosen as a > 0, b < 0 or a <

0, b > 0 then (10) is not fulfilled for any (positive) x < –a/b > 0.
For all other combinations of a and b, i.e., those satisfying (11), a
positive x not fulfilling (10) does not exist. Q.E.D.

Note that the theorem can be easily modified to c + dx ≤ 0
instead of (10); in this case, c ≤ 0, d ≤ 0. The theorem evidently
also enables the condition of the non-negativity of concentrations
to be included, albeit in an indirect way.

The theorem thus gives:

k10 ≥ 0 (12)

k20 − k02K
2 ≥ 0 (13)

The first condition (12) is the same as that found above for the
first-degree polynomial. Thus, both polynomials give consistent

1The theorem and its proof are provided by Vít Samohýl.

conditions for the first order rate constant (k10). Referring to
terminology introduced in a previous work (Pekař, 2016), the
coefficient k10 is a proper coefficient, while k20 and k02 are
examples of coupling coefficients. However, in this case, the
coupling coefficients are of a somewhat different type than
in Pekař (2016), where they coupled the selected independent
reactions in their rate equations. Here, they couple the rate of the
independent reaction with expressions which could be viewed as
rates of additional, dependent, reactions, cf. (3).

Let us further suppose that

k20 ≥ 0 (14)

Then, condition (13) is fulfilled (also) for k02 = −K−2k20, in
which case k20 + k02K

2 = 0. Consequently, reaction rate (3) is
transformed into the following expression:

J = k10(cA − K−1cB)+ k20(c
2
A − K−2c2B) (15)

This, with inequality symbols only in (12) and (14), gives the
traditional expression for JA (i.e., JA = –J) when (R1a) and
(R1b) occur simultaneously. Thus, this traditional expression is
achieved as a result of necessary condition (12) and a sufficient
version of condition (13), and, as such, this special case is thus
compatible with our thermodynamic requirements.

Reacting System 2; A Mixture of Three

Components, One of Them Being

Compound of the Other Two
As stated above, the first degree thermodynamic polynomial
vanishes here. The second degree polynomial in terms of affinities
is as follows (for derivation see Supplementary Material):

J = k110 exp
−µo

A − µo
B

RT
exp

B1 + B2

RT
exp

A

3RT

(

exp
−A

RT
− 1

)

(16)

Condition (2) is detailed in Supplementary Material; its main
result is thatk110 ≥ 0, which is fully consistent with the fact
that, for example, JA =−J (remember the negative stoichiometric
coefficients of reactants), where JA represents reactant A’s
formation rate and J is the rate of (the selected independent)
reaction R2, cf. (4).

Because the zero rate constant is impossible for A really
reacting with B, the positiveness of the rate constant, traditionally
supposed in mass-action kinetics, is shown here to be a condition
for consistency with thermodynamics (the second law).

In this example, the thermodynamic polynomial contains only
(one) proper coefficient, cf. (4).

Reacting System 3; A Mixture of Three

Isomers
Our previous work (Pekař, 2016) also compared traditional,
first-order, mass-action rate equations with those given by the
thermodynamic polynomial of the first degree. Therefore, we
start the discussion of this example by similar comparison in
the case of the second order (degree). The first order triangular
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scheme (R3) is added with its second order analog, i.e., scheme
(R3) with all stoichiometric coefficients equal to two. The mass-
action rate equations in a batch system are as follows:

r11 = k1cA − k2cB, r12 = k7c
2
A − k8c

2
B

r21 = k3cB − k4cC, r22 = k9c
2
B − k10c

2
C

r31 = k5cC − k6cA, r32 = k11c
2
C − k12c

2
A (17)

dcA/dt = −r11 + r31 − r12 + r32 (18a)

dcB/dt = r11 − r21 + r12 − r22 (18b)

dcC/dt = r21 − r31 + r22 − r32 (18c)

The relationship between the traditional rates and the rates
based on our thermodynamic approach are (for details see
Supplementary Material):

J1 = r11 − r31 + r12 − r32 (19a)

J2 = r21 − r31 + r22 − r32 (19b)

which is more complex than without the second order (degree),
cf. Pekař (2016), as expected. However, the second order rates are
mathematically included in the independent reaction rates in the
same way as their first order counterparts.

To be able to find restrictions on the traditional rate constants,
the thermodynamic polynomial (5) should retain only those
second degree terms which correspond to the reactions between
identical isomers. In other words, we select k110 = k101 = k011 =

0.Using the same procedure as previously (Pekař, 2016), we find
the same relationships between first order rate constants and first
degree polynomial coefficients. In the case of the second order
(degree), the following identities are found:

k8 = −k1020, k9 = k2020, k11 = −k1002 (20)

together with the additional restrictions:

k10 = k1002 − k2002 (21)

k7 + k12 = −k1020K1 − k1002K
2
1K

2
2 (22)

(note that, for example, k1020 refers to the first independent
reaction, whereas k2020 refers to the second one). Thus, out
of six second order traditional rate constants, only four are
independent and determine the values of the remaining two; for
example:

k7 = (k8 + k9)K1 − k10K
2
1K

2
2 (23)

k12 = −k9K1 + (k10 + k11)K
2
1K

2
2 (24)

This is similar to the first order scheme (R3), where two first order
rate constants were also not independent (Pekař, 2016). Further,
if equilibrium is defined by rij = 0, then from ri2 in (17) it is very
easy to derive an additional, “detailed balance” condition for the
second order rate constants:

k7k9k11 = k8k10k12 (25)

which, exactly as in the case of the first order (Pekař, 2016),
decreases the number of independent second order rate constants
to three.

The transformation of (5) into the function of affinities is very
complex in this example, and can be found in Supplementary
Material as well as the results of applying condition (2) to the
full thermodynamic polynomial, which are rather complex and
general. We therefore restrict our discussion to a simplified
version which contains only those second order terms in
the thermodynamic polynomial which correspond to reactions
between identical isomers as above; for example, 2 A = 2 B. In
other words, we set k110 = k101 = k011 = 0, again, and reactions
such as A+ B= 2C are not considered.

With this modification, condition (2) leads to restrictions on
two (proper) first order rate constants which are fully consistent
with those obtained previously with the first-order polynomial
(Pekař, 2016):

k1100 ≥ 0, k2001 ≤ 0. (26)

Further, the following explicit restrictions for three second order
constants can be derived from (2):

k1002 ≤ 0, k1020 ≤ 0, k2002 ≤ 0. (27)

All three are coupling constants but the latter two couple an
independent reaction with its double. There are no similar simple
restrictions on the remaining three rate constants which are
of a coupling type (coupling with rates of reactions which do
not belong to the selected independent reactions). They should
conform to a more complex condition given in Supplementary
Material.

Reacting System 4; A Mixture of Four

Components Capable of Isomerization and

Combination Reactions
Note that the first term on the right hand side of (6) represents the
(only) first order contribution and corresponds to the reaction
AB = BA (one of the two selected independent reactions). If
only the first degree thermodynamic polynomial is considered,
condition (2) gives the following restrictions (see Supplementary
Material for details):

k10001 = 0, k20001 ≤ 0. (28)

This means that J1 = 0, which is consistent with the fact that the
first selected independent reaction (A+B=AB) is of the second
order. Thus, our analysis independently underlines the fact that
the whole triangular scheme (R4) cannot be modeled solely by
a first order kinetic model. The second (inequality) condition,
which in real reactions is k20001 < 0, is consistent with the fact
that JAB = –J2.

All terms in (6) formally form the following reaction scheme
(Pekař, 2009):

1. AB= BA,
2. A+ B= AB,
3. 2 AB= 2 BA,
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4. 2 AB= AB+ BA,
5. A+ AB= A+ BA,
6. B+ AB= B+ BA.

Only the first two reactions directly reflect what chemists would
expect for the triangular scheme (R4) (the third reaction in
this triangle is not independent). Therefore, similarly as in the
preceding triangular example, we will restrict our discussion to
the simplified polynomial. This also enables comparison with
traditional mass-action kinetics. Thus, we put

k0002 = k0011 = k1001 = k0101 = 0.

The vector of reaction rates expressed as a function of affinities is
then:

J = k0001 exp
−µo

BA

RT
exp

B1 + B2

RT
exp

A1 − 2A2

5RT

(

exp
A2

RT
− 1

)

+ k1100 exp
−µo

A − µo
B

RT
exp

B1 + B2

5RT
exp

A1 − 2A2

5RT

(

exp
−A1

RT
− 1

)

(29)

Condition (2) then gives the following simple and explicit
restrictions (see Supplementary Material for details):

k20001 ≤ 0; k11100 ≥ 0. (30)

Both constants in (30) are of the proper type. The conditions
in (30) are consistent with the fact that JAB = J1 − J2. The
first condition in (30) also corresponds to the second condition
in (28) found for the first order model. The restrictions on the
remaining two (coupling) rate constants are not as simple, again.
They should satisfy the following condition (see Supplementary
Material for details):

(

1

2
k21100 −

1

2
k10001K1K2

)2

≤ −k20001k
1
1100K1K2. (31)

Note, that due to (30), the right hand side of (31) is positive, as
required.

Also in this case we can derive additional constraints on the
rate constants of the traditional mass-action kinetic model of
scheme (R4)—see Supplementary Material for details on this
procedure. The result is that the values of at least two traditional
rate constants are determined by the values of the remaining
four constants (together with the equilibrium constants). For
instance:

k2 = −k5K2 + (k1 + k6) K
−1
1 , k3 = (k4 + k5)K2 − k6K

−1
1 .(32)

(the numbering of the rate constants corresponds to the numbers
shown in scheme (R4)). Thus, the dimensionality of parameter
estimation problems is reduced by two.

It can also be easily verified that the traditional mass-action
rate equations of scheme (R4) also lead to a ”detailed balance”
constraint on their rate constants, very similar to that of the “first
order” triangular scheme (R3). This is another dimensionality
reduction. The number of independent rate constants is therefore

three, the same as in the case of the first order scheme (R3)
analyzed in our previous work (Pekař, 2016).

CONCLUSIONS

Second-order kinetic models—or, more specifically, second-
degree thermodynamic polynomials—further demonstrated the
power of the presented thermodynamic analysis and also revealed
where simple, specific results (restrictions) cannot be expected.
Second-degree polynomial models led to more complex results
arising from thermodynamic condition (2), but in all cases,
regardless of the degree (order) and overlooking some of the
simplifications made above, simple sign restrictions were found
for proper rate constants (coefficients). In contrast, restrictions
on coupling constants were usually weaker, giving no strict
restrictions on their sign, thus allowing them more “freedom.”
This means more freedom in kinetic coupling between different
reactions forming a reaction scheme, i.e., in the kinetic effects of
other reactions on the rate of some reaction in a reacting system;
at the same time, zero coupling (zero coupling rate constants) is
not excluded by these final thermodynamic restrictions.

The comparison of thermodynamic polynomials with
traditional mass-action rate models revealed constraints on the
rate constants of the latter which could not be revealed using
the traditional approach. The thermodynamic methodology
presented in this work thus allows a reduction in the
number of kinetic parameters to be evaluated from data, i.e.,
a reduction in the dimensionality of the parameter estimation
problem.

In this analysis, the universality and consistency of the
presented method was thus further underlined. It not only allows
rate equations to be derived on the basis of results of non-
equilibrium thermodynamics but also enables the derivation
of constraints on their rate coefficients which are necessary
for full consistency with entropy inequality (the second law of
thermodynamics). To this end, the proper transformation of
rate equations to functions of chemical and constitutive affinities
should be performed.
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Pekař, M. (2009). Thermodynamic framework for design of reaction rate

equations and schemes. Collect. Czech. Chem. Commun. 74, 1375–1401.

doi: 10.1135/cccc2009010
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Copyright © 2018 Pekař. This is an open-access article distributed under the terms

of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) and the

copyright owner are credited and that the original publication in this journal is cited,

in accordance with accepted academic practice. No use, distribution or reproduction

is permitted which does not comply with these terms.

Frontiers in Chemistry | www.frontiersin.org 7 March 2018 | Volume 6 | Article 35

https://doi.org/10.1063/1.3171613
https://doi.org/10.1515/zpch-2014-0531
https://doi.org/10.1039/c0cp00289e
https://doi.org/10.1007/s00707-014-1275-1
https://doi.org/10.1007/BF00281361
https://doi.org/10.1021/cr60305a006
https://doi.org/10.1002/elsc.200800040
https://doi.org/10.1016/j.jtbi.2010.02.044
https://doi.org/10.1016/j.chemphys.2016.03.026
https://doi.org/10.1515/jnet-2014-0015
https://doi.org/10.1115/1.4029172
https://doi.org/10.1007/s00033-010-0104-1
https://doi.org/10.1103/PhysRevE.87.012141
https://doi.org/10.1016/j.mechmat.2016.01.008
https://doi.org/10.1016/S0378-4371(96)00377-9
https://doi.org/10.1135/cccc2009010
https://doi.org/10.1002/cphc.201600528
https://doi.org/10.1146/annurev.physchem.58.032806.104550
https://doi.org/10.1007/s10765-013-1484-1
https://doi.org/10.1002/wsbm.50
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles

	Thermodynamic Analysis of Chemically Reacting Mixtures—Comparison of First and Second Order Models
	Introduction
	Overview of Analyzed Reacting Systems
	Results and Discussion
	Reacting System 1; A Mixture of Two Isomers
	Reacting System 2; A Mixture of Three Components, One of Them Being Compound of the Other Two
	Reacting System 3; A Mixture of Three Isomers
	Reacting System 4; A Mixture of Four Components Capable of Isomerization and Combination Reactions

	Conclusions
	Author Contributions
	Funding
	Supplementary Material
	References


