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Biochemical analysis in reliable, low-toxicity, and real-time manners are essentially

important for exploring and unraveling biological events and related mechanisms. Silicon

nanomaterial-based sensors and probes have potentiality to satisfy the above-mentioned

requirements. Herein, we present an overview of the recent significant improvement in

large-scale and facile synthesis of high-quality silicon nanomaterials and the research

progress of biosensing and bioimaging analysis based on silicon nanomaterials. We

especially illustrate the advanced applications of silicon nanomaterials in the field of

ultrasensitive biomolecular detection and dynamic biological imaging analysis, with a

focus on real-time and long-term detection. In the final section of this review, we discuss

the major challenges and promising development in this domain.
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INTRODUCTION

During the past decades, functional nanomaterials [e.g., fluorescent semiconductor quantum
dots (QDs), graphene, carbon nanodots, gold/silver nanoparticles (Au/Ag NPs), etc.] have
been intensively employed for the design of various biosensors and probes, owing to their
excellent physicochemical properties (e.g., unique optical/electronic performance, large ratios of
surface-to-volume, and good surface tailorability as well as abundant surface chemistry, etc.) (Jung
et al., 2010; Holzinger et al., 2014; Tilmaciu and Morris, 2015). With the rapid development of
silicon nanotechnology, silicon nanostructures/nanohybrids with attractive properties have been
extensively developed for the rational fabrication of high-quality sensors and probes for bioimaging
and biosensing applications (Nishimura et al., 2013; Wang et al., 2013; Lai et al., 2016). It is worth
pointing out that silicon nanomaterials [e.g., silicon nanoparticles (SiNPs), silicon nanoneedles]
could easily biodegrade into renal clearable molecules (i.e., silicic acid) and then excrete out
the body with no evidence of toxicity in vivo (Park et al., 2009; Chiappini et al., 2015). Of
particular concern is that ultra-small (diameter: 3–10 nm) Si NPs have received the Food and Drug
Administration (FDA)-approved investigational new drug approval for first-in-human clinical
trials (Phillips et al., 2014). Consequently, different dimensional silicon nanomaterials have been
prepared and functionalized for various analytical applications. For instance, zero-dimensional
fluorescent SiNPs featuring good water-dispersibility, strong fluorescence, as well as ultrahigh
photostability, have been proved to be ideally suitable for tracking live cells in real-time and
long-term ways (Peng et al., 2014; Zhong et al., 2015). On the other side, one-dimensional
silicon nanowires (SiNWs) and two-dimensional silicon wafer nanohybrids (e.g., silicon wafer
decorated with metal NPs) could be designed as a general biosensing technology for enhanced
surface-enhanced Raman scattering (SERS) studies (Wipf et al., 2013;Wang et al., 2016). Compared
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with free metal NPs-based SERS sensors, silicon-based SERS
sensors embody superior sensitivity and reproducibility.
Consequently, various kind of functional silicon SERS
sensors have been exploited for sensitively and selectively
detecting myriad biological and chemical species in reliable and
reproducible manners.

Herein, this review article will briefly summarize recent
significant improvement in the preparation of silicon
nanomaterials and their bioapplications in biochemical
analysis (Scheme 1). In the following sections, we first present
recent efforts in preparing fluorescent silicon nanomaterials with
high luminescence in facile and large-scale manners. Then, we
illustrate the typical examples of sensors and bioimaging analysis
based on silicon nanomaterials. In the last section, we examine
future challenges and potentialities associated with myriad
biochemical analysis studies based on silicon nanomaterials.

SYNTHESIS OF SILICON NANOMATERIALS

Since the first discovery of the unique optical properties
of fluorescence silicon nanomaterials (Wilson et al., 1993;
Park et al., 2001), numerous synthetic strategies have been
reported to prepare silicon nanomaterials with high fluorescence
and photostability, vastly facilitating the exploration of their
optical applications in biochemical analysis (Atkins et al.,
2011; Zhou et al., 2015; Dasog et al., 2016; Liu et al., 2016).
Combined with current research concerns, this section intends to
briefly summarize recent progresses in facile and large-quantity
synthesis of fluorescence silicon nanomaterials, including zero-
dimensional SiNPs and one-dimensional silicon nanostructures.

Various high-efficacy and workable strategies have been
introduced for the large-scale preparation of fluorescence SiNPs
with strong fluorescence [photoluminescent quantum yield
(PLQY): ∼15–25%] and robust photostability in facile and rapid
manners, which are fundamentally critical for their long-awaited
applications. By virtue of fast rise of temperature and uniform
heating of samples, microwave irradiation is advantageous for
large-scale and rapid synthesis of high-quality fluorescent SiNPs.
As a typical example, Zhong et al. reported that 0.1 g SiNPs
could be readily obtained within 10min by using organosilicon
molecules as silicon precursors via microwave-assisted method
(Zhong et al., 2013). Recently, by using low-cost and non-
toxic silicon resources (e.g., rice husks, wheat straws, and
diatoms, etc.), a microwave-assisted biomimetic method was
further developed for synthesizing SiNPs in an environmentally
friendly manner (Wu S. C. et al., 2015; Wu et al., 2016).
Besides aforementioned microwave equipment-assisted strategy,
a photochemical method has gained researchers’ attention, which
can be used to prepare SiNPs in glass flasks undermild conditions
(i.e., room temperature and normal pressure) (Zhong et al.,
2015). Of particular note, ∼10 g high-quality SiNPs could be
obtained in short time (<40min) under UV irradiation using
a potable xenon lamp, which sufficiently satisfied the need of
wide-ranging biological applications.

Different from zero-dimensional SiNPs, one-dimensional
fluorescent silicon nanostructures possess unique optical

properties (Zheng et al., 2012; Wu K. F. et al., 2015). Particularly,
reduced thresholds of multiexciton generation and optical
gain of one-dimensional silicon nanostructures are beneficial
for the fabrication of high-performance silicon nanomaterial-
based nanolasers and nanodevices (Shabaev et al., 2013). The
pioneering example of one-dimensional fluorescent silicon
nanorods (SiNRs) has been reported in 2013 (Lu et al., 2013).
In this work, relative low luminescence (PLQY: ∼5%) SiNRs
have been prepared by the decomposition of trisilane in hot
squalane with the presence of Tin NPs and odecylamin, followed
by hydrogen fluoride (HF) and thermal treatment. Recently, on
the basis of microwave-assisted synthetic approach for preparing
SiNPs (Zhong et al., 2013), highly luminescent SiNRs with
PLQY of ∼15% have been further fabricated by adding milk
into the reaction precursors (Song et al., 2016). Briefly, crystal
nucleation including silicon and carbon nanoclusters could
be firstly created through microwave irradiation. Meanwhile,
calcium phosphate (Cap) crystallization was formed through
fusion-fission between Ca or P ions linked protein micelles in
the presence of aminosilane, which facilitated the aggregation
of the silicon and carbon nuclei, resulting in one-dimensional
silicon nanomaterials with rod-structures. Particularly, the
as-prepared SiNRs possessed excitation wavelength-dependent
fluorescence spectra and have been conceptually developed for
the construction of white-light-emitting devices (LEDs). Lately,
the same group introduced a new type of one-dimensional
multifunctional silicon shuttles (SiNSs), which could be obtained
by addition of Fe3+ ions into the same silicon source. Following
the above-mentioned workflow, SiNSs were fabricated through
Fe3+-induced oriented attachment mechanism (Song et al.,
2017). Significantly, the resultant SiNSs featuring intrinsic
magnetism and excitation-wavelength dependant luminescence
simultaneously were proved to be superbly suitable for advanced
anti-counterfeiting application with additional magnetism-
related secrecy (Song et al., 2018). As thus, benefiting from
advantages of microwave, the presented strategies have been
proved to be efficient and general synthetic approaches for
preparing one-dimensional silicon nanomaterials rapidly and
facilely; and moreover, such method shows great promise for
developing fluorescent silicon nanomaterials with multiple
functionalities.

BIOSENSING

The past decade has witnessed the exciting achievements in
the fields of silicon nanomaterials/nanohybrids-based sensors,
enabling determination of myriad biological and chemical
species in sensitive and reliable manners. In this section,
we focus on introducing typical recent advances of silicon-
based biosensors, particularly including field-effect transistor
(FET) sensors, fluorescent sensors and surface-enhanced Raman
scattering (SERS) sensors.

The FET sensors can evidently amplify electronic signals,
which are mainly composed of a semiconductor path (defined
as “channel”) and two electrodes (defined as “source” and
“drain,” respectively) (Knopfmacher et al., 2014). Specifically, the
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SCHEME 1 | Fabrication of silicon nanomaterial-based platform for biochemical applications [i.e., synthesis of silicon nanomaterials (Wu S. C. et al., 2015) (reprinted

with permission, Copyright 2015, ACS Publications); (Zhong et al., 2015) (reprinted with permission, Copyright 2015, ACS Publications); (Song et al., 2016) (reprinted

with permission, Copyright 2016, ACS Publications), biosensing (Sun et al., 2015) (reprinted with permission, Copyright 2015, ACS Publications); (Wang et al., 2014)

(reprinted with permission, Copyright 2014, AIP publications); (Zhu et al., 2015) (reprinted with permission, Copyright 2015, ACS Publications), and bioimaging (Zhong

et al., 2013) (reprinted with permission, Copyright 2013, ACS Publications); (Wu S. C. et al., 2015) (reprinted with permission, Copyright 2015, ACS Publications); (Ji

et al., 2015) (reprinted with permission, Copyright 2015, Wiley-VCH)].

conductance signals of FET sensors could vary when detecting
biological or chemical species, which would induce a negative or
positive gate voltage. To date, SiNWs-based FET sensors have
been used for real-time, label-free, sensitive, and multiplexed
determination of a variety of species, including chemical reagents
as well as biological species [e.g., sodium ions (Wipf et al.,
2013), nucleic acids (Gao et al., 2013; Lu et al., 2014), cancer
biomarker (Shehada et al., 2014), and proteins (Krivitsky et al.,
2016) etc.]. Recently, Krivitsky et al. reported a simple and
efficient strategy for sensing specific biomarkers directly from
unprocessed biosamples using antibody-modified SiNW-based
FET devices, which was free of time-consuming manipulation
procedures (Krivitsky et al., 2016). As illustrated in Figure 1A

(left panel), when the biosample contained analyte biomarker,
the specific binding of biomarker on antibody-modified SiNW
FET device would result in relative slower rate of returning to
baseline during the “dissociation regime” compared to those of
control groups (e.g., SiNW modified with non-specific antibody
or no antigen in the sample). Based on the presented sensitive

and selective approach, themousemonoclonal antihuman cancer
15-3 IgG (CA 15-3) in practical sample was readily detected
and quantified by using the anti-CA 15-3-modified SiNW
FET sensing device based on the corresponding dissociation
kinetic curves (Figure 1A, right panel). In addition to the
conventional affinity-based FET sensors, C. Lieber’s group also
developed several types of SiNWs-based transistors for recording
neural activity in multiplexed, long-term, and high-resolution
manners (Qing et al., 2014; Xie et al., 2015). For example, they
stereotaxically implanted the 3D mesh-based nanoelectronics
incorporated with SiNWs-based FET sensors in a frozen state
into rodent brains with minimal damage, and employed it to
record multiplexed local field potentials (LFPs) and single-unit
action potentials from the somatosensory cortex, opening up new
avenues for implantation and long-term brain activity mapping
based on silicon nanomaterials (Xie et al., 2015).

Fluorescent sensors feature excellent sensitivity, short-time
data acquisition, facile manipulations and low cost, which
have been intensively explored for a myriad of sensing
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FIGURE 1 | (A) Schematically illustrating the workflow of antibody-conjugated SiNW-based FET sensor device (upper part, green receptor units) vs. non-immune

reactive protein-conjugated control device (lower part, red receptor units) (left panel). Right panel: Specific (anti-CA 15-3) and non-specific protein (BSA CA-15-3)

functionalized SiNW-based FET sensor devices for the detection of the CA 15-3 antigen. Reprinted with permission from Krivitsky et al. (2016). Copyright (2016) ACS

Publications. (B) Eu@SiNRs for intracellular pH measurement. Confocal images of internalized Eu@SiNRs in MCF-7 cells with different cytoplasmic pH values (i.e.,

3–9) (left panel). Scale bars = 25µm. Right panel: Corresponding histograms of the fluorescence intensity ratio (R = I470 /I620) vs. pH values ranging from 3 to 9.

Inset is the linear relationship between R and pH values (i.e., 4–9). Reprinted with permission from Chu et al. (2017). Copyright (2017) ACS Publications.

applications. By virtue of strong and stable fluorescence of silicon
nanomaterials, various types of fluorescent silicon nanomaterial-
based sensors have been designed and fabricated for the
detection of biological and chemical species, including glucose
(Yi et al., 2013a), agricultural chemicals (Yi et al., 2013b),
nitroaromatic explosives (Gonzalez et al., 2014; Ban et al.,
2015), food additives (Jose et al., 2016), and intracellular pH
(Chu et al., 2016, 2017), and so forth. Very recently, Chu
et al. presented one dimensional europium (Eu)-doped SiNRs-
based ratiometric sensing system without additional chemical
modification, allowing for detecting intracellular pH fluctuation
in live cells in real-time and long-term manners (Chu et al.,
2017). Particularly, the presented Eu@SiNRs featured pH-
sensitive emission peak at 470 nm and pH-insensitive one at
620 nm simultaneously under single-wavelength excitation, thus
producing ratiometric signals (R = I470/I620). Remarkably, the
developed sensors exhibited broad-pH response (e.g., ∼3–9)
in human breast cancer (MCF-7) cells (Figure 1B, left panel),

which was confirmed by corresponding liner regression equation
and correlation coefficient (Figure 1B, right panel). The instinct
fluorescence emission change of Eu@SiNRs probe with pH
fluctuation eliminated linking of pH-sensitive moiety and
further modification of reference fluorophores, providing novel
strategies for facile fabrication of high-quality ratiometric sensors
based on fluorescent nanomaterials.

SERS is able to amplify the feeble Raman intensity ideally
up to 1014∼1015, offering ultrasensitive avenues to explore
the Raman signals at the single-molecule level. Compared
to free Au NPs or Ag NPs-based SERS-active substrates,
silicon nanohybrids (Au/Ag NPs-decorated silicon wafer or
SiNWs array)-based SERS substrates feature superior SERS
enhancement and better reproducibility (Shi et al., 2017). The
distinct SERS enhancement is originated from the hybridization
of metal nanoparticles-scattered electromagnetic field and Si-
reflected electromagnetic field (Wang et al., 2014). Meanwhile,
the improved reproducibility is ascribed to uniform metal
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nanoparticles tightly anchored on the silicon surface, efficiently
avoiding the uncontrollable aggregation of free nanoparticles
in liquid phase (Wang et al., 2016). Taking advantages of
these merits, silicon nanohybrids-based SERS substrates are
ideally suitable for the analysis of myriad biological and
chemical samples in practical systems in sensitive, reliable and
reproducible manners, such as apoptotic cell (Jiang et al., 2013),
mercuric ion (II) (Sun et al., 2015), DNA (Zhu et al., 2015),
bacteria (Wang et al., 2015), lead ions (Shi et al., 2016), and
trinitrotoluene (TNT) (Chen et al., 2017). On the basis of these
exciting works, silicon nanohybrids-based SERS sensors have
been well-designed as portable and reliable analytical platforms,
which serve as powerful tools for tracing specific compound from
environmental samples.

BIOLOGICAL IMAGING

SiNPs featuring benign biocompatibility and unique optical
properties (i.e., strong fluorescence coupled with ultrahigh

photostability) are emerging as novel high-quality fluorescent
nanoprobes for biological imaging analysis, particularly for
tracking dynamic biological procedures in long-term and real-
time manners.

Systematic characterizations of bio-behaviors of SiNPs in
biological systems (e.g., cellular internalization mechanism,
intracellular trafficking, and final destination, etc.) are crucial
for reliable toxicology analysis, providing a feasible evaluation
of utilizing SiNPs for biological applications. By virtue of
strong and stable fluorescent signals, the cellular behaviors of
SiNPs could be dynamically monitored in live cells (Shiohara
et al., 2010, 2011; Cao et al., 2017; Zhou et al., 2017).
Very recently, comprehensive and reliable investigations of
cellular internalization and intracellular fate of SiNPs have
been revealed by analyzing the colocalization of SiNPs with
various subcellular compartments (Cao et al., 2017). Typically,
SiNPs were internalized into cells mainly through clathrin-
mediated and caveolae-dependent endocytosis and actively
transported from periphery to the perinuclear region along
microtubules after cellular internalization. Along with efficient

FIGURE 2 | (A) Confocal images of time-dependent cellular uptake of PEI-SiNPs/pDNA nanocomplexes in HeLa cells (top panel). Cell membranes were stained with

Dil. Fluorescence of SiNPs and Dil is defined as blue and red, respectively. Scale bars = 20µm. Bottom panel: Real-time and long-term tracking the dynamic

movement of the nanocomplexes in a live cell. The movement trajectory is delineated in green line. Reprinted with permission from Pang et al. (2016). Copyright (2016)

Springer. (B) Schematic illustration of SiNP-RGD for labeling PAT-3/integrin at the muscle cell membrane in C. elegans (left panel). Right panel: Specific labeling the

subcellular PAT-3/integrin using SiNP-RGD and PAT-3 antibody. Reprinted with permission from Zhou et al. (2017). Copyright (2017) Springer. (C) Fluorescence

images and time-gated confocal images of SKOV3 cells immunostained by anti-HER2-modified SiNPs (a–c), A431 cells stained by anti-mouse secondary

antibodies-labeled FITC (d–f), co-cultured SKOV3 cells and A431 cells labeled by anti-HER2-modified SiNPs and FITC coupled with anti-mouse secondary

antibodies, respectively (g–i), and non-treated SKOV3 cells and A431 cells (j–l). Reprinted with permission from Tu et al. (2017). Copyright (2017) ACS Publications.
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internalization, SiNPs showed no apparent toxic effect on cell
growth, as demonstrated by the metabolic activity and integrity
of the plasma membrane. Besides above-mentioned cellular
investigations in vitro, visual observation of in vivo behaviors of
SiNPs was further achieved, facilitating the extensive utilization
of SiNPs for biological and biomedical applications (Zhou
et al., 2017). By using C. elegans as a classic model organism,
biodistribution, stability, and biocompatibility of SiNPs in live
organisms have been elucidated. The distribution of SiNPs could
be altered by different administration methods; and moreover,
the internalized SiNPs would reserve in specific organisms
without diffusion during long-term observation time (i.e., 4 h),
demonstrating the possibility of using SiNPs-based bioprobes for
specific tissue imaging studies. In addition, SiNPs have a little or
no toxic effect on body morphology, life span, and reproduction
ability of tested worms, implying the superb biocompatibility of
SiNPs in living organisms. These findings suggest the possibility
for design of high-quality biocompatible SiNPs-based bioprobes
for long-term and real-time tracking biological events in vitro
and in vivo.

Biologically relevant molecules [e.g., transferrin (Tf)
(Nishimura et al., 2013), sugar (Lai et al., 2016), targeting peptides
(Song et al., 2015; Zhou et al., 2017), and polyethylenimine (PEI)
(Pang et al., 2016), etc.] have been utilized to functionalize
SiNPs, producing the SiNPs-based biofunctional nanoprobes for
dynamically studying carbohygrate-carbohydrate interactions,
single Tf receptor (TfR) molecule tracking, and targeting
specific cancer cells. In particular, benefiting from the non-
or low toxicity and high photostability of SiNPs, SiNPs-based
fluorescent probes are superbly suitable to track cell-biological
interactions in living cells in a real-time way, which have been
studied by several groups. In 2016, Pang et al. developed PEI

encapsulated SiNPs nanocomposites, which simultaneously
possessed bright and stable fluorescence, high DNA-binding
capacity (∼97%), and adaptable transfection efficiency (∼35%)
in human cervical carcinoma (HeLa) cells as well as feeble
cytotoxicity (Pang et al., 2016). Taking advantages of these
merits, the dynamic transport of internalized SiNPs-based
carriers could be monitored by detecting stable and bright
blue fluorescence signals of SiNPs (Figure 2A, top panel).
The entire trajectory presented that SiNPs-based gene carriers
moved toward perinuclear region, which was advantageous to
efficiently delivery genetic information into nucleus (Figure 2A,
bottom panel). As a typical example, by functionalizing SiNPs
with cyclic RGD (i.e., arginine-glycine-aspartic acid) peptides,
the resultant SiNPs-RGD bioprobes allowed for monitoring
integrin-mediated endocytosis during persistent observation
time (∼120min) (Song et al., 2015). Such SiNPs-RGD bioprobes
were further proved to be suitable for specifically labeling and
imaging of body-wall muscle cells in live C. elegans by targeting
PAT-3/integrin at a molecular-level (Figure 2B) (Zhou et al.,
2017). These works suggest that RGD functionalized SiNPs can
be used as a general tool for in vitro and in vivo bioimaging
analyses, which is also confirmed by cancer-related in vivo
applications addressed by Erogbogbo et al. (2011) and Ji et al.
(2015) independently.

It is worth noting that the imaging resolution of SiNPs-
based fluorescence imaging can be dramatically improved
by using time-gating techniques (Gu et al., 2013; Joo et al.,
2015; Kim et al., 2017; Tu et al., 2017). Early in 2013, Gu
et al. utilized photoluminescent porous SiNPs (pSiNPs) with
unusually long-emission lifetime (5–13 µs) for time-gated
imaging of tissues in vivo, completely eliminating shorter-lived
(10 < ns) emission signals from fluorescent proteins or tissue

SCHEME 2 | Perspective of silicon nanotechnology in biochemical analysis (Chu et al., 2017, reprinted with permission, Copyright 2017, ACS Publications).
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autofluorescence (Gu et al., 2013). In particular, pSiNPs-
administrated tumor displayed distinct fluorescence, whereas
autofluorescence of normal tissue and short-lived fluorescence
of mCherry-expressing tumor were completely removed in the
TG image. Later, Tu et al. further demonstrated the fluorescence
signals of SiNPs with long photoluminescence lifetimes of
ca. 25 µs could be separated with shorted-lived fluorescein
isothiocyanate (FITC) by using TG confocal fluorescence
imaging regardless of their overlapped photoluminescence
spectra (Tu et al., 2017). Typically, as shown in Figure 2C,
co-cultured SKOV3 (human ovarian carcinoma cells) and
A431 (human epidermoid carcinoma cells) cancer cells
immunostained by functionalized SiNPs and FITC could not
be separate from each other in fluorescence imaging and
short-lived component, whereas only SiNPs-labeled SKOV3
cells exhibited fluorescence signals in long-lived component.
These demonstrations imply that long-lived SiNPs-based TG
imaging technique has great potential for high-contrast and
high-sensitivity optical imaging, such as precise discernment
of tumor margins during surgery without disturbing adjacent
normal tissues with background autofluorescence or interfering
chromophores with short fluorescence lifetimes.

CONCLUSION AND PERSPECTIVE

In conclusion, past several years have witnessed considerable
progresses in the fabrication of silicon nanomaterials and
their applications in biochemical analysis. Several economic
and facile synthetic strategies have been developed for the
preparation of strong fluorescent SiNPs with controllable colors
in facile and large-quantity manners. Meanwhile, effective
methods of surface modification have been reported to
further improve optical properties and aqueous dispersibility
of SiNPs. Besides the zero-dimensional fluorescent SiNPs, one-
dimensional fluorescent silicon nanostructures (e.g., SiNRs and
SiNSs) have been fabricated. Current challenge remains that
the exact photoluminescence mechanism of fluorescent silicon
nanostructures is controversially to some extent, which requires
thorough elucidation in the future.

In terms of sensing applications, benefiting from superior
optical properties (i.e., strong and stable fluorescence), SiNPs
have been designed as diversified fluorescent sensors, and
silicon nanohybrids-based substrates have been employed for the
fabrication of high-performance SERS sensors. Such high-quality
sensing platform featuring high sensitivity, favorable specificity,
and excellent reproducibility, is extremely suitable for the

determination and analysis of chemical reagents and biological
species in reliable and sensitive manners. Notwithstanding,
it is worth pointing out that current sensing applications
are mostly limited in the lab research, extensive effort is
therefore required to improve the consolidated feasibility of
the silicon-based sensors for measurement and analysis of
practical samples. On the other hand, silicon nanomaterial-
based SERS database featuring superior SERS enhancement
and better reproducibility can be collected and served as
input data for SERS spectra-based artificial intelligence sensing
application, potentially assisting artificial intelligence (AI) to
make decisions in sensitive and reliable manners. For bioimaging
fields, by the virtue of the superior optical properties (i.e.,
robust fluorescence coupled with ultrahigh photostability), SiNPs
have been employed as novel promising fluorescent nanoprobes,
which enable monitoring dynamic biological procedures in
long-term and real-time manners. Despite of these exciting
research advances on the exploitation of SiNPs for biological
imaging analysis, deep investigations are still necessary to
explore the potential feasibility for clinic cancer treatment (e.g.,
intraoperative imaging and surgical excision of sentinel lymph
nodes).

We believe that accompanied by deepening understanding of
the above-mentioned challenges, the silicon-based bioimaging
and nanosensors would raise new perspectives for various
biochemical analysis studies (Scheme 2), and show great
potentiality for extensive practical applications in biochemical
analytical and sensors fields (e.g., artificial intelligence and
precision medicine).
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