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Nwat-MMGBSA is a variant of MM-PB/GBSA based on the inclusion of a number of

explicit water molecules that are the closest to the ligand in each frame of a molecular

dynamics trajectory. This method demonstrated improved correlations between

calculated and experimental binding energies in both protein-protein interactions and

ligand-receptor complexes, in comparison to the standard MM-GBSA. A protocol

optimization, aimed to maximize efficacy and efficiency, is discussed here considering

penicillopepsin, HIV1-protease, and BCL-XL as test cases. Calculations were performed

in triplicates on both classic HPC environments and on standard workstations equipped

by a GPU card, evidencing no statistical differences in the results. No relevant differences

in correlation to experiments were also observed when performing Nwat-MMGBSA

calculations on 4 or 1 ns long trajectories. A fully automatic workflow for structure-based

virtual screening, performing from library set-up to docking and Nwat-MMGBSA

rescoring, has then been developed. The protocol has been tested against no rescoring

or standard MM-GBSA rescoring within a retrospective virtual screening of inhibitors of

AmpC β-lactamase and of the Rac1-Tiam1 protein-protein interaction. In both cases,

Nwat-MMGBSA rescoring provided a statistically significant increase in the ROC AUCs of

between 20 and 30%, compared to docking scoring or to standardMM-GBSA rescoring.

Keywords: MM-GBSA, explicit water, molecular dynamics, GPU, structure based virtual screening, protease,

protein-protein interactions

INTRODUCTION

Structure based virtual screening (SBVS)methods are widely applied in drug discovery (Enyedy and
Egan, 2008; Sousa et al., 2013). In most of the cases, SBVSs are done in the hit-to-lead development
phase of the drug discovery process, with multiple successful outcomes (Enyedy et al., 2001a,b;
Vangrevelinghe et al., 2003). In SBVS-related studies, scoring functions are mostly applied for
potential hit selection. In general, the scoring functions are based on either empirical, knowledge-
based, or molecular mechanics force field derived potentials (Wang et al., 2003; Raha et al.,
2007). Additionally, to make the virtual screening process computational inexpensive, the scoring
functions are most likely simplified. Thus, some important contributions known to influence the
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binding affinity are neglected (Sousa et al., 2006; Moitessier et al.,
2008). Inevitably, applications of such simplified methods tend
to fail in the hit optimization phase, where more meticulous
selections are required about structurally similar compounds for
better prediction of biological activity (Leach et al., 2006; Tirado-
Rives and Jorgensen, 2006; Warren et al., 2006; Enyedy and Egan,
2008).

A better scoring can be achieved by considering energy
evaluation averaged over an ensemble of conformations from
a complex dynamic trajectory, as is the underlying concept
of the molecular mechanics Poisson-Boltzmann / Generalized
Born surface area (MM-PB/GBSA) analysis. Of course, the
applications of MM-PB/GBSA methods are at the cost of
increased computational expenses (Massova and Kollman, 2000).
Nonetheless, the MM-PB/GBSA methods have been successfully
applied to estimate binding energies (Kollman et al., 2000), or
incorporated as a scoring method in SBVS applications (Lyne
et al., 2006; Zhou et al., 2006; Ferrari et al., 2007; Xiong
et al., 2007; Xu et al., 2010; Xu, 2012; Knight et al., 2014).
The treatment of the solvent in MM-PB/GBSA calculations
is implicit, providing an acceptable estimations of the energy
contribution while bulk water is the only solvent-related concern
(Wong and Lightstone, 2011; Yang et al., 2013). However,
explicit water molecules might also be important in forming
biomolecular complexes (Chong and Ham, 2017), particularly
waters involved in bridging the ligand and the receptor (Wong
et al., 2009; Abel et al., 2011; Ahmad et al., 2011; Wallnoefer
et al., 2011; Maffucci and Contini, 2013; Mikulskis et al.,
2014). Indeed, by analyzing several thousand of crystallographic
complexes, it was recently observed that at least a water molecule
mediates contacts between the partners in about two thirds of
all the considered systems (Hendlich et al., 2003). Thus, several
computational methods were proposed to aid the identification
of important water molecules in crystal structures (Raymer et al.,
1997; García-Sosa et al., 2003; Amadasi et al., 2006). Moreover,
although replacing a water molecule in the binding site is a
generally accepted strategy to increase drug potency, it has
been shown that better pharmacodynamic properties might be
obtained by keeping a tightly bound water as a bridge between
the ligand and the receptor (García-Sosa, 2013). The effects
of targeting or displacing binding site waters in drug design
can be rigorously assessed by free energy calculations (García-
Sosa and Mancera, 2010), that however are still too demanding
when libraries of hundreds of molecules need to be evaluated.
Therefore, some approaches have been attempted to consider
the contribution of water-mediated interactions into the ligand
docking score (Young et al., 2007; Ricchiuto et al., 2008; Forli
and Olson, 2012; Ross et al., 2012; Kumar and Zhang, 2013;
Murphy et al., 2016) or into theMM-PB/GBSA estimated binding
energy (Checa et al., 1997; Wong et al., 2009; Genheden et al.,

Abbreviations: SBVS, structure based virtual screening; VS, virtual screening;
ROC, receiving operator characteristic; AUC, area under curve; MD, molecular
dynamics; MM-GBSA, molecular mechanics Generalized Born surface area; PPI,
protein-protein interaction; SD, steepest descendent; CG, conjugated gradient;
NVT, constant number of particles, volume and temperature; NPT, constant
number of particles, pressure and temperature.

2011; Wallnoefer et al., 2011; Greenidge et al., 2013; Maffucci and
Contini, 2013).

In this framework, we developed a MM-PB/GBSA variant,
that we refer as Nwat-MMGBSA, which provided good-to-
excellent results in ranking the binding energies of different
protein-ligand or protein-protein complexes (Maffucci and
Contini, 2013, 2016). Nwat-MMGBSA is based on the inclusion
of a number of explicit water molecules, that are selected
to be the closest to the ligand in each frame of the MD
trajectory and are included as part of the receptor during the
analysis. In addition to our work (Maffucci and Contini, 2013,
2016), Aldeghi and coworkers recently validated, by a thorough
statistical analysis, the use of this approach on bromodomains
(Aldeghi et al., 2017). Compared to other methods that include
explicit water in MM-PB/GBSA calculations, Nwat-MMGBSA
might have some advantages. For instance, relevant explicit
water might be selected from the crystal structure (Wong et al.,
2009; Wallnoefer et al., 2011). However, this imply that high
resolution crystal structures are available, while Nwat-MMGBSA
calculations can be performed on receptor models obtained
by other techniques, such as homology modeling or NMR.
Moreover, crystallographic water sites might derive from the
average electron density of several molecules competing for
the same position (Schiffer and Hermans, 2003). Indeed, we
previously observed that a water-bridge between the ligand and
the receptor found in the crystal structure of topoisomerase I in
complex with topotecan (Staker et al., 2002) was described by
the competition of three different waters in a 4 ns MD trajectory
(Maffucci and Contini, 2013). It was also reported that explicit
water for MM-GB/PBSA calculations might be selected fromMD
simulations accordingly to their distance from the ligand (Zhu
et al., 2014). In this case, the distance from the ligand atoms is
fixed, while the number of waters is different in each snapshot
selected for MM-PB/GBSA analysis. However, by comparing
this method to Nwat-MMGBSA, where the number of selected
water is constant among all snapshots, we observed that Nwat-
MMGBSA provided a better correlation with experiments and
a better reproducibility among multiple repetitions of the same
calculation (Maffucci and Contini, 2016). In this work, aiming
to make Nwat-MMGBSA suitable for rescoring ligands in low-
to medium-throughput SBVS experiments, we optimized the
protocol to improve its efficiency, without losing in accuracy.
We selected penicillopepsin (James et al., 1992; Ding et al.,
1998; Hou et al., 2011a), HIV1-protease mutants (Shen et al.,
2010; Olajuyigbe et al., 2011) and BCL-XL (Lessene et al.,
2013) as test systems with known experimental data, either
binding free energy (1G), inhibition constant (ki), or IC50.
Our studies have shown improvements in the coefficient of
determination to experimental data (r2) ranging from 10 to 60%,
depending on the number of explicit water molecules considered
in the energy evaluation. Moreover, we assessed the Nwat-
MMGBSA approach for SBVS rescoring performance in a ligand-
protein interaction and a protein-protein interaction (PPI)
scenario (AmpC β-lactamase and Rac1-Tiam1, respectively). In
both cases, improved outcomes were observed compared to
either docking scoring or to standard MM-GBSA rescoring.
Furthermore, the complete SBVS workflow applied in this
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work, including Nwat-MMGBSA rescoring, is provided in the
Supplementary Information as a set of bash and tcsh scripts that,
together with working tutorials, should make it readily applicable
to other biomolecular systems of interest.

METHODS

Preparation of Complexes
Crystal structures of the penicillopepsin [PDB codes: 1APU,
1APV, 1APT, 1APW (James et al., 1992), 2WEA, 2WEB, and
2WEC (Ding et al., 1998)] and HIV1-protease [PDB codes:
3NU3, 3NU4, 3NU5, 3NU6, 3NUJ, 3NU9, 3NUO (Shen et al.,
2010), 3NDW, and 3NDX (Olajuyigbe et al., 2011)] complexes
(Table S1) were obtained from RCSB Protein Databank (Figures
S1, S2). However, for the BCL-XL system, (Figure S3) only
3ZK6, 3ZLN, 3ZLO, and 3ZLR complexes were available as
crystal structures (Lessene et al., 2013). Therefore, the starting
structures of the unavailable complexes were reconstructed using
MOE software (Molecular Operating Environment, v2016.08,
2016) starting from the available ones. Ligand partial charges
were derived with the AM1-BCC method using the antechamber
(Wang et al., 2006) software of AmberTools15 package (Case
et al., 2014). All waters, ions and stabilizing agents present
in the crystal structures were removed. The protonation state
of every titratable residue within the complexes were assigned
at physiological conditions using the Protonate-3D module of
MOE.

MD Simulations
MD simulations were performed with the pmemd.MPI or
pmemd.cuda (Götz et al., 2012; Salomon-Ferrer et al.,
2013) modules, depending on the hardware (classical HPC
environment or GPU equipped workstations, respectively),
included in the Amber14 package (Case et al., 2014). The ff14SB
(Maier et al., 2015) and the gaff (Wang et al., 2004) force fields
were adopted for the protein and the ligand in all simulations
respectively. In each complex, the total charge was neutralized
by adding Na+ or Cl- ions, and the systems were solvated by an
octahedral box of TIP3P water (Jorgensen et al., 1983), with a
box size of 10 Å from the solute.

The equilibration and production protocols were updated to
optimize performance, in respect to previous studies (Maffucci
and Contini, 2013, 2016). The systems were initially relaxed by
optimizing the position of hydrogens (1,000 cycles of steepest
descent (SD) and 5,000 cycles of conjugated gradient (CG), up to
a gradient of 0.01 kcal mol−1 ·Å; restraints of 100 kcal·mol−1 ·Å2

were applied on heavy atoms) and of ions andwaters (2,000 cycles
of SD and 5000 cycles of CG up to a gradient of 0.1 kcal·mol−1·Å;
restraints of 50 kcal·mol−1·Å2 were applied on atoms other
than ions and water). The solvent box was then equilibrated at
300K by 100 ps of NVT and 100 ps of NPT simulation using
a Langevin thermostat with a collision frequency of 2.0 ps−1

(restraints of 50 and 25 kcal·mol−1·Å2 were applied on the solute
for NVT and NPT simulations, respectively). Successively, two
cycles of restrained minimization (2500 cycles of steepest descent
and 5,000 cycles of conjugated gradient, up to a gradient of
0.1 kcal mol−1 Å, with restraints of 25 and 10 kcal mol−1 Å2

on backbone atoms, respectively) were performed. The systems
were then heated up to 300K in 6 steps (1T = 50K) of 5 ps
each, where backbone restraints were gradually reduced from
10.0 to 5.0 kcal mol−1 Å2. An equilibration of 1.6 ns was then
performed by initially using the NVT ensemble (100 ps, ligand
and backbone restraints = 5.0 kcal mol−1 Å2) followed by NPT
(1 step of 200 ps with ligand and backbone restraints = 5 kcal
mol−1 Å2, then 3 steps of 100 ps each reducing the ligand and
backbone restraints from 5.0 to 1.0 kcal mol−1 Å2, and finally
1 step of 500 ns with ligand and backbone restraints of 1.0
kcal mol−1 Å2). The last equilibration step consisted in 500
ps of unrestrained NVT simulation. Finally, production runs
were conducted under the NVT condition at 300K for 1 or 4
ns. An electrostatic cutoff of 8.0 Å, PME (Darden et al., 1993)
for long electrostatic interactions, and the SHAKE (Ryckaert
et al., 1977) algorithm were applied to all the calculations. Three
independent simulations were performed for each hardware set-
up (GPU workstation or CPU HPC cluster). For the simulations
performed on GPUs, the default single precision/fixed precision
(SPFP) version of pmemd.cuda (Le Grand et al., 2013) was applied
in all steps, except for geometry minimizations where the double
precision/fixed precision (DPFP) version was adopted.

All MD production trajectories were processed by cpptraj
for backbone RMSD analyses (Figures S4–S11), solute-solvent
hydrogen bond (donor-acceptor distance cutoff at 4.0 Å, angle
cutoff at 150◦) and water density (grid analysis over a cubic
box 50 Å × 50 Å × 50 Å, mesh = 0.5 Å, centered on ligands)
analyses. Images of water density plots were obtained by using
UCSF Chimera (Pettersen et al., 2004).

Nwat-MMGBSA Analyses
MM-GBSA and Nwat-MMGBSA analyses were performed with
theMMPBSA.py script (Miller et al., 2012) of the AmberTools15
package. The analyses were conducted on either the 1st or the
4th ns of the production runs by selecting 100 frames evenly
spaced out. The GB-Neck2 implicit solvent model (Nguyen
et al., 2013) was chosen for the GB calculations and the salt
molar concentration in solution was set at 0.15M. Entropy was
neglected in all calculations, since the benefits of including its
contribution still remain controversial (Weis et al., 2006; Hou
et al., 2011a; Wallnoefer et al., 2011; Yang et al., 2011) and
normal mode calculations are also extremely time consuming.
It should be noted that neglecting entropy, although acceptable
when comparing ligands of similar size and structure (Kollman
et al., 2000; Wang et al., 2001; Wong et al., 2009), might lead
to errors when the analysis involves ligands that are structurally
rather different (Oehme et al., 2012).

TheNwat-MMGBSA script (Figure 1) uses the cpptrajmodule
of AmberTools15 to process the solvated MD trajectory. When
Nwat > 0, the water molecules closest to the ligand were
preserved while the remaining were stripped from the selected
frames by using the cpptraj command closest. The total number
of water molecules to be kept in the trajectory is given by the
Nwat flag in the script input section (in this work, we evaluated
Nwat = 10, 20, 30, 40, 50, 60, 70, 80, 90, or 100). The number
of frames that are going to be selected from the original MD
trajectory is defined by the r flag in the script input section, that
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FIGURE 1 | Pseudocode of the complete screening and rescoring workflow. Each texture represents an independent script: VScreen (diagonal), autoMD (dots), and

Nwat-MMGBSA (vertical).

corresponds to the interval keyword in the MMPBSA.py script
(Miller et al., 2012). In this work, r was set at 10, meaning that one
every 10 frames (i.e., 100 frames per nanosecond) was sampled.
The preserved closest water molecules are considered as part
of the receptor during the MM-GBSA analysis. In analogy with
studies on the MM-PB/GBSA performance previously reported
by us and by others (Hou et al., 2011b; Maffucci and Contini,
2013, 2016; Xu et al., 2013), the coefficient of determination (r2)
between experimental data and calculated binding energies was
used as the evaluation metric.

Restrospective Virtual Screening
Preparation of the Receptor
The AmpC β-lactamase receptor was derived from the 2HDS
PDB file (Babaoglu and Shoichet, 2006) according to what
described on the DUD-E website (Mysinger et al., 2012).
Starting from the crystal structure, only chain B was preserved,
crystallographic water molecules were removed and the
“Structure preparation” module of the MOE software was used
to check the protein structure and correct eventual errors. The
receptor was then capped by acetyl (ACE) and methylamino
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(NME) groups at the N- and C-termini, respectively. Missing
hydrogen atoms were added using the “Protonate 3D” function
of the MOE package, considering a physiological pH. Partial
charges were added accordingly to the AMBER10:EHT force
field and solvation was treated with the Born model. The system
geometry was then optimized up to a gradient of 0.1 kcal mol−1

Å, with protein backbone atoms restrained to the original
position.

The Rac1 receptor, used in the VS simulation, was prepared as
described elsewhere (Ferri et al., 2009, 2013a; Ruffoni et al., 2014).

AmpC β-Lactamase Testing Library
The DUD-E database provides 48 experimentally determined
active ligands and 2850 decoy molecules for AmpC β-lactamase.
However, considering the computational cost of rescoring by
MD simulations followed by Nwat-MMGBSA analyses, we
considered using a smaller library that decently represent
the original database. Hence, fingerprint clustering methods
included in MOE package were applied to reduce the size
of the test set. Multiple fingerprint/similarity metric method
combinations have been trial-and-error-ed. We found that
the application of Typed Graph Triangle (TGT) fingerprint
and Tanimoto Superset/Subset (tanimoto-ss) similarity metric
method provides the closest reproduction of virtual screening
results as the data provided by DUD-E. However, the
combination applied here might not be directly transferred to
other biomolecular systems. The clustering process reduced the
original database to 20 active ligands and 378 decoys (Table S2)
with a docking AUC at 74.82% and top 1% enrichment factor of
9.5, in comparison to the original 78.92% and 8.3 provided on
DUD-E database. The smiles of the final database are reported in
Table S2.

Rac1 Testing Library
By analyzing the literature and by using in-house data, we
collected a set of 116 compounds, 10 of which were active
and 106 inactive on the Rac1 protein (Table S3). The active
compounds were selected among those able to inhibit at least
the 50% of Rac1 activity, as assessed by G-LISA biochemical
assays (Ferri et al., 2009, 2013a). Conversely, the decoys were
chosen among molecules that were designed (or identified by
computational screening) as Rac1 inhibitors, but turned out to
be completely inactive on experimental evaluation (Ferri et al.,
2009, 2013a; Hernández et al., 2010; Surviladze et al., 2010;
Shang et al., 2012; Rahimi et al., 2015; Lu et al., 2017). The
selected compounds were designed with MOE, minimized and
subjected to a conformational search (MMFF94x force field,
Born solvation, with the other parameters as default). The lowest
energy conformation of each compound was selected to form the
final test set.

Virtual Screening
The workflow included in the VScreen script (see Supplementary
Information) allows the following combinations for library
processing:

1) Use the library as it is
2) Generate tautomers

3) Generate stereoisomers and tautomers
4) Generate ring conformations and tautomers
5) Generate stereoisomers, ring conformations, and tautomers
6) Generate stereoisomers, ring conformations, tautomers, and

protonation states.

The sixth library processing tandemwas applied in this work. The
UNICON software is used to generate tautomer and protonation
states (Sommer et al., 2016). We chose the topscoring keyword
to generate only the most favored tautomers and protomers,
as in preliminary evaluation we observed that the generation
of all tautomers and protomers (using the ensemble keyword)
did not provide improved results and was significantly more
time consuming. The SPORES software (ten Brink and Exner,
2009, 2010) is instead used to obtain stereoisomer and ring
conformation, as well as for the final assignment of atom types,
as requested by the PLANTS software (Korb et al., 2006, 2007,
2009, 2010) used for all dockings. Specific docking parameters,
including search speed and scoring functions, can be set directly
in the VScreen script. In the examples reported here, PLANTS
was used in a low speed / high accuracy mode (search speed =

speed1) and with the CHEMPLP scoring function (Korb et al.,
2009). Additional PLANTS commands, such as H-bond or NMR
constraints (Korb et al., 2010), can also be inserted in the input
section of the VScreen script. Concerning the Rac1 example, we
requested a H-bond constrain of 3 kcal/mol between any H-bond
donor of the docking ligand and the carbonyl oxygen of Leu
70, since the literature evidence the importance of such ligand-
receptor interaction for a proper activity (Montalvo-Ortiz et al.,
2012; Ferri et al., 2013a; Ruffoni et al., 2014). Binding site radii
were optimized to 16 Å for Rac1 and 7 Å for AmpC β-lactamase
test sets, respectively. After the virtual screening process, the
outcomes were ranked according to total PLANTSCHEMPLP score,
using the top ranked pose of each ligand. Receiver operating
characteristic (ROC) curves and corresponding area under curve
(AUC) were then generated at the end of each docking run by
using an R script integrated in the VScreen program.

Ligand Parameterization
Following the docking, automatized parametrization of ligands
for later MD simulations can be enabled by setting the doMD
keyword to 1. The user is allowed to choose a “top percentage” of
the ranked ligands to be subjected to parametrization, by setting
the fract keyword. We have chosen 100% (fract = 100), i.e., the
full test set, as we were interested in a full assessment of the Nwat-
MMGBSA methods in terms of virtual screening rescoring. The
antechamber software (Wang et al., 2006) of the AmberTools15
package is used for deriving AM1-BCC partial charges for each
ligand and to assign atom types accordingly to the gaff force field
(Jakalian et al., 2002;Wang et al., 2004). The quantummechanical
calculations necessary to perform the charge parameterization
can be accomplished by using the default sqm software included
in AmberTools15, or with MOPAC2016 (Stewart, 2016) by
setting the qm keyword to 2 or 0, respectively. The topology and
starting coordinate files of each complex are then generated by
calling the tleap software, included in the AmberTools15 package.
Each complex is neutralized and solvated by adding Na+ or
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Cl− ions and a TIP3P water box of 10 Å from the solute. MD
simulations andNwat-MMGBSA analyses can then be performed
as detailed in previous sections.

Nwat-MMGBSA analyses were performed on the obtained
trajectories with number of closest water molecules set to 0, 30,
60, or 100. ROC curves and corresponding AUCs were evaluated
by using the rankings derived from each Nwat-MMGBSA
analysis.

All scripts applied in this work are available in the Supplement
Materials. Eventual updates might also be requested to the
authors.

RESULTS

Optimization of the Nwat-MMGBSA
Protocol
To optimize the Nwat-MMGBSA protocol for low- or medium-
throughput virtual screening procedures, such as those applied
in the hit-to-lead optimization phase of a drug discovery process,
we worked on a significant reduction of the overall simulation
time in comparison to our previous implementations (Maffucci
and Contini, 2013, 2016). Then, we integrated Nwat-MMGBSA
in a continuous workflow that includes the library setup, docking
and the preparation of complexes that is propaedeutic to MD,
as shown in Figure 1. The following steps of the protocol were
redesigned for an optimal ratio between accuracy and speed:

• The application of AM1-BBC charges to reduce the
computational cost for ligand parameterizations. Indeed,
it has been reported that AM1-BCC charges behaved fairly
well in MM-PB/GBSA calculations, compared to more
sophisticated methods (Xu et al., 2013; Sun et al., 2014).

• The use of the NVT ensemble instead of NPT for last
equilibration step and production run. This allowed a 30%
reduction on the overall MD simulation time, without a
significant variation in the results.

Generalized Born (GB) implicit solvent model is used by
default in Nwat-MMGBSA calculations. Indeed, several articles

report that GB can provide outcomes comparable to the PB
method, at a fraction of the computational cost, especially when
relatively short MD trajectories are used for MM-PB/GBSA
calculations (Hou et al., 2011a,b; Maffucci and Contini, 2013,
2015, 2016). However, the PB method can still be requested by
the user by setting the solv keyword in the input section of the
Nwat-MMGBSA script (see scripts and examples provided as
Supplementary Information).

Moreover, the reproducibility between independent MD
simulation repeats of the same system, especially when
using GPU, was also improved. This required some protocol
adjustments, including a longer equilibration of the solvent box,
the use of geometric restraints instead of constraints, the use of
the Langevin thermostat instead of the weak coupling algorithm,
and a slightly extended final equilibration phase.

The protocol modifications allowed approximately 1.5 h per
ligand on a standard workstation equipped with a single
GeForce GTX TITAN Black card, including parameterization,
minimization, equilibration, 1 ns of production run and Nwat-
MMGBSA analysis. This is roughly the same time required for
the simulation on a HPC architecture using 12 nodes equipped
with two 2.40 GHz octa-core processors under similar simulation
settings.

Considering our interest in using Nwat-MMGBSA
calculations to rescore docking results in a reasonable time,
the following tests were also designed to evidence any statistical
difference in the correlation to experiment when the analysis is
performed on 1 ns or 4 ns long MD trajectories. All the energies
computed for the discussed examples are reported in Tables
S4–S39. Correlations to experiments and statistical analyses are
shown in Tables S40–S42 and Table S43, respectively.

Test on Penicillopepsin
This system was already evaluated, although with a different
protocol, in a previous work where the bases of the Nwat-
MMGBSA approach were described (Maffucci and Contini,
2013). The results of the Nwat-MMGBSA analysis obtained
with the new protocol agreed with those reported in the

FIGURE 2 | Results of the penicillopepsin system regarding the application of Nwat-MMGBSA method. (A) Bar chart of r2 in dependency at different Nwat and

computational conditions. Nwat = 0 corresponds to a standard MM-GBSA calculation. (B) Water density plot obtained by grid analysis of penicillopepsin-1APT

complex (visualization with Chimera, step = 1, level = 15).
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previous work in terms of correlation between predicted and
experimental binding energies (Figure 2A and Table S40). This
confirms the robustness of the Nwat-MMGBSA method toward
the modifications in the MD simulation conditions. However,
the new protocol showed the beneficiary application of Nwat-
MMGBSA method even when only 10 closest water molecules
were considered (Nwat= 10), while in the previous evaluation no
significant improvement was observed at this condition. Water
density plot around the binding site (Figure 2B) confirm the role
of water in mediating the ligand-receptor binding. Indeed, for
this system, the use of the Nwat-MMGBSA methods allowed
to increase the r2 from about 0.3, obtained with the standard
MM-GBSA approach (Nwat= 0), to about 0.8 (Figure 2A).

In addition, relatively low standard deviations, obtained when
averaging the r2 obtained by independent repetitions of the
whole run, were observed when higher numbers of closest water
molecules were considered (Table S40 and Figure 2A), thus
suggesting that the inclusion of explicit waters is likely to improve
the reproducibility of results from individual runs.

Moreover, the outcome obtained by running simulations on
GPU and CPU hardware were statistically equivalent (Table S43),
and the same was true for the analyses performed on either the
1st or the 4th ns of MD simulations (Figure 2A). This suggests
that Nwat-MMGBSA analysis is suitable for the analysis of short
MD simulations run on GPU cards, with a great improvement in
speed and no impairments in accuracy.

Test on HIV1-Protease
Similarly to other aspartic proteases (Brik and Wong, 2003).
HIV1-protease exhibits a close relationship with water-mediated
bridging effects in the crystal structure (Shen et al., 2010).
Consequently, the effects of explicit waters were also reflected
by the Nwat-MMGBSA workflow (Figure 3A). The high water-
density around a wide area at the binding site also confirms the
likelihood of the involvement of explicit water during binding
process (Figure 3B).

When considering the correlation between the experimental
ki and the predicted binding energies, a significant improvement
in r2 was obtained with the inclusion of a hydration shell of

30–70 water molecules (Figure 3A and Table S41). Although,
results with a lower Nwat value showed no significant difference
from standard MM-GBSA analyses, suggesting that smaller
hydration shells around the ligand might have excluded certain
solute-solvent interactions important for binding free energy
estimations. However, water-mediated H-bond analyses showed
that only one or two stable (occupancy > 20%) water-mediated
interactions did involve the ligand, while majority of the bridging
water molecules were found between protein residues (Tables
S44, S45). Furthermore, crystallographic data provides that only
10–15 water molecules are generally present within 4 Å from the
ligand molecules (Olajuyigbe et al., 2011). These imply potential
conflicts between the lower numbers of the observed “stable”
bridging water molecules to the evidently better binding free
energy estimations when higher amount of closest explicit solvent
(up to 70) is included. Such conflicts can only be explained
when transient water bridges are considered. The averaged
free energy contribution of these transient interactions is more
likely been captured by Nwat-MMGBSA calculations, whereas
not necessarily detectable through population distribution or
electron density analyses. Indeed, for example, the inclusion of
crystallographic water molecules up to 3.5 Å from the ligand
did not provide a clear benefit over standard MM-PB/GBSA
approach (Greenidge et al., 2013).

Similar to the penicillopepsin system, the outcomes did not
show statistically significant differences between the 1st and
4th ns of MD simulations and were independent from the
hardware. Apparently, 4 ns MD simulations performed using
CPU averagely provided higher correlation to experiments for
Nwat ≤ 20, although the high standard deviations make this
result not statistically significant (Figure 3A and Table S41).

Test on BCL-XL

The Nwat-MMGBSA trails up to 50 closest water molecules have
no statistical difference from standard MM-GBSA calculations,
despite of different hardware environment (Figure 4A). A lower
water density was indeed observed around the ligand for
BCL-XL system (Figure 4B). This implies that explicit water
molecules are playing a less important role in ligand binding,

FIGURE 3 | (A) Trend of r2 in dependency of Nwat for HIV1-protease. Nwat = 0 corresponds to a standard MM-GBSA calculation. (B) Water density plot obtained by

grid analysis of HIV1-protease-3NUO complex (visualization with Chimera, step = 1, level = 15).
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FIGURE 4 | (A) Trend of r2 in dependency of Nwat for BCL-XL. (B) Water density plot obtained by grid analysis of BCL-XL-3ZC4 complex (visualization with Chimera,

step = 1, level = 15).

as reflected by the relatively deluding performance of Nwat-
MMGBSA compared to MM-GBSA. A relatively high r2 (∼0.7)
was indeed consistent throughout the multiple trials for all of
the conditions evaluated. These apparently non-effective results,
however, positively suggest that the Nwat-MMGBSA method
does not impair the statistical outcomes of the estimations
for systems where explicit water molecules are deemed less
important. Thus, it can be concluded that, even if system-specific
tuning is necessary for optimal performance, Nwat-MMGBSA
can be safe for binding free energy estimation even without
an a priori knowledge of the bridging water in the system of
interest.

Retrospective Virtual Screening Test
To assess the performance of the Nwat-MMGBSA method
in rescoring virtual screening results, we have chosen two
case studies for protein-ligand (PLI) and protein-protein (PPI)
interactions, respectively. The first system, AmpC β-lactamase
(Usher et al., 1998), was selected from the Dud-E database to
provide an example were water plays an active role in the target
catalytic cycle. Indeed, the inclusion of an explicit water molecule
was found beneficial in previously reported virtual screenings
(Powers et al., 2002). Conversely, the second system, the Rac1
protein targeted at the Tiam1 binding site (Worthylake et al.,
2000), was chosen because of the availability of reliable in-house
activity data, including those of several inactive compounds that
were however selected as potential hits by virtual screening
studies previously conducted (Ferri et al., 2009, 2013a).

The AUC of the ROC curves was chosen as the main metric
of comparison, since enrichment values are not indicated for
databases of limited sizes (Enyedy and Egan, 2008). For the
AmpC system, the full virtual screening workflow, followed by
MD simulation and Nwat-MMGBSA (Nwat = 0, 30, 60 and,
for Rac1 only, 100) rescoring, was repeated twice, while for
Rac1 a third repetition was added due to a higher variance among
the obtained correlations. Docking scores and Nwat-MMGBSA
binding energies for AmpC and Rac1 screenings are reported in
Tables S46, S47 and Tables S48–S50, respectively.

TABLE 1 | ROC AUC values obtained at different scoring conditions for AmpC

β-lactamase.

Docking Nwat0a Nwat30 Nwat60

r2 b 0.72 ± 0.00 0.76 ± 0.01 0.88 ± 0.01 0.88 ± 0.00

Pdocking 0.019 0.002 <0.001c

PMMGBSA 0.004 0.002

1%docking 4.9 22.7 21.7

1%MMGBSA 17.0 16.0

Percentage of variation (1%docking and 1%MMGBSA) and P values respect to ChemPLP

scoring (Pdocking ) and to standard MM-GBSA rescoring (PMMGBSA) are also reported.
aCorresponding to a standard MM-GBSA calculation, with no explicit waters included.
bAverage of two full repetitions.
c0.00001.

AmpC β-Lactamase
The receptor in Dud-E include an explicit water molecule. We
did preliminary docking evaluations by including the water,
using the “water_molecule” function implemented in PLANTS,
but comparable results were obtained (see Figure S12). For this
reason, to simplify and standardize the procedure, we decided
not to include any explicit water in the docking part of the virtual
screening workflow.

We initially noticed that virtual screening has already
provided a decent discrimination of active from decoys with a
ROC AUC that averaged at 72.0% (Table 1). The application
of the standard MM-GBSA method (Nwat = 0) only provided
a barely significant increase of ROC AUC value, respect to
docking (Table 1), while improvements appeared once explicit
water molecules were included, as shown by the Nwat = 30 and
60 scenarios (Figure 5, Figure S15). Considering that the ROC
AUCs for Nwat = 30 and 60 were fully converged, no additional
analyses at higher Nwat values were done. Additionally, ligand-
to-ligand correlations in calculated free energies were evaluated
between the two repeated runs. The standard MM-GBSA run
provides a r2 of 0.66 when correlating the energies obtained
by the two repetitions, while Nwat-MMGBSA with Nwat = 30
and 60 resulted in r2 of 0.84 and 0.91, respectively (Figure 6).
This implies that Nwat-MMGBSA rescoring is likely to provide
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FIGURE 5 | Average ROC AUC values for AmpC β-lactamase. Statistical

significance was calculated by t-test and is graphically reported only when a

significant variation was observed (*P < 0.05; **P < 0.01; ***P < 0.001).

better reproducibility between separate runs. Moreover, the
good ligand-to-ligand inter-method correlation between Nwat
= 60 and 30 (r2 = 0.95 and 0.94 for runs 1 and 2,
respectively; Figure S13) further confirmed the improvements
in reproducibility. Interestingly, a positive binding energy was
computed for two ligands by Nwat-MMGBSA calculations, but
not by docking or standard MM-GBSA rescoring. The two
ligands belong to the decoy set (ligands 088 and 179, Tables
S46, S47) and are thus supposed to be poorly ranked. Indeed,
by analyzing the binding modes of the decoy 088 (Figure
S17), it can be observed that an isopropyl group overlaps
with the position occupied by a water molecule present in
the crystal structure (Babaoglu and Shoichet, 2006), but not
explicitly considered during docking (see Methods). Conversely,
decoy 179 does not overlap with the crystallographic water
site (Figure S18). However, it can be observed that a solvent-
exposed chloropropyl group overlaps to a position occupied
by a hydrophilic amino acidic moiety of the crystallographic
ligand. In both cases, it appears that Nwat-MMGBSA rescoring
can correctly penalize compounds that do not offer an optimal
orientation of hydrophobic groups.

Tiam1-Rac1 PPI Interface as the PPI Test Set
Virtual screening targeting PPIs has been suggested as a
challenging task, especially when only traditional docking and
scoring procedures are used (Bienstock, 2012; Scott et al., 2016).
In the past, we have applied standard computational methods
to identify and design inhibitors of the Rac1-Tiam1 PPI, thus
collecting data on compounds identified as potential hits, but
that turned out to be inactive upon experiments (Ferri et al.,

FIGURE 6 | Correlations between the binding energies computed in two

independent repetitions (Run 1 and Run 2) for AmpC β-lactamase by standard

MM-GBSA (Nwat = 0) or by Nwat-MMGBSA with Nwat = 30 or Nwat = 60.

2009, 2013a,b; Ruffoni et al., 2014). In addition, we searched
the literature to identify compounds that were tested against
Rac1 inhibition, but turned out to be inactive (Hernández et al.,
2010; Surviladze et al., 2010; Shang et al., 2012; Rahimi et al.,
2015; Lu et al., 2017). By this way, the resulting ligand test set
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TABLE 2 | ROC AUC values obtained at different scoring conditions for the

Rac1-Tiam1 system.

Docking Nwat0 Nwat30 Nwat60 Nwat100

r2 a 0.59 ± 0.00 0.56 ± 0.06 0.53 ± 0.04 0.71 ± 0.07 0.76 ± 0.06

Pdocking 0.536 0.077 0.029 0.007

PMMGBSA 0.520 0.045 0.016

1%docking −4.1 −9.2 21.4 29.1

1%MMGBSA −5.3 26.7 34.7

Percentage of variation (1%docking and 1%MMGBSA) and P-values respect to ChemPLP

scoring (Pdocking ) and to standard MM-GBSA rescoring (PMMGBSA) are also reported.
aAverage of three full repetitions.

shared similar physico-chemical and structural features between
the actives and the inactives, thus making this virtual screening a
difficult discrimination process to tackle.

The docking protocol was optimized to maximize AUC by
evaluating the effect of the different scoring functions available in
PLANTS, by variating the binding site radius, the search speed
and by using hydrogen bond constraints with residues known
to be essential for activity (i.e., Leu70 or Ser71) (Gao et al.,
2004). The docking poses were visually inspected to check their
consistency with the poses obtained in previous studies (Ferri
et al., 2013a). With the optimized protocol and for each library
processing condition, all the active compounds showed a similar
binding pose, except for ligand109 (Figure S14).

The ROC computed on the scores obtained by docking
showed a moderate ability of this procedure in discriminating
active from inactive compounds, with AUCs of about 0.6
(Table 2, Figure 7). Considering the strained characteristic of
both the target and database, this result is acceptable, if compared
to the ROC AUCs obtained in other benchmarks reported by
literature (Brozell et al., 2012; Liebeschuetz et al., 2012; McGann,
2012; Neves et al., 2012; Novikov et al., 2012; Repasky et al., 2012;
Schneider et al., 2012; Lavecchia and Di Giovanni, 2013; Yuriev
et al., 2015).

This time, the application of the standard MM-GBSA (Nwat
= 0) rescoring did not provide any significant improvement
in the AUC compared to docking (Table 2). Unexpectedly,
Nwat-MMGBSA performed with 30 water molecules (Nwat =
30) behaved similarly. Conversely, the ROC AUCs improved
of about 20 and 30% after rescoring with Nwat = 60 or
100, respectively (Table 2, Figure 7, and Figure S16). Since the
difference in AUC between the two last scenarios was not
statistically significant, no additional simulations were conducted
at higher Nwat. An improvement in the ROC AUC of about
20–30%, although reproducible and significant (Zhang et al.,
2014), might be questionable against the increased computational
effort of rescoring with either MM-GBSA or Nwat-MMGBSA.
However, in the framework of a lead optimization study, the
payback of a simulation that can be easily run on relatively
inexpensive hardware can be an increased chance of synthesizing
a good molecule. Considering the costs associated with the
synthesis of new molecules, having even only a 20% higher
probability of preparing an active compound can be considered a
rather good result.

FIGURE 7 | Average ROC AUC values for Rac1-Tiam1 virtual screenings.

Statistical significance was calculated by t-test and is graphically reported only

when a significant variation was observed (*P < 0.05; **P < 0.01).

DISCUSSION

When developing new drugs, computational calculation can
help in identifying new hits in either the hit-to-lead or lead
optimization phases. While the first task is generally performed
by using very fast computational methods to screen large
databases, the lead optimization phase is generally done by
applying more accurate, although more computationally
demanding, methods. Indeed, starting from a lead, a virtual
library of hundreds-to-thousands congeneric molecules
can be generated and evaluated computationally. However,
the prioritization of the synthesis of a few derivatives by
computational methods might still be quite challenging. In
this framework, we optimized a variant on the well-known
MM-GBSA method, referred as Nwat-MMGBSA (Maffucci and
Contini, 2013, 2016). This approach consists in the inclusion,
during the MM-GBSA analysis, of a fixed number of water
molecules, which in each frame of the MD simulation are the
closest to the ligand, or to a binding interface, and are therefore
potentially mediating interactions between the receptor and the
ligand. We demonstrated that this approach might improve
the correlation between predicted and experimental binding
energies up to 50%, compared to the standard MM/GBSA
method (corresponding to Nwat = 0), with only a modest
increase in computation time (Maffucci and Contini, 2016).
Of course, the potential improvement in correlation depends
on the role played by water in facilitating the ligand-receptor
binding. However, we also found that when water does not play
a specific role in mediating this interaction, the application of
Nwat-MMGBSA is not detrimental on the quality of correlation,
compared to the default approach. In the light of this, we
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automatized the process and optimized the MD protocol for
running simulations on standard workstations equipped with
a GPU, on which a full calculation can be completed in about
1–2 h per complex, depending on system size. Indeed, the results
obtained by using a single GPU card are comparable, in both
quality and duration, with those obtained by running MDs
on a relatively large HPC environment (12 nodes with 2 octa
core processors per node). Moreover, we also observed that
Nwat-MMGBSA analyses provided comparable results when
applied on 1 or on 4 ns MD trajectories, thus making this
simulation attractive for medium-throughput virtual screenings.

In the second part of this article, we described the integration
of Nwat-MMGBSA as a method to rescore docking results in
SBVS studies. By applying Nwat-MMGBSA rescoring (Nwat
= 60 or 100) we obtained, in both the examples, an increase
in the ROC AUCs of between 20 and 30%, compared to the
docking scorings or default MM/GBSA (Nwat = 0), depending
on the system. In the adopted conditions, we were able to
process more than 20 compounds per day using a standard
octa core workstation equipped by a single GPU. Although this
might appear a quite long time, compared to the thousands
of compounds that can be screened per day by docking, the
investment becomes reasonable when considering the time and
resources required for the synthesis of new molecules. Moreover,
we can expect that the fast development of GPU hardware will
make MD-based rescoring even faster in short time. Indeed, in
2010 we could run aMD simulation on a Rac1 complex at a speed
of 8.7 ns/day on a Tesla C1060 card, while a few years later, the
same simulation was run at a speed of 59.3 ns/day on a GeForce
GTX TITAN Black card.

Unfortunately, we were not able to find an ideal number of
water that need to be included during Nwat-MMGBSA rescoring.
Indeed, while Nwat = 30 appeared to be reasonable in most
of the examples, including those reported previously (Maffucci
and Contini, 2013, 2016), it failed in the Rac1 VS example.
Indeed, in this case, at least 60 waters were necessary to observe a
significant improvement over docking and standard MM-GBSA,
possibly due to the large and solvent-exposed nature of the Rac1
binding site. Conversely, it was recently reported that MM-PBSA
calculations on a set of Mnk1 and Mnk2 inhibitors provided

improved correlations to experiments only when including up
to 10 water molecules (Kannan et al., 2017). This quite low
number, compared to other examples, was justified by the rather
small interface between Mnk1/Mnk2 kinases and the respective
ligands.
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